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The feasibility of using the oscillating film method in the study of the homogeneity
of the dislocation density distribution in single crystals is investigated. The components
of the dislocation density tensor in aluminium single crystals are determined by means of
the measurement of the half-width of interference lines and by means of the study of the
Fourier transforms.

It is shown that the oscillating film method can be used for the determination of
differences in local distributions of screw and edge dislocations,

1. Introduction

The purpose of the present paper was to check to what extent the oscillating film
method [1, 2, 3, 4] can be used in the study of the uniformity of the density distribution
of dislocations in single crystals. The photometry of interference lines registered on the
film at various levels can be namely applied to the comparison of their half-widths and
shapes corresponding to different points in the crystal. The calculation of the dislocation
density from half-widths requires, however, the assumption of a definite model of angular
dispersion of the surface elements of the single crystal which substantially influences the
determination of this quantity [5,6,7]. In connection with these considerations the
next purpose of the present paper was the performance of numerical calculations which
permit the determination of the most probable model of angular dispersion of the surface
elements, and the check how sensitive are the calculations of the dislocation density on the
change in the parameter «, which defines the model.

Since the oscillating film method is used in principle in the determination of the
dislocation density in cases when the latter is greater than 104—105 lines/cm?, the object
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chosen for this investigation was an aluminium single crystal® of fairly good quality, in
the form of a plate with the greatest flat surface parallel to the (100) plane. The surface
of the crystal was fairly well etched to avoid the influence of mechanical treatment.
In case of ideally parallel ard narrow bzam and when the characteristic radiation is
reflected only from the external atomic faces of the crystal, the function of the angular
distribution of the surface elements of the crystal f(3) can be determined from the equation

h(x) = i Jg(x—y)dy (1)
in which the function A(x) describes a line, which is recorded on an oscillating film during
simultaneous oscillation of the crystal, while g(3x) describes a line on a film at rest. The
function f(y) which appears in Eq. (1) describes the angular. distribution of surface elements
twisted by the angle y from the selected zero orientation [1-6].

In case of really performed experiments one should take into account the influence
on the shape of the lines of such factors as the divergence of the beam, the width of the
slit, the roughness of the crystal surface, as well as a shift of the rotation axis with respect
. to the reflecting surface.

In such a case the function of the angular distribution of surface elements can be
determined from the following equation:

H = | f0)6 =iy, @

The quantities H*(x) and G*(x) appearing in this equation are connected by definition
with other functions as follows

H = | Hx-)F0)dy
G = | Gx-yF,)y
F(x) = | G'x=y)®,()dy

) = [ G020y (22)

The following conditioﬁs must be also fulfilled

y<l; p<1

tan. @ AET: 3
7 ¢ ,

cos? ¢ S (

1 The crystal has been prepared at the Institute of Nuclear Research by A. Modrzejewski.
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where: p-is the horizontal divergence of the X-ray beam, y-defines the maximum
spread angle of the surface elements, g-defines the divergence of the beam in vertical
plane, Aqg-defines the divergence angle in vertical plane in the range of the photometer
slit height..

The functions used in the integrals describe the shape of the interference lines obtained
in the following conditions:

H(x) —on an oscillating film when the crystal oscillates and is shifted,
G(x) —on a film at rest with oscillating and shifted crystal,
G'(x)—on a film at rest when the crystal oscillates.
On the other hand &, and &, describe:
@,(x) the shape of the beam leaving the slit very near to the latter,
@,(x) the shape ot the beam leaving the slit at a distance equal to that between the crstal
and the slit. :

According to Bedynska [4-6] the angular distribution function f(») of the surface
elements occurring in Eq. (2) depends among others on two parameters o and N. The
parameter o which defines the model of the dislocation distribution is connected with the
probability p of finding a dislocation of a given sign by means of the following equation

o=2p-—1

In case of a completely random distribution (Cottrell model) the probability of ﬁnding
a positive dislocation is equal to the probability of finding a negative dislocation, and thus
p=3% ora=0.

In case of ideal orderly arrangement (the crystal uniformly bended) all dislocations

are of the same sign, and thus p =1 or o« = 1.
The second parameter N denotes the number of dislocations appearing in the in-
vestigated: region. It thus substantially influences the half-widths of the function f(y).
The -function f(») is defined according to [5] by means of the formula

(y >2
Z —no
N .t

2

€X - vord
g n(1—a?)
o) = No Jar s/l —a?)

where ¢ is the rotation angle of the lattice produced by one dislocation -and depends on

the Burgers vector.
In case of the Cottrell model where o = 0, it follows according to vBedyﬁska« and

Chmielewska [5] that the function f(y) is symmetric and has a maximum for y = 0. For
N - oo this function tends to Gaussian. .

In case of ideal bending, i.e., « =1 the function f(y) is rectangular, starting from
y = 0 with the widths equal to & - N, i.e.

dn )

]_v
f)=— for 0<y<eN
eN

fOH=0 for y<O0 and y>eN.
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In intermediate cases the function f(y) goes over from symmetric to a more asymmetric
and rectangular form.

According to the papers [5, 6, 8] it is possible to estimate thé dislocation density
in the investigated crystal by approximate determination of the half-width of the function f
(Eq. (2)). This is justified under the assumption that all experimental functions appearing
in Eqgs (2a) can be approximated by means of Gaussian functions. This is only possible
when these functions are at least approximately symmetric. From these assumptions,
from the formulae (2) and (2a) and from the properties of the Gaussian function (the
convolution of two Gaussian functions is also a Gaussian function) it follows that also
the function f(y) should be on approximated Gaussian function which is possible only
in the case of the Cottrell model a = 0 and large N-values.. .

Given the experimental functions it is possible to calculate the half-width of the
function of the distribution of the surface elements f(y) by means of the formula

fP=H-G’+ 3G+ 1 02— %)

where H, G, G', ¢,.and @, denote the half-widths of the above-mentioned functions
while f is the half-width of the function f(y).

In case of undeformed crystal the best model of the dislocation distribution seems to

be the Cottrell model. The dislocation density described by the edge and screw components
of the dislocation density tensor is then calculated on the basis of Eqs (4)~(6):

. f“/ 3
¢ = 2PRPLT i
f"/ 3
¢ =y ®

where f denotes the half-width of the surface element distribution function, b,, b, — the
Burgers vectors of edge and screw dislocations and L,, L, are the values of normal and
perpendicular slipping with respect to the rotation axis.

In accordance with the references quoted above it is also possible to determine more
accurately the values of the parameters « and N describing the shape of the function f()
by making use of Eq. (2) and the definition (2a). No specific assumptions about the shape
of experimental function are here required, except one, i.e., that the functions H(x) and
G(x) cannot have many maxima which would indicate polygonization in the investig(ated
region.

The problem of rigorous selection of parameters o and N can be solved by means
of numerical calculations with the use of a computer made according to a method described
by Bedyniska et al. [9]. 1t consists in the selection of the parameters o and N for the function
f(y) appearing in Eq. (2) and obtained from experimental data. These parameters should
be chosen to obtain the best fit of f()) to the experimental angular distribution if the
surface elements for a given crystal.

The integral equation (2) is solved according to Bedyniska et al. [4, 5, 6, 8, 9] by means
of Fourier transform method. The result of such a solution is an “‘experimental” Fourier
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transform of the angular distribution of surface elements obtained by suitable numerical
operations performed on the Fourier transforms of the experimental functions H, G, @,, ®,.
The “‘experimental®” points of the Fourier transform f obtained in this way are fitted by
the “‘theoretical” transform of the function f by means by the “theoretical” transform
of the function f by means of the least square method by varying both « and N.

According to Refs [4, 5, 6, 8, 9] the theoretical transform depends on the parameters o
and N, and is given by means of the formula

F@F _
IF'(0)>  s*t*¢*(4a*+5%1%)

F(t) = {1 +exp (—s**p)— \

—2exp ( - % 52t2(p> cos (stcpd)} (8)

where ¢ is the subsequent number of the transform, D is the width of the region
of the coordinate y in which f(y) is developed into Fourier series

2
T ¢ = 2 (1—ad®)N

§=—; ,
D &

1 a
a=— —
e 1—a?

2. Experiment

The dislocation density has been determined by means of the oscillating film method
using a quasi-point X-ray source with the diameter of about 20 p and the characteristic
radiation Kf Cu. The width of the spectrometer slit was 20 p. The crystal was adjusted
to Bragg reflections from the (001) plane. During the experiment the sample oscillated
about the axis within 2° and was shifted in the direction parallel to the spectrometer axis
to determine the screw component, and in the direction perpendicular to the spectrometer
axis to determine the edge component of the dislocation density tensor.-The shift in both
cases was 0.5 mm. .

The photographs of the interference lines obtained are shown in Fig. 1. The levels
at which the photometric measurements were made are marked in the figure.

In the photographs there are also interference lines recorded on the film at rest for
a shifted, oscillating crystal (II), and for an oscillating and non-shifted crystal (I11). The
density of these lines has been determined by means of the photometric method. From
the curves obtained in this way on the basis of Eq. (5) the half-width of the function f(y)
has been determined.

Fig. 2 shows examples of the shapes of interference lines obtained for one of the
photometric levels.

The aluminium crystal has a face-centred regular lattice. The smallest possible Burgers

. . . . > a . C
vector for this lattice can be written in the form 6 = 5 {110>. It amounts in this case to
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b

Fig. 1. Examples of photographs of interference lines for the following components a) screw and b) edge

dislocations (the ‘levels at which photometric measurements were made are indicated by arrows).

1. Oscillating film — oscillating and shifted crystal. II. Film at rest — oscillating and shifted crystal.
III. Film at rest — oscillating and non-shifted crystal

2.8635 A. Making use of Eqgs (6) and (7) we have calculated the density of screw and edge
dislocation connected with this Burgers vector, assuming the Cottrell model and using
the value of the half-width of the spread function of surface elements.

The results obtained are listed in Table I. The calculations have been performed for

Lo a =] 0 - _
the Burgers vectors by 5 {110}, b, = 3 {110}, where b, denotes the Burgers vector for

-

edge dislocation and b for screw dislocation.
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Fig. 2. Shapes of interference lines obtained at one of the indicated levels. /. in case of oscillating film ‘and

crystal — the latter shifted perpendicularly to the spectrometer rotation axis, 2. 1in case of oscillating crystal

shifted perpendicularly to the spectrometer rotation axis — filmat rest, 3. in case of oscillating and non-
-shifted crystal — film at rest

TABLE 1
Level o [lines/cm?] ) 05 [lines/cm?]
1 4.46-107 1.22-108
2 1.22-107 5.21-107
3 1.18-107 4.15-107

Evaluation of experimental results

In accordance with Ref. [9] the parameters o and N which described the angular
distribution of surface elements in the investigated crystal have been chosen in the following
way: several dozens consecutive points of the “‘experimental” Fourier transform of the
angular distribution function cf surface elements have been determined strating from
Eqs (2) and (2a). The behaviour of this transform should be described by Eq. (8) ‘which
gives the behaviour of the theoretical transform depending on « and N.

‘The a-interval from 0 to 1 has been divided into m equal subintervals; next for each
consecutive « value starting from o = 0 the least square method was used for obtaining

=
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the best fit of both transforms with N as varying parameter. The difference between these
two transforms can be expressed by the so-called correlation R-index

Y (Foi)—Fx(i)*
R == ©)
3 ol

where Fo(i) is the consecutive value of the experimental and F;(i) of the theoretical trans-
form of the angular distribution function of surface elements.

The R-index was dependent on the value of o and for a certain value Oopt DECAME
minimum,

This indicated that one should look for the best fit of the theoretical to the experimental
transform, in the vicinity of this particular value dop- By repeating this procedure for
the reduced range around o, it was possible to determine more precisely this value of «
for which the best fit was obtained (Rpy,).

To the value of o found in the above-mentioned procedure there corresponds the
parameter V which gives directly the dislocation density in the investigated. crystal region.
The results obtained for the point of the crystal corresponding to the region at half the
height of the diffraction pattern are summarized in Table II. The columns 2 and 3 .of this
Table give the values of the R-index and the dislocation density values obtained for various

TABLE 1I

1 7 ] 3 1 4 5

4 : Ry % ok [lines/cm?] Ry % os [lines/cm?]
0.00 7.68 3.48-10¢ 9.18 1.12-107
0.10 8.27 2.86:108 6.73 6.79-108
0.20 10.05 2.02-108 8.37 3.94-108
0.30 11.70 1.48-10¢ 10.14 2.72-10¢
0.40 15.37 1.10-108 11.24 2.07-108
0.50 16.40 8.97-10° 11.97 1.67-108
0.60 17.09 7.55-10° 12.50 1.40-108
0.70 17.57 6.51-10° 12.89 1.20-108
0.80 17.91 5.73-10° 13.20 1.05-108
0.90 18.15 5.12-10° 13.44 9.37-10°
1.00 18.35. 4.63-10° 13.76 8.59-105

assumed values of the parameter «, for measurements of the edge component of the
dislocation density tensor. The columns 4 and 5 give analogous values for the screw
component of the dislocation density tensor. Best fit values have been obtained

a) for the screw component at

o=011 Ry, =671%
0s = 6.37.- 106 lines/cm?
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b) screw component at
=0 Ry, =768%
0, = 3.48 - 10° lines/cm?2.

The behaviour of the experimental and the theoretical Fourier transform for the
screw and edge component of the dislocation density tensor are shown in Figs 3 and 4.
It can be seen from the figures that the theoretical curves are in good agreement with
experimental points, the best agreement occurring for the screw component at o = 0.11.

3. Conclusions

1. The dislocation density has been estimated from the half-width odf lines. At three
different points in the crystal it amounts to 1.18 - 107, 1.22 - 107 and 4.46 - 107 lines/cm?
for edge dislocation, respectively. For screw dislocatioiis the respective values are 4.15 - 107,
5.21 - 107 and 1.22 -.10® lines/cm?2. This means that the distribution of the dislocation
density in the investigated crystal was not uniform, and that at each point at which the
measurement was made screw dislocations prevail. For calculations of the dislocation
density we have accepted the Cottrell model.

2. In order to check the Validit{/ of this assumption we have made computer calcula-
tions of the dislocation densities for one of the previously measured points (level 2) using
a specially written program. We have studied the dependence of the R-index for screw
and edge dislocation on the value of the parameter « which defines the model (x = 0.00
for the Cottrell model and 1.0 for uniform bending model). The edge dislocation density
obtained for « = 0.00 was 3.47-10° while that of the screw dislocations is 1.12:107. The
best value of R has been obtaines for edge dislocations under the assumption of the Cottrell
model (R = 7.68%), whereas for screw dislocations the best value of R was for o = 0.11,
i.e., for a model slightly deviating from the Cottrell model. The R-index for screw disloca-
tion density of 6.37-10° lines/cm? amounted in the latter case 6.719 This fact indicates
some degree of ordering of screw dislocations in the investigated crystal.

_ The differences between the dislocation densities estimated on the basis of the half-
-width and those calculated for the best fit values, amount to about half an order of magni-
tude. In spite of that, the ratios of the screw to edge dislocation densities estimated by both
methods are similar, and amount to 0.23 and 0.3 for the half-width and the best fit method
respectively. The oscillating film method can thus be used for the determination of differences
in local density distributions with simultaneous determination of the ratio of screw to edge
dislocation density. The differences between the edge dislocation densities found at different
points of the crystal did not exceed in our case half-an order of magnitude, while for
screw dislocations these differences were slightly higher.

3. The results obtained indicate that the use of the method of dxslocatlon density
estimation on the basis of the half-width can lead to overestimated values owing to the
approximate assumptions concerning the dependence of half-width on the dislocation
density.
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