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The anisotropic Fermi-liquid with a simple ellipsoidal band is considered by means
of the microscopic approach. It is shown that the linear electrodynamics of the system can be
obtained from that for the isotropic case by means of a suitable transformation of the wave
vector provided that we restrict ourselves to the consideration of some class of effective
interactions. It is also shown that the reaction of the system can be split into the longitudinal
and transversal reactions. We study both collisionless reactions in the quasistatic and quasi-
homogeneous limit in the radio-frequency as well as the infrared region. Some of our results
are more general, for example we prove that the electron-phonon interaction does not change
the static properties of the system for any band structure.

1. Introduction. Specification of the model

The purpose of the series of papers beginning with this article is to consider solvable
models of charged anisotropic Fermi liquids from the microscopic point of view. The
word “solvable” means that the results will not be restricted to pretty general formulae
or even integral equations with kernels unknown except for their symmetry properties.
Our main interests will be confined to the consideration of the electrodynamics of systems,
such as the problem of the phonon renormalization of the electron properties when the
frequency of an external field is much smaller than the maximal phonon frequency. On
the other hand, this “radio-frequency electrodynamics” will be confronted with that for
external frequency much greater than the maximal phonon frequency, i.e. with the
infrared electrodynamics.

Our methods will be analogous to the methods developed by Luttinger and Nozi¢res
[1,2] and Legget [3] whereas our notation will be almost identical with that used in the
above papers. These methods were used by us to obtain radio-frequency (rf) electrodynamics
for the isotropic model of metals (with the application to policrystalline samples of alkali
metals), [4]. It should be noted that some important aspects of the theory of anisotropic
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Fermi liquids were discussed by Jones and McClure [5]. On the other hand, such problems
as the microscopic approach to screening or phonon renormalization (important in the rf
11m1t) remain undiscussed for the anisotropic systems up to the present time. This statement
is less precise as concerns the second problem since its algebraic scheme was constructed
recently [6,7]. It was performed for the simple model of ferromagnetic Fermi liquids
where the spin-dependent level density (treated as a diagonal spin matrix) does not
commute with the spin-symmetric matrices of the effective interactions of quasiparticles.
Moreover, the effective quasiparticle interaction with the contribution of the electron-
phonon interaction (EPI) does not commute with the analogous quantity of purely Coulomb
character. Let us mention that the generalization to level densities dependent on the
band index as well as the replacement of effective interactions used in [6] by matrix with
respect to band indices with a more general two-quasimomenta dependence does not
change any general algebraic relation of the paper [6]. Taking into account this fact we
find that our general formulae remain valid also in the case generalized in the above manner.
Hence we obtain that EPI does not change the static properties of the system even under
assumptions generalized as above, because this fact is of a purely algebraic character
(¢f. [6]).

Let us formulate the model which will be considered in the present paper. This model
is identical with that considered by Alodjianz [8] in a phenomenological way. We have
here a single ellipsoidal band of a simple form and the electrons interact by momentum
conserving interaction. The Fermi surface has also the ellipsoidal form. The symmetry
group of this surface is D, The most general quasiparticle interaction compatible with
this group in the spin-direct as well as the spin-exchange channel (we assume the spin-orbit
coupling to be unimportant) has the form: f(p; p’; p.p., DyDy, P-P2) in the reference
frame of the symmetry axes. Here p = [p,, py, p.] and p’ denote momenta of quasi-
particles, p is defined as [| pxl, | p,,l |p.|] etc., and the function f is invariant with respect
to the mutual substitution p = p’. If we con51der the above effective interactions then
even the simpler problems such as the relations between these quantities and the scattering
amplitudes, the expressions for basic dressed vertices in the “@w” or “k” limits, efc., can
be formulated only in th-form of integral equations with unknown kernels. To avoid this
situation we assume, according to [8], that the effective interactions depend only on the
“angle” between two ‘“‘vectors” w, u' the components of which are determined by the
momenta p, p’ in the reference frame of symmetry axes in the following way u; =
= p(MJm)'", i = (x, , z). Here m; denotes the eigenvalue of the lattice mass tensor in
the i-th direction whereas M is the cubic root of the determinant if this mass tensor. The
choice M causes that the Jacobian of the linear transformation p — u is equal to unity.
It is clear that # and #’ do not transform as vectors and their mutual “angle” is not an
invariant of the orthogonal group. On the other hand, the effective interactions depend
only on the cosine of the above angle as a result of the symmetry with respect to p = p'.

It is well-known that a Fermi surface in the form of a single ellipsoid does not occur
in practice. Moreover, the majority of simple metals have cubic symmetry. In this case
we have three equivalent perpendicular axes, the ellipsoid degenerates into the sphere and
we come back to the theory of isotropic systems developed in [1-4, 6, 7]. On the other
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hand, for the hexagonal metals the corresponding ellipsoid is two-axial and its circular
sections are perpendicular to the hexagonal (or trigonal) axis. It should be emphasized
that in some semimetals the Fermi surface consists of a few ellipsoids. As was shown
recently the zero sound can appear in these semimetals [9]. From this point of view,
our paper can be treated as a necessary step toward considering the more physical cases
when a few ellipsoids occur. '

2. The Ward identities and the basic formulae

Let us consider a system with Hamiltonian such that i) the Hamiltonian of noninter-
acting particles is of the type of the kinetic energy, i. e. p-concerving, but the dispersion
curve g(p) is anisotropic and even more general than was postulated in the previous chapter
if) the interaction term is also p-conserving. This system is simpler than that considered
in [5]; the possible application of the model is restricted to the case of a Fermi surface
existing in one band only whereas the contribution of inter-band transitions is negligible.
It can be easily seen that three Ward identities can be obtained for our model using the
methods developed in [1]. In the notation of [1] one can write

1-0G,jop = T, ¢y
T,* = v5+(0G,[0p,), a = x, y, z; V)
T2 = 1-(3G,/at). 3)

Here p = (p, (), v% = 0e(p)/dp, and T°, T are proper vertex functions induced by the
scalar and vectorial (v,) bare vertices respectively and p is the chemical potential. The
superscripts “k” or “w” denote that the vertices correspond respectively to a weakly
inhomogeneous time-independent field or to a homogeneous field slowly varying in time.
Note also that G, denotes the mass operator whereas {, is the imaginary frequency of
Green’s functions of the Matsubara type. All quantities mentioned above are defined
in detail in [1] and we do not repeat these definitions here. The same situation will occur
with the remaining basic quantities of the theory of Fermi liquids. Using momentum
conservation, analogously as in [1], it can be shown that

aG fico po
Pa == 5_4'1 = P+ : FppRp (4)
p'c’

i) »p denotes the proper part of the four-pomt function in the w-limit whereas Ry — the
regular part of squared Green’s function; I'*® does not contain the contribution of EPI).
The formula (4) can be rewritten in a form similar to (1-3) but only provided the square
dispersion law of &(p) is fulfilled. Then

(1_5_‘;) T )
o)
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Introducing the renormalized vertices t© [1] we have on the Fermi surface
©0F = 1—0E,[0u, 1% = OE,/op, = V°,
T Ty Wl = 5 ¢ o (©)

Here E, denotes the excitation energy with the contribution of the Coulomb interaction
and the last relation is fulfilled only for the square dispersion law &(p). It should be empha-
sized that the renormalization factor Z;, denoting the discontinuity of the particle dernsity
on the Fermi surface can be p-dependent. The vertex V' near the Fermi surface is
equal to p,/m., where m,, is the eigenvalue of the mass tensor with the contribution of
the Coulomb interelectron interaction; this term, as it is isotropic, cannot change the direc-
tion of the symmetry axes. The relation between the four-point functions I'°® and I'* has
the same form as in [1], i. e.
Zcfcw'zc __ch‘%ck /Z;/ P

p" p.p’"~p’ " “p" p.p

3 B3l Ty Ay~ Wy T ™

" Passing from summation to integration in (7), performing the change of variables p-— u

such that u, = pa(Mc/mm)I/ 2 M, = (mcxmcymcy)ll ®, we find that the relation between dimen-

sionless amplitudes f“and f*remins the same as for the isotropic system provided that

Z:ie, 75, depends only on the angle between # and #'. Here the dimensionless amplitudes
are defined by

f“’(lAu;') upM, f‘;”;,
A —_ 2 ¢ z:c’ ~ i s 8
{f" (un') A ¥ | f,'fp, ®)

with % = u§+u§+u§, h = 1. The Legendre amplitudes of angle-dependent functions
will be defined according to [4, 6, 10]. This definition differs by the factor (2/+ 1) from that
usually used e.g. in [3]. The Legendre amplitudes of the spin-direct and the spin-ex-
change part of /' will be denoted by 4, and B; respectively. Note that the relations between
the I-th Legendre amplitude of the spin-direct and the spin-exchange part of f° * and
A,, B respectively remain the same as for isotropic systems. Let us introduce the proper
correlation functions of vertices, S‘""_(k, ), [1]. Here k, o denote the wave-vector and
the frequency of the external field and «, b are equal 0, 1, 2 or 3; further 1, 2, 3 will stand
for x, y, z. Using the Ward identities we can prove that

S% = 0; §)° = oN/op; S = Nog/my, a, b > 0; ©)

where N denotes the total number of particles. It should be emphasized that 8% — 0 for
a, b> 0 as a result of (5). It can be proved that the spin autocorrelation function determines
the Pauli susceptibility in the k-limit whereas this function vanishes in the c-limit.

Applying the methods developed in [10] one can obtain the basic formulae for this
model. The situation can be summarized as follows:
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i) the static properties preserve their form in comparison to isotropic systems if we
substitute uy instead of the Fermi momentum and M, instead of the isotropic effective
mass; particularily N = up/3n2, (we assume further that the system has unit volume)

ii) the stability conditions as well as the Leggett inequality [3] preserve their form

iif) we have

= m(1+4,). (10)

.Hence (M [m,) = (M]m,) and this is why there is no contradiction between the trans-
formations p — u used in the first chapter and here.
Applying methods analogous to those in papers [3, 11, 12] we find that

g Vs

YA Zc 2 ) (1 1)

np
where V,,, Z,, denote respectively the velocity and the discontinuity of the particle density
on the Fermi surface with the contribution of EPI, n being the band index. For our model,
omitting the band index and taking into account that V,* = p,/m,. we find that V, =
= p,/m; and that the ratio

S, M= (mymym3)'"s, (12)

is p-independent. Hence, in the transformation p — u the ratio (M*/my)"? can also be
used. The other identities for the system with important EPI contribution will be given
in the next chapter. They will be very similar to those obtained for isotropic systems
[3, 11, 12].

3. The collisionless long-wavelength electrodynamics of the system

The linear reaction of the system to the external electromagnetic field of wave-
-vector k and frequency w is described by the correlation functions S*(k, w) where
a,b =0,1,2,3, [1]. Written in terms of the proper correlation functions S*(k, w) they
have the same form as for the isotropic systems. We have

4me? ~
T2 Sao(k> w)SbO(ka CO)

ad i3
4me? ’ (13)

1— — Sk,
i S 0)

Sk, w) = §”(k, w)+

For parabolic &(p) one can represent S(k, w) by the expression containing only the
integrations near the Fermi surface, for more general &(p) this is possible only for Sk, w),
since (5) is then not fulfilled. Under the above assumptions

A§"b(k, o) = Ik, 0) =
= Tr {*(29) 'g"(k, ©) [1+ F(k, 0)g"(k, 0)] (29" '), (14)
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where v° = 1, g"(k, w) is the product of two polar parts of Green’s functions with the
energy-momentum - transfer k, o, divided by (2m)*. The multiplication in the curly
bracket has an operatorial character with summation over intermediate Galilean four —
momentum and spin; it should be taken into account that all operators appearing
there are diagonal with the exception of the four-point function I'(k, w). The “trace
with tilda” operation is defined as a twofold integral over external four-momenta with
the summation over two external spin indices (cf. [4, 6]).

If |w| is much greater than the maximal phonon frequency then g"(k, w) has a simple
form. In the opposite limit one has to perform the additional transformation of proper
correlation functions [3]. A more general algebraic scheme than that developed in [3]
needs to be applied as a result of a possible uncommutativity of diagonal operators
Z, Z¢ with respect to I'. The more general scheme developed in [6] is here quite satisfactory.
After rather long but very typical calculations (¢f: [3] and [4]) we find, using (8) and (12),
that I(k, ) = @+ 1k, ), where

_ (M M*N" (1+F,q _%} ob
@ 1+Ar(a) {1 +Ar(a) Mc <v ’ >, (15)
Lk, ©) = N'(1L+F )OOV Q(k, ) [1-FQ(k, 0)] ™'V, (16)

Here V* = 1for a = 0 and p,/m, for a < 0, r(@) = 1—03,0, N* = M*ug/n*. The multipli-
cation under the symbol has a matrix character with the average spherical angles of u-vector
connected with the intermediate momentum, the summation over intermediate spins was
already performed and disappears in (15) and (16) All quantltles appearing there are
taken on the Fermi surface, e.g. V, = uupe(M*m))""%, a >0, v* = 4 ae(Mm) ™2, a > 0,
with #, = u,/up. According to the definition of the matrix multiplication and the deﬁnltlon
of Tr the symbol <...v) denotes the double average over spherical angles of u-vectors
defined by external momenta. The quantity F denotes the spin-direct part of the dimen-
sionless effective interaction of quasiparticles with the contribution of EPI. In the proof
of the formulae (15), (16) it was assumed that this quantity defined as

F(un') = L N ; I, .4001p, pYZ,Z,, a7

depends only on aw’, where «, f denote spin indices and the function under summation
was defined in [3]. The remaining undefined symbol O(k, co), is determined as the diagonal
operator with the elements kV/(w—kV) = kV/(co kV), where V = (uz/M*)u = Va
and k, = k M mE)'2 (we gave the definition of %k J~components only in the reference
frame of symmetry axes of our system, but the generalization to any other reference
frame is obvious).

Since electrons are not produced (or annihilated) in acts of EPIL, &,, = 0, [3], and
hence, from (15) we get

(M[M,) = (14 Fo)/(1+Ao). (18)
Analogously, taking into account that EPI is spin-conserving one can obtain

(M'[M,) = (1+Go)/(1 + By), h (19)
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where B, I =0, 1, ... is the I-th Legendre amplitude of the exchange part of £°°, whereas G,
is determined in the same manner by the dimensionless effective interaction with the contri-
bution of EPL. It can be proved in the same way that substituting into (18), (19) the suitable
ratios of amplitudes with higher / we obtain suitable Leggett’s inequalities.Taking into
account (10) and the relation between N and uy we obtain from (15) for, a @, b > 0

- 1+F 1
%=N[ *‘—a—]aa,,<o. - (20)
ma ma

It can be verified that @,, for ¢ > 0 vanishes as a result of time-reversal invariance
even in cases more general than those considered here.

Let us compare the obtained results for I ,(k, w) with the analogous results for the
isotropic systems (¢f. [4]). Taking into account he form of the Q(k, w)-operator and V*
vertices we find that our I(k; w) is equal to the same quantity for isotropic systems
provided that we substitute here instead  of ¥ and k the “vectors” ¥ and k. This result can
be written in the form

o M2 N2 .

Ik, ) = ( *) ( t) Lk, @), a,b >0, (1)
’ a ’ my,

where I,(k, w) denotes the function for isotropic systems with ¥V substituted instead of

V = pglm and my is defined formally as M*. Using the identities proved in the Appendix

of our paper [4] and the formula (2I) we can write

3
N +F)kyr(b

E KLl @) = Tyl @)= L NTE). @)

/ . - mb

a=1
Let us now obtain the relations resulting from the symmetry properties of the functions
Iy(k, w). For isotropic systems I(k, w) = kk,U(|k|, ) +0,,R(k|, ®), Lo(k, ) =
= k,V(|k|, @) whereas I}o(k, ®) depends only on |k, w. Using (21) and (22) we can
obtain the relations between R and U, I, and between V and T;,. We have

~ Smn et e N(1+F
RE, o)+ UG, 0) = 75 Toolk @)= 2

~ @ o
Vik, ) = =1 oo(k, w). (23)

Performing considerations analogous to [1] we can obtain that the relation between the
induced current and the external electric field E’ with the wave vector k and frequency
can be written as follows

] v
. 2
ie N
J, = — E [S“"(k,- w)+ — 6,,,,] E, a>0. (24)
w [ m,
b=1
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On the other hand, the induced charge is given by

3
ie? - .,
ST S™V(k, w)Ej.. 25)
b=1

The total electric field E = E’—4niko/|k|? and the relations (24) and (25) can be rewritten
in terms of E as follows (see Appendix A)

. 2

3
ie e 2 N :
«=— S®(k, @)+ — b4 | Ep, (26).
0 m,

o=— §%(k, w)E,. 27)

b=1
The proof of the formulae (26), (27) from (24), (25) is the result of the identity (22). It can
be easily seen that owing to this identity the continuity equation and the gauge invariance

are preserved. The relation (26) defines the conductivity tensor o,,(k, ®). Applying
"(20-23) and (26) we can write

ie? {[M* s (M*)zkakbjl [N (1+Fy)-
% %ap—

+R(k, w)] +

7alle @ =W 20 i ||
wz(M* )Zkak 5
—I?‘m*‘m*b Iyo(k, co)} . (28)
a’"*b

Analogously, (27) can be rewritten as follows
o = ie’Too(k, w) (BRI, (29)

where the components of E are defined by E in the same manner as & by k. The scalar
product (Ek) in an arbitrary reference frame has the form

3 3
. 1 .
M . = Eak‘ s
Z Z (m )ab i (30)
a=1 b=1

where (1/m*) denotes the tensor of reciprocal effective mass and k= (k).
For the longitudinal electric field the first term in the curly bracket in (28) is uneffective.

On the other hand, the action of the second term is such that the diagonal tensor
. 2
icco ., -~ MY\
al‘llb(k9 CO) = 2 IOO(ka (O) ('E*‘) 5ab (31)’

a
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can be defined as the longitudinal tensor of conductivity. It is clear that for longitudinal E
the external electric field is also longitudinal and the relation between both fields obtai-
ned using (29) has the form

4re® . . |
E[l— —Zi—léo(k, w)] = Eg(k, ) = E'. (32)

Hence we find that the quantity in the square bracket above is to be treated as the dielectric
function for longitudinal fields. This quantity does not have a tensorial character even
though it is anisotropic. The comparison of (31) and (32) shows that the relation

¢ = 1+4nic”|o is not fulfilled for anisotropic systems (cf. [13]).

Let us consider the reaction to fields which are analogous to transversal ones in the
isotropic case. They are characterized by the condition that the induced charge vanishes.
This last can be written from (29) as E L k, which is the condition unequivalent to E L k
even though E || k is equivalent to E || k. Such fields will be called simply transversal
in the following. It can be easily seen that an arbitrary vector E can be uniquely decomposed
into a longitudinal and a transversal part in the above meaning. The transversal part
of the vector E is given by E— k(Ek)/k? whereas the longitudinal part by k(Ek)/k2. For
the transversal fields the second term in the curly bracket in (28) is uneffective whereas
the first term acts as

ie?M" I:N(l +F))

aab(k ) = M

+RE, )] O ®

a

This quantity can be determined as the transversal tensor of conductivity.

As we have shown the tensor o,(k, @) is the sum of two terms such that . first of
them is uneffective for longitudinal fields whereas the second one is uneffective for trans-
versal fields. This shows that the reaction of the system on the electromagnetic field can’
be split into a longitudinal and transversal reactions. This is rather a peculiar property of
the systems considered. It should be emphasized that the reaction of the system in the
infrared region (i.e. for frequencies much greater than the maximal phonon frequency)
can be obtalned from our results by s1mp1e specification. If we substitute r “(00) — F e
and m — m,, then we obtain the results for the infrared region.

4.. Quasistatic and quasihomogeneous limit. Concluding remarks

Let us apply ourr results for a spherical Ferm: surface in order to obtain the. reactlon
of our system using (21) and (28). Let us discuss the reaction to the longitudinal ﬁeld Then
the reaction is described completely by the function Ioo(k ), whlch is simply related to
&(k, ). In the quasistatic limit (i. e. for w < k%) we have

4re® (ON mifo) 1 7
ek, ) = 1+ 2 (6@)[1+3<ﬁ>_1+170‘]’ (€D)

where (ONJOu) = upM*[n*(1+F,). Using (18) we find that the results (34) taken for the
infrared region and the radio-frequency region coincide in full analogy with isdtropic
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systems. The longitudinal tensor of conductivity in the quasistatic limit is given by

.2 A ) * 4 } )
ek o) o — QNN  mifo) 1 /MY '
wl )= = o \a) U 2\ )\ )0 69

It is well-known that the real part of the function (34) renormalizes the frequencies
of phonons in the “‘jellum” model whereas the imaginary part gives their lifetimes (see [13],
Chapter 4). Since the real part of (34) remains unchanged in comparison to the isotropic
case we have the same expression for phonon frequencies near k = 0, i. e. the same ex-
pressmn for the phonon velocity. On the other hand, the imaginary part of the frequency
(connected with the inverse lifetime) will now be anisotropic as a result of the anisotropy
of the imaginary part of (34). It can be easily shown that the ratio of the imaginary and
real parts of the phonon frequency is here multiplied by (k/k) in comparison to the result
of [13]. -
In the quasihomogeneous limit (i. e. for @ > kV) we have

4ne’N (1+F,\ (k kv 5 2
ok, 0) = 1- (—M—)(;) [1+ 5(@) (1+F1)(1+ S Fot 91:)] (36)
2
ol @) = LD 4 oy, 2

where A(k, w) denotes the expression in the square bracket of (36). As for isotropic systems,
the expressions (36) and (37) differ from the analogous expressions for the infrared region;
the inequalities proved in [4] are also fulfilled.

Let us consider the reaction to transversal fields. Since even & is not equal to
1+4ni0'”/a) there is no reason to introduce the transversal dielectric function, in contrast
with the isotropic case. The reaction in the quasistatic limit, expressed in terms of the
conductivity tensor, has the form '

Nie*(1+F 1EPN? . A
ok, ©) = %[Hg (-5> (1+F) (1+F2)]'a,,,,_ (38)

a

and oL coincides with ¢! if k tends to zero, which has a 81mp1e physwal meaning. Quite
similarly to o!l, (38) is not equal to the analogous quantity taken in the infrared region
(. e. for my = mg, and F, - A;). The inequalities analogous to those obtained in [4]
will be also fulfilled here. We can analogously introduce the tensor of radio-frequency
effective masses; its form in the symmetry axes reference frame is [m;/(1+F)] 6. The
elements of this tensor in comparison to optical masses m, satisfy the same inequalities
as for the isotropic systems. The response to the transversal field in the quasistatic

limit is given by :
3e’N M
63, 0) = | 14i [ o= | Ry 5 (39)
4kuy kV m,

This formula can be obtained from our considerations [4] only in the limit @ — 0. Then
we have the classical result describing the anomalous skin effect; here the result does not
depend on the quasiparticle interaction and hence it.is the same for the infrared and the
radio-frequency regions. The small term proportional to R, is computed in Appendix B.
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The term R, is always real and the correction to the main dissipative effect is dissipative-
less. It should be emphasized that the correction term is rather important here, because
the static transversal fields disappear. On the other hand, R, is presented by us as the
infinite sum over I, where all amplitudes F; appear. Hence,the application of the formula
for R, is rather doubtful, with the possible exceptlon of the additional verification of the
sum formula (cf. [14]).

In our paper we have shown that the reaction of the considered system can be obtained
from the reaction of the isotropic system provided that we replace the vector k by kin
-$°_ Moreover, we shall perform the suitable transformation of the. tensor S, This trans-
formation can be represented in terms of the current and field transformation. The same
results were obtained recently in [8] by the application of the phenomenological approach.
Taking into account that the microscopic and phenomenological approach are equiva-
lent for isotropic and homogeneous systems [2] we find that the present approach
and that developed in [8] are equivalent too. Our results for the infrared and radio-
-frequency regions coincide in a few lowest order terms of the-quasistatic limit and differ
in the quasihomogeneous limit. This is not a particular property of the considered sys-
tems, it is connected with the basic properties of the electron-phonon interaction.

The assumption of the square dispersion law of &(p) is our strongest assumption.
Tt should be emphasized that even for a system with a spherical Fermi surface this is also
a strong assumption (it is more natural to take &(p) = f(p?), where f is some increasing
function). For nonlinear functions f'the Ward identity (5) is'not fulfilled and the transfor-
mation (14) of the correlation functions S? for either a or b > 0 cannot be performed
In this case we ought to perform the analogous transformatlon with vertices in the “w”
limit replaced by the vertices in the “k” limit [1]. This allows us to express the correlation
functions in terms of quasiparticle properties (i. e. by some integrals on the Fermi surface)
at least in the infrared region. In the radio-frequency region some serious difficulties
can appear and it is possible that the analogue of the additional transformation of coreela-
tion functions I —> @4+ 1y, cannot be performed for neither « nor b > 0. Note that
this difficulty does not have any influence on our statement that static properties with EP1
taken into account and disregarded coincide. This is fulfilled because static properties are
determined by the correlation function Spo-and the autocorrelation function for spin
vertices. Moreover, the analogue of (5) is fulfilled for spin vertices with the accuracy up
to spin-orbit coupling and the relativistic spin-spin interaction.

This work was performed in part during the stay at the Joint Institute for Nuclear
Research, Dubna, USSR. The author is greatly indebted to his colleagues from the Labor-
atory of Theoretical Physics for their kind hospitality.

APPENDIX A

Let us start from the formulae (24) and (25). Expressing there E’ by E and g we find that
3 : 3

- 2 4
0= N BsO, o) HE8 Z keSO, ), (40)
1) wk?

b=1 b=1
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3

3
ie? 4mep '
I, = 5»5 E,S(k, w)— wkf g ey Sk, @)+
b=1 .

‘b=1

~ Neé?i e ' 4nNe29k '

N mao  “ muok? @ : (1)
Taking into account the identities (22) and the formula (13) we find that the second sum
in(40) is equal to §°°(k, o)/e(k, o), where &(k, w) is defined by (32). Substituting this
result into (40) and applying there the formula- (13) once more we find (27). It can be
also shown that the second sum of the formula (41) is equal to

Nk, oSk, o)
— + i
sy o [l =g m, . &k, o)
‘In the.proof of the formula (42) we have used the formulae (13,20) andv—(22). for b > 0.
‘Now, 'replacing the second sum of the formula (41) by (42), expressing there ¢ from the
formula (27) and applying (13) to S® under the first sum we see that (26) is fulfilled.
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APPENDIX B

. The transversal tensor of conductivity should be obtained from this quantity for
isotropic systems by multiplying by the diagonal tensor (M*/m.) 6,, and substituting
k, V instead of k, V (¢f. Chapter 3). For the isotropic systems we have

N(1+F,)

Sk, w) + O = Rk, 000, +k kKUK, o), (43)

where 12,, = k,/|k|. The transversal part of the above quantity can be represented by

3 3
, 1 - s ao NQA+Fy)
R = i Z Z S b[aab—kakb]'l' Tl . (44)
a=1 b=1

In the quasistatic limit, with the accuracy-suitable to obtain (39), the operator Q(k, w)
can be replaced by —1 —L —L2, where L is equal to (w/k¥V)5 and 6 = (l}?c—_in)‘l, n = 0+
The coefficients at (w/kV)" in (43) were obtained in [4] for n = 0 and 1. The coefficient
for n =2 is equal to '

3N(1+F)? .
- \(1;,, L ([P A+F)" ' —(1+F)72F5 +

+(1+F)"*F6(1+F) " '"Fo—06(1+F) " *Fsa,), 45)

where any algebraic expression containing F ought to be considered in the meaning of the
algebra of operators. It should be noted that

o0

C(F) (uu') = 20(21 +1)C(F)Py(uw);

I=
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where C is an arbitrary rational function. On the other hand, such C(F) which does not
stand between deltas in (45) can be replaced by the numerical factor. C(Fl) Substituting
(45) into (44), taking into account the above remarks and the equality (#k)d = 1 we find
that the coefficient at (w/kV)?in R’ is equal to

>—1+F,O[(1+F)'F]'8y—F [+ F) ' FI> -

_(L+F )1+ F)FY 8y +(1+ F)X[(1+F)*FD, @
where C'(F) is defined as
C'(F) (i) = [C(F) ua")] - (). (48)
In the proof of the formula (47) we have used the identity '
_il <u,0C(F)du,y = {SC'(F)5). 49)

Applying the recurrence formula for Legendre polynomials and the formulae (46), (48)
we find that the /th Legendre amplitude of the function C'(F) is given by

, 1 l+1
G =21 C(F,- 1)+ C( 1+1) (50)

Taking into account the addition theorem for spherical functions, the definition of Legendre
functions and (50) we can prove that (C(F)) = C(F) and

GCERy = 3, [0 )+(+ (P )] [0 (5

Since Qy(in) = 0)(0)—(in/2) P(0) thus, applying the formula (51) and the well-known
formulae for Legendre functions and polynomials we obtain from (39), (47) that R2 is
given by

2 F.F, F 1+F)? [ IF, I+1)F I-DIP
—{1+ 1o+o( 12) —F, ll+(+)l+1 ( )]gl_
T 1+F, (1+Fy) 1+F,_4 1+F; 4y m
1=0
IF I+ 1)F -
—(1+F1) ZJ[ -1 = ( ) l+;][( ) :|gz} (52
(A+F,—y) (A+Fi1) (3}

Here g, is defined as 1 for odd / and —n?/4 for even / and we have assumed quite formally
hat (=D!!' =0l =1.
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