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It is shown that in molecular crystals, in which the vibronic coupling occurs, phonon-
-induced exciton transfer exists. This trensfer can compensate and even be superior to an increase
of exciton effective mass resulting from molecular distortion, which accompanies the exciton.
It depends on the linear vibronic coupling constant (or renormalized coupling constant in the
case of a frequency change). An increase of vibrational frequency in the exicted state of a molecule
causes effective damping of such a transfer. It is suggested that this transfer of a vibronic exciton
can go through scattering vibronic exciton-phonon states, which have beendiscussed by Philpott.

A crude numerical calculation of the probability of this transfer in the first singlet-exciton
state of naphtalene crystal is given.

1. Formulation of the problem

In the first paper of this series of publications [1] it was shown that in the zero-phonon
approximation, which does not take into account any correlations between the vibronic
exciton and phonons, the effective mass of the exciton increases with the vibronic coupling
constant. This effect decreases the probability of an exciton transfer from one molecule
to another. The electronic mairix resonance interaction element is depressed by the Debye-
Waller-type factor, and is

V., = V,?n,e~“’e’(2f"+1) 1)

where V2, is the pure electronic matrix element of the resonance interaction between the
n-th and n'-th molecule, %22 is the square of the linear vibronic coupling constant renorma-
lized by a frequency change, and n is the the average number of phonons [1].
It is rather evident that the exciton-phonon coupling should lead to the opening of
new channels for exciton transfer processes. Such % transfer should be correlated. with
phonons.
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Three years ago Philpott published two papers [2, 3] in which he considered mixing
between one-exciton states, and vibronic exciton-phonon correlated and scattering states.
It was shown that this mixing leads, among other results, to the asymmetrical compression
of the vibronic exciton band [2]. Such a compression was pointed out first by Merriefield [4].
In the reference [1] the Dyson equation for the exciton Green’s function was obtained.
This equation was written in the one-phonon approximation which takes into account the
correlations between vibronic exciton and phonon states. It was pointed out that the asymmetri-
cal compression of an exciton band results from the one-phonon processes which describe
exciton-phonon correlations. This suggests that approximation used in [1] take into account
implicitly the mixing considered by Philpott. The direct proof of this is rather difficult
because of totally different mathematical formalisms used ifs those papers.

Although vibronic-exciton-phonon correlated and scattering states do not explicitly
appear in the field-theoretical formalism used in [1], it seems that this formalism is more
suitable for the considerations of the indirect exciton transfer processes. Such a transfer
can be thought as going through the exciton-photon scattering states. The direct transfer
described by the formula (1) does not take scattering states into account.

- The one-phonon processes which describe theAmixing of the exciton and scattering
states are included in the mass operator, which was obtained in [1]. It reads:
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w, w; are the frequencies of vibrations in the ground and electronically excited state of
molecule, respectively, 9 is the linear vibronic coupling constant [4], e, is the excitation
energy of a molecule contained in a molecular crystal,  is the wave vector and belongs to
first Brillouin zone, f and ¢ number unit cells and positions of a molecule in a given unit
cell, respectively, and o numbers different branches of vibrations resulting from the Davydov
splitting.
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The operator M, (E) describes the one-phonon processes proceeding from the linear
vibronic coupling and takes into account the renormalization of the coupling constant due
to the frequency change. The operator My(E) proceeds only from the quadratic vibronic
coupling (i.e., frequency change) and describes interactions between excitons due to virtual
exchange of two phonons.

The wavefunction (n) describing the motion of excitons perturbed by the phonon
system satisfies therefore the following “‘effective wave equation” [5]:

Ey(n)— Z W on+ M, 0’5 E)p(n') =0 . ©)

and the exciton energy transfer between the n-th and n’-th molecules is determined by the
real part-of the non-diagonal term in the square bracket of (9).

Also Re M{(n, n’; E) describes the probability of exciton transfer of energy E between the
n-th and n'-th molecule, which results from the one-phonon processes. In the following
we drop the symbol Re whenever no confusion is apparent.

We shall consider further only the “‘effective” exciton one-phonon transfer for a given
exciton band, which we define as follows:

AE2
Zlﬁ Min, n'; E)AE- (10)
—4E2

where AEis the width of an exciton band, and zero of energy is taken for a centre of a band.
]

M(TL, n,)eﬁ. =

2. The one-phonon exciton transfer resulting from the M,(E) operator

We first consider the probability of one-phonon exciton energy transfer processes
which are described by the first part of the mass operator (2), My(E).
We can write

2
My, '3 B) = 2 Z Y. VanVat [+ Dy, mgs E—w) +
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where the following notations were 1ntr0duced
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and hermitian properties of the resonance interaction matrix ¥ were used. g(ny, ny; E) is
the zero-phonon exciton Green’s function and is equal to [6, 7, 8]:
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where E°(k) is the zero-phonon energy of an exciton from the o-th branche of a Davydov
manifold with the wave-vector k, and for molecular crystals with one molecule per unit
cell is
Eof(k) = e, + 2 Vnnle—ik"(n—-m) (]_4)
nyFEn )
where e; is given by Eq. (6). We put further ¢; = 0.
From Eqgs (13) and (14) we have

) Vin8lmas 3 Eo) = (Eo)gy(Exw) -1 (15)
and taking into account this last equation and the orthogonality relation
1 o
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we can rewrite Eq. (11) in the following form:
My n's B) = —22 V,,(2n+1) +
+r(n+1)g(E—w) 2V, (E—w) —(V),,] +

+ngo(E+w) 2V, (E+) —(V?),, 1}, 17)
» where
(V?)nn’ = 2 Vnn. Vn,n’ : (18)

--In order to obtain M;(n, n').g we must know explicitly the energy dependence of the
zero-phonon Green’s function Regy(E). The properties of Re go(E) have been discussed
by many authors [9, 10]. It is finite and positive at the upper edge, goes through zero near
the band centre, and is negative at the lower edge. It can be shown that [11, 12]

&ol E) = — %Z / dt@(t)eig:—rz—;E(k)HG(t) (]9)
E s

where E(k) is the energy of a fres-exciton, I' is a positive constant which describes the
damping of excitons due to-their interactions with crystal vibrations, and

G(t) = #%¥(n+1)e™™ +ne™ —(2n+1)] +
302 [2ne " + 27+ 1) — (27 + 1) (e —e %)), (20)

As the value of the integfal in (19) depénds méinly on integrand values in the ¢ ~ 0 region,
we can put )

G(t) = —itA=12B%+%?9?, (21)

e 4 © A= or?*(1—2x%), (21a)

B? = wA@2n+1), (21Db)
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for not too weak vibronic coupling (%29% > 1) and for energies inside the exciton band we
obtain therefore

Re gy(D) = - ¥ ZHAED {1_ [E+4 —E(k)].z} oxp {_ w} D

24B? 4B2?

whereas for energies outside of the exciton band we have

1 E+A—E()
Reaol®) =§ L [Era—E@r+1 23)

In the reference [8] the experimental curve of Re g,(E) for the first singlet-exciton
band in naphthalene crystal is given. Such curves can be obtained from the measurements
of the dispersion of the crystal dielectric constant [13]%.

One can see that the Re gy(E) can be well approximated by the following formula:

2
Re go(E) = aFE (1—- %) e . (24a)

for E € (—AEJ2, AE/2) and

ak

Re go(E) = m

(24by
for E € (—o0, —AE|2) or (AE[2, —o0).

These formulae are in accordance with (22) and (23). The van Hove’s singularities
which appear in the density of state function, and therefore also in Re g,(E) [14] are not
essential for our calculations because of our definition of the “‘effective” transfer probability
(see Eq. (10)). We can now find values of a, ¢, &, § parameters from the following conditions:

a) values of exirema and their positions should be equal to the experimental ones,

b) values of Re gy(E) at band edges should be also equal to the experimental ones.

For the first singlet-exciton band in the naphthalene crystal we obtain

0.8773x .
m‘ LX< —1()”.5"
©10.0407 2(1—0.0016 x2)¢—00094* 10,5 <5 <2 0
Re go(E) = _ 2 (25)
0.0451 (1 —0.0016 22)¢ =000 0 < x < 10.5
10961 x '
23714 x> 10.5

1 The function go(E) can be also obtained from the density of states function, by the relation

EdE’
Re gy(E) = P f e

where o(E’) can be estimated from the band-to-band optical transitions [22].
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where x = EJ10, and E'is given in reciprocal centimeters. The comparison between Re g,(E)
values obtained from the formulae (25) and from experiment is given in Table I. We sece
that the reproduction of experimental data is quite accurate. We can therefore take the
formulae (24a,b) for further calculations.

TABLE I
x Re go(E) exp. data % Re go(E) exp. data
—100 —0.0088 —0.010 0 0.0000 0.0000
—50 —0.0178 —0.019 2 0.0866 0.084
—30 —0.0305 —0.032 4 0.1542 0.156
—20 —0.0483 —0.052 6 0.1820 0.180
—10.5 —0.1261 —0.120 7 0.1840 0.184
-9 —0.1494 —0.148 8 0.1779 0.180
—8 —0.1605 —0.160 9 0.1655 0.164
-7 —0.1660 —0.166 10.5 0.1380 0.132
-6 —0.1643 —0.160 20 0.0530 0.052
—4 —0.1392 —0.130 30 0.0334 0.032
—2 —0.0782 —0.076 50 0.0195 0.02
0. 0.0000 0.000 100 0.0096 0.01

Ap}iroxim&tions leading to the mass-operator (2) are good enough for the case of
strong vibronic coupling, or, equivalently, for the weak-coupling theory of molecular crystals.
In such cases, the quantum of vibration coupled to the exciton is greater.than the exciton
bandwidth AF, therefore in Eq. (17) all arguments of go(E) lie outside of the exciton band,
so only Eq. (24b) is needed. In future we assume that Re go(E) is an odd function. For
naphthalene this assumption introduces an error of about 109,. We have done this assumption
in order to simplify the next formulae, and because we do not lose anything physically
impertant. )

Also in Eq. (17) we shall put

E
Rogo(B) = g 13- (26)

In order to connect the @ and B parameters with any physical quantities, we note that in
the effective mass approximation we can write for E4+4 = e > kf/Zmeff.
ko ko

R~ | e T i @

where k2/2m = AE, or i '
Re sy ~ 2CAEM) _ [*@AEme) 22

Putting |
AE= 17 (28)

= 2lmez |6
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which holds in the effective mass approximation (b is the lattice constant), we obtain by
comparing (27a) and (26)

@~ 1/b3, p~ I2b3. _ (29)
Also values of the zero-phonon exciton Green’s function outside of the band depend mainly
on the geometrical structure of the crystal, whereas its derivative at the edges depends
on the damping of exciton states by the lattice vibrations. We note that § should increase

with temperature.
Insertion of Eqs (26) and (17) into Eq. (10) leads after some manipulations to the

following result:
My(n, n'eg) = 2yriVaw(2041) (10@ —1) +
| 100 VBl 2V | @2 —AE*4—1008+10AEV[B] _

f AE wZ_AE2/4,-—100‘3—10AEV197[
Capm @ 100f Gt AT AT
PV ot o 1100 ¥+ A AT (30)

For the naphthalene crystal first singlet exciton band parameters, which (assuming odd
property of the Re go(E)) are « = 0.916, § = -37.14, AF = 210 cm™!, » = 1400 cm™!
(we have taken for the w the frequency of vibrations which couple effectively to the exciton
in all aromatic hydrocarbon crystals [15]), we obtain

M (n, n')2280 = 16.6 y(2n-+1)V,, —0.28X10-42(7'?), .. 31)

We see that the second term in (30) and (31),.which diminishes the one-phonon- exciton
transfer is five order smaller than the first, providing that the values of V. and (V?),,,
are comparable. For small distances [18—mn'| we can safely assume that (V2),, <103V,
and this term is indeed negligible. However, the situation for large values of |18 —n'| requires
some clarification. We must namely verify the asymptotical behaviour of (V?),,. for large
[n—n'|. Assuming that the interaction is of the dipol-dipol type, we have V. ~ @/R3,
where R = [n—n’|/b (b is the lattice unit), and @ is proportional to the oscillator strength
for the transition from the ground state to the excited omne, being under considerations.
We evaluate (72),,,, substituting the summation over n; by integration over the total crystal
volume except for the neighbourhoods of the n-th and »'-th molecules (see Fig. 1). This
gives

' dr 1 1 In(14+R)
2 o2 | 2| - - oL <

(V )nn (P fr3(r_R)3 2ﬂ¢ [R R2 + R3 . (32)
3 :

We see therefore that the asymptotical behaviour of (Vz)nn, is 1/R and it can be much

larger at large distances than V,,, whose asymptotical behaviour is 1/R3. From Eq. (31)

we obtain that the second term becomes dominant in the naphthalene crystal for distances
which satisfy the following inequality

R > 100 }/30/mgp. (33)
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For strong transitions ¢ ~ 1 and one-phonon exciton transfer dissapears for distances
larger than 300 lattice units®. However, for such distances, which are much greater than the
mean free path of exciton due to their scattering with lattice phonons, the validity of our
formalism and our approximations is open to question. In reference [16] a computation

Fig. 1 ¢

\
is shown of the mean free path of excitons in the anthracene crystal, due to their inter-
actions with acoustical and optical lattice phonons. It was shown that in the temperature
4°K this distance is about 40 laitice units. For such distances the second term in (31) is
still very small, and in the region, in which our approximations hold, it can be neglected,
so we have

My(n, 0}, = 292V, (21 +1)(100—1). (34)

We note that (34) does not indicate any oscillatory behaviour, which was obtained by
Takeno [7]. We must remark, however, that the decoupling procedure used by Takeno
in order to close the chain of equations for Green’s function is applicable only for weak
vibronic coupling or a large exciton bandwidth. Apart from this, such oscillatory behaviour
was obtained for very large distances, where that formalism is also open for criticism.

2 One must remember that the total transition probability is given by the square of the expression in
the square bracket in Eq. (9), so the negative value of M;(n, n’)csr, means that the one-phonon processes give
an additional damping of energy transfer at very large distances.
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3. The one-phonon exciton tranfer resulting from the M,(E) operator

Now, we can go to the investigation of the one-phonon exciton-transfer processes,
which are described by the second part of the mass operator (2). With the help of Eqs (12),
(15) and (16) we can write

392
My, '3 B) = LN N Ve g, s E—0) X

q,0 Mty

X g(n27 Uz E+(A)) [CQU(Q)G_iq ' I_cgla(q) e~ f1] %

X [cyo(@)e T —ck (@) 1]
= 48P0 TV, (B0l m; B—0) =0, 10 n3 F-+0) +

Pl (E-+)n's ms E-0) =0, il s E—00)}—
Z nny nln g(nl 2y E—w)g(n27 ny3 E+CL)). (35)

In order to extract some physical information from this last equation we must do some
approximations. We neglect in Eq. (35) these terms which contain the function g(ny, ny; E4-w)
for ny = ng. For this we give the following reason. In weak coupling theory we have usually
o > AE, and therefore E +  lies outside the exciton band. It has been shown in reference
[17] that g(ny, ny; E) decreases exponentially outside of a band with increasing |1, —1,|
distance. We therefore conclude that the main contribution to Eq. (35) is given by terms
with go(E4w). Thus we have

My(n, n'; E) = 8%*0*wEV,, go(E—w)gy(E+w) —
—4%0%0 Y, [8o(E—w) +8o(E + )] —
—4530%0(V®) 18 o( E — ) 8o(E+ ). ' (36)

Insertion of the formula (26) into Eq. (36) leads immediately to the evaluation of My(n, n')g.
One can then conclude that the second and third terms of Eq. (36) are negligible in compari-
son with the first term (for naphthalene crystal first singlet-exciton band they give 0.5,
and 0.005%, of the total value of My(n, n').4, respectively). We have therefore

, 20002302V (402 +§) | (AEj2— V/[Bl)2—w?
M, s U eff.) — Ir N
o(n, 'er.) /_IEVIE 1(AE/2—— V’,Bl)z"'wz

which for the naphthalene crystal is ~10%x392V, ,
We can thus observe that one-phonon exciton energy transfer is very sensitive to small
frequency changes. In the case, where the vibrational frequency in electronically excited

(37)

state of the maclecule is somewhat smaller than that in the ground state, we obtain the supple-
mentary mechanisms which increase the phonon-assisted exciton energy transfer. Such
a situation usually occurs in molecular crystals. o

However, a small increase of vibrationalfrequency in the excited state-can cause an almost
total damping of the one-phonon exciton transfer. From Eqs (37) and (34) it is easy to
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point out, that for > AE, such a transfer dissapears for o; > 1.05w. We must remember,
however, that formula (2) is correct only for small frequency changes (|| < 1), and we can
say nothing about larger frequency changes.

4. Discussion

We can conclude that the linear vibronic coupling, apart from the compression of the
exciton band by the Debye-Waller type factor, leads also to one-phonon exciton transfer
processes. Mathematically, this is possible because of non-zero values of the exciton Green’s
function outside of the band, at energies where another vibrational replication of exciton
band exists. The exciton-phonon coupling can therefore cause a virtual removing of an
exciton to another vibrational state, opening in such a way new channels of energy transport.

Physically, it can be thought, that the vibronic exciton dissociate into scattering states
which are, for pure linear vibronic coupling, degenerate with the exciton states [2, 3]. One
exciton state is reproduced later on another molecule. The quadratic vibronic coupling can
essentially modify the one-phonon exciton transfer probability (apart of the renormalization
of the linear vibronic coupling constant). One-exciton states are no longer degenerate with
the scattering states, and in the case of frequency decrease after electronic excitation, lie
below the two-particle scattering states. This favourizes vibronic exciton states and unre-
versible dissociation into scattering states is less probable. The situation is somewhat similar
here to that which occurs at resonance interaction between two impurity cenires in molecular
crystals which have energies below the exciton band [18, 19]. An opposite situation arises
in the case of frequency increase after electronic excitation. Vibronic-exciton states lie now
on top of the scattering states band, and therefore are less stable. This should lead to the
decrease of the phonon assisted transfer probability, which goes through scattering states,
and, indeed, we have shown that (see also [20]).

Now, we note, that the mass operator M;(E) gives, apart of the asymmetrical compression
of the exciton band, the renormalization energy of excitons which results from their inter-
actions via virtual exchange of phonons. Twenty years ago, Frohlich, in one of the first
theoretical papers on the theory of superconductivity [21] had investigated the influence
of diagonal terms in the Hamiltonian, which result from the electron-electron interaction
via phonon, on the stability of the normal state of electrons in a metal. He had found, that
renormalization of electronic energies proceeding from such interactions makes the normal
state unstable, and forms in the momentum space an energy gap. Of course, in such a state
the mobility of electrons increases.

A similar situation occurs also in our paper. We have also investigated only the diagonal
terms (one-particle Green’s function). We note further, that the operator My(E) gives also
a renormalization of exciton energy resulting from exciton-exciton interactions with virtual
exchange of two phonons. This interaction is attractive for % > 0(w; < w) and repulsive
for % < 0(w; > ). Only in the first case we have obtained an increase in the exciton energy
transfer probability. Similarly, the repulsive forces between electrons make electron conden-
sation in momentum space more difficult.

We have investigated in this paper a very crude model of a molecular crystal. The
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situation in real molecular crystals is of course much more complicated. In spite of this,
the existence of phonon-assisted exciton energy transfer processes in real molecular crystals
seems to be undoubtful. The same mechanism should be active also in polymers. In fuiure,
it will be very interesting to examinate on a simple model, if they can play any role in the
energy transfer in biochemical reactions?

Our investigations must be considered as pure qualitative ones, and they form a step
towards the understanding of Frenkel exciton energy transfer processes.

The Author is deeply indebted to Professor A. Witkowski for reading the manuscript
and critical remarks. )
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