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THE TEMPERATURE DEPENDENCE OF THE MAGNETIZATION OF
A SINGLE-DOMAIN PARTICLE ASSEMBLY

By J. Mizia, H. Ficier ano K. Kror
Physics Department, Metallurgy Institute, Academy of Mining and Metallurgy, Cracow*
(Received April 6, 1970)

The magnetization of uniaxial single-domain particles in thermal equilibrium with their
surroundings is predicted theoretically. In particular, the dem:;.gnetization curves, time variations
of magnetization and coercive force are found for a randomly:oriented: assembly of particles with
different volume-to-temperature ratios. The mean energy barrier for these particles is also
estimated.

Introduction

We assume here that the magnetic particles are located in a non-magnetic matrix and
their volume density is low enough for their magnetostatic interaction to be negligible.
Moreover, we assume that the particles have uniaxial magnetic anisotropy of constant K, > 0.

Stoner and Wohlfarth (1948), hereafter referred to as SW, evaluated the coherent ro-
tation of the magnetization vector of a unixial single-domain particle (with K, > 0) under
the effect of an applied field.

Neéel (1949) proved that thermal agitation causes the lifetime of the minimum energy
state to become finite, this being expressed by

T =1, exp (E[ET) @

where E is the energy barrier. Following Bean and Livingston (1959) it is assumed that 7,
is independent of external field (H) and the particle’s volume (7), and that 7y~10-1 sec.
This simplified model is valid for E= K, V> kT (for K,V'> 10kT one obtains a,
= 25 ET2K,V < 1.25).

‘Following the method proposed by Gaunt (1968), the influence of thermal agitation on
SW rotation for K, V> kT (a, < 1.25) is analyzed in this paper.

* Address: Zaklad Fizyki, Instytut Metalurgii, Akademia Gérniczo-Hutnicza, Krakéw, Al .Mickiewicza 30,
Poland. .

(71)



72

Particles with anisotropy axis parallel to external field

In the case of a particle with anisotropy axis parallel to field H the angle 6 in Fig. 1 is
equal to zero. For the variable part of the magnetic free energy we then have

Eg = K,V sin? p—IgVH cos ¢ 2)

where g is the angle between the direction of the particle’s moment and the positive direction
of the magnetic field H. H is positive in the direction of the saturating field.

Fig. 1. Particle with unjaxial anisotropy (easy axis = ellipsoid axis) in external magnetic field

It is possible to calculate the energy barrier from Eq. (2):
E = EP=_E2® = K, V(1+h)? ®)

where h = HI[2K,, I being the saturation magnetization of a cobalt particle.
Figure 2 depicts the energy barriers E, , for the transition of the particle’s moment from
orientation 7 to orientation j(i = 1,2 and j = 1,2, where 1 denotes the ¢, state and 2 the g,

£, ,=KaV(1+h)° h<0
> 2
_____ G £y KuV (1+h)” h>0
i
) , (S
¢, =0 7y =T

Fig. 2. Dependence of energy of uniaxially anisotropic particle on the angle between the magnetic moment
and a field H applied along the easy axis sensed oppositely to the saturating field (and at the same to the magnétic
- moment of the particle)

state). @, and g, in Fig. 2 are the angles relative to the positive direction of the field. The
sign of h is positive or negative accordingly for the magnetic moment parallel or antiparallel
to the- field H.

Owing to the thermal agitation there is a certain probablhty that the particle’s moment
will jump from the 7 orientation to the j orientation within time dz. If in the state 1 there are:
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n, particles, and in the state 2 —- n, particles, we can write the equation

dn, dn,

AT e B Tainy—Tian;. ()
It follows from Eq. (4) that with the initial condition n; = n, we have
n(t) = ny—ny = ng[l—exp (—¢/7)] ©)
where
o T21— T2

n. Tl = ﬁé -|—'r§j and n = ny+n,

2

S =
T2,1+T1,2

for the states 1 and 2. Putting the dependence (1) into relation (3) we have

2IsH
To1[Tr,e = €Xp (—k_ST_ V)- (6)
If we assume 7,;/7; 5> 1, what means that

2IsH

= )
T V=5 to 10

we get
T~ 7, and ng~ n.
The above assumption which simplifies calculations is applied throughout the paper
when two energy minima are asymmetrized by the application of an external field H.

The given field H is a coercive field (H ) if the time of its application ¢ = 7 =~ 7.
This leads to the relation

t = 7oK,V (1—|hol)?/FT] @

whence

K, V(1—|h,?) = kT(ln t+25)

where ¢ is time counted in seconds, and

|h =1—)2a, where a = %??j;f (1 4. 171153) o

what for £ =1 sec gives the formula derived by Bean and Livingston (1959):

2K, ET \%

Expansion of Gaunt’s method

The considerations above are possible analytically only-for 6 = 0. Gaunt (1968) derived
a numerical technique of solving the problem for any 6. Commencing with the equation

Eg = K,V sin®(9p—0)—HIgV cos ¢ (10)
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and defining the reduced energy, n = Eg/2K,V, we have from the minimum energy condi-
tion

= gg = —;— sin 2(p—0)+A sin ¢ = 0. (11)
This equation can be used for determining ¢ numerically for given values of A and 6. When
h > 1 the reduced energy 7 takes on only a single minimum value at the value of ¢ = ¢,.
Otherwise there may appear in addition a second minimum at ¢ = g,, a lower maximum at
¢ = @, and a higher maximum which is of no interest to us. The graphical interpretation of
@ as the angle between the direction of % and the tangent to the asteroid is well known
(Oquey 1960). In this interpretation @, is determined by the tangent to the left corner,
@2 by the tangent to the right corner, and ¢,, by the tangent to the lower corner of the asteroid
(with oppositely directed magnetization vector).

Gaunt’s reduced energy barrier is given by

An(0, h) = n(@,)—n(p) (12)

where @, is the minimum in which the magnetic moment of the particle will be found at the
reduction of field from + oo to the given value H.

The table given by Gaunt (1968) contains the above values of A7 for several 6 and
h(h < 0). It is terminated at 6 = 45°, for An(0) = A% (90°—0).

Thermal agitation is taken into account by assuming that the transition from state g,
to state @, occurs among the particles of different angles 6 relative to fild when the generalized
Gaunt condition is satisfield, that is,

— B, h) = o exp | 2oL A(03, B (13)
ET
what gives
25 kT In¢

where ¢ is the time of action of field 4, in sec, and 0, is the angle 0 for which Eq. (14) is
satisfied.

Analyzing condition (13) shows that the following assumptions are concealed in it: 1) as
before, the condition 7 = 7, 5 is accepted,; i. e., it is assumed that 7,,/7; 4 > 1; 2) the bound-
aries of transitions are sharp, i. e. we assume that the jump occurs in time ¢ = 7; 3) it is
assumed that thermal agitation affects the behaviour of the moments by diverting them from
minimum @, to @,, but the moments are either all in @, or all in ¢,. This reasoning is true
25T
‘ K.V <125
in Fig. 3 is obtained), for then the probability of intermediate states ¢ is relatively low owing
to the large exponential factor. The assumptions 1) and 2) will be discussed later on.

only approximately, when K,V > kT (for K, V> 10 kT the straight line a, =



75

(h, @) plane
Let -us assume an isotropic distribution of the particles’ easy axes (angles ) in space.
For a given (negative) %, those moments of particles will be reversed from the ¢, state to the
¢y state which have a -angle between 0, and 90°—0, , where 0, is identical for different a,
and ¢ giving the same a in Eq. (14). The relative magnetization I/ of such a cluster of par-
ticles in field A, after saturation, is given by

RN ) 90°—6p 900
cos @(h) =0f cos @, sin 0 df + of cos @, sin 6 df —I;OO/; cos ¢, sin 0 d0. (15)
b ~0p

It is dependent only on 0, hence, it will also be identical for different pairs ay, ¢ giving the
same a.

From Gaunt’s table one can see that for 2 <0 we have A7 (45°) = A%, and A7(0°)
= A1(90°) = A1,y (for > Othe caseis exactly the opposite). To calculate 44 from Eq. (12)
®,, and @, were found by solving Eq. (11) by the Newton-Raphson iteration method (as
5'" % 0 for this problem). The accuracy for cos ¢ was 1076, In this way the values for
the A7 (45°) vs & (Fig. 3. curve 1) and A7 (0°) vs h (Fig. 3, curve 2) curves were computed.
Curve 1 is the line for which ¢ = v for 0 = 45°, whereas curve 2 is the line for which

i

H—g
13 a

Fig. 3. (h, a) plane for SW particles. I, III are SW behaviour areas, II is the thermal reversal area. Curve I

is for particles with 6 = 45° and 7 = ¢. Curve 2 is for particles with 6 = 0° and 7= ¢. Curve 3 is for particles

with @ = 45° and 7= 102 ¢. The circles represent the coercive force h,. Curves with indicated values of 0 are
those for which the population ratio of ¢, and @, states is exp (—5) for the given 6

t =7 for § =0° The curve 2 in Fig. 3. can also be calculated analytically from the
generalized Bean-Livingston formula (1959): |h,| = 1—)/2a.

For @ < 0.5 an (h, @) point in Fig. 3 may lie within one of three areas. For a point
in area I the component of the magnetic moment along A (previously A = co) is given
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90°
by f cos @ ;sin 0df, what agrees with the values from the top part of the SW hysteresis
0 900

curve. For a point in area III this component is given by f cos @, sin 0d0, i.e. by the value

from the lower part of the SW hysteresis curve. If the pgint is in the area II, then when A
decreases (h is negative) the groups of particles with 6 = 45° +a, where a increases from 0°
on line 1 to 45° on line 2, successively fulfil the relation (7) and pass from the @, state to
the @, state of lower energy.

For a > 0.5 (h > 0) the particles represented by an (%, a) point lying below the line 2
begin to decrease the population of the lower minimum @, when the field decreases, to the
advantage of minimum @, (this concerns particles with § = 0° and 90° for & given by curve 2
up to the particles with 6 = 45° for h given by curve I), up to equel populations and zero
resulting magnetic moment for A = 0.

l}Demagnetization curves

For a < 0.5 ( < 0) and given values of @ and 4, 0, from Eq. (14) has been calculated
(with 0.001° accuracy). The inverse interpolation of A% vs 6 values was found by the use
of the inverted Newton formula.

Next, cos @(h) was computed from Eq. (15). First, ¢, or ¢, were c:lculated from Eq. (11)
for 0 increasing by steps of 3° and elso for 6 equal to 6, and 90°—0, (the initial values of
the solution: ¢, for # = 0° and 90°—0, and, @, for 6 = 0, were determined graphically).
Then the values of the integrand were tabulated in 3° intervals together with the boundary
values. Next, the integrand values were interpolated for additional §’s. This enabled us to
find the integral in each interval according to the Simpson rule by dividing the interval
into two parts: one with the width of the subinterval equel 2°, and the second, very small
part, with an automatically chosen width of the subinterval in order to cover f;and 90°—0,.
The accuracy was estimated to be 104 The results are presented in Fig. 4 by the curves
of type L

~ For a given a the curves commence from A given by curve I in Fig. 3 and terminate

on h given by curve 2in Fig. 3. It is seen that thermal agitation already for a > 0.04 (K, V <
< 310 £T for ¢ = 1 sec) gives distinct shortening of the hysteresis curve which increases
with decreasing 7 (opposite to that for incoherent rotation (Brown 1963)).

Taking into account the general condition for megnetic reversal, instead of the simpli-
fied version ¢ = 7, one obtains

cos @(0, k) = (1—e ") cos gy-+e "% cos gy (16)
with
T = exp [—25(1— 4 n/a,)]. (17)
The reduced magﬁetization is then expressed by

90°
cos ¢(h) = [ cos g(0, ) sin 00 (18)

0
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In order to compute the integral (18) the values of ¢y, @, and ¢,, were tabulated for
arbitrary A, with 6 varying between 0° and 90° in 3° steps (initial solutions for 6 = 0°
were obtained graphically). Subsequently, 4#(0, &) for 0 changing every 3° between 0°
and 45° were calculated (for larger 0 the A% are symmetrical with respect to 45°). Having
Ax, ©(0, h) were calculated from Eq. (17) and then, using Eq. (16), cos ¢(8, A) were obtained.

1 1
-0.8 -0.7
h

i

Fig. 4. Demagnetization curves with and without thermal agitation. The values of a (type I) and a; (types II,
IMl) are marked in the figure

After tabulating the values of the integrand for 0 varying every 3° numerical integration
was carried out by the Simpson rule (the largest possible error is one part in 10%). The

obtained cos @(h) vs i curves for ¢ = 1 sec and several chosen a, are shown in Fig. 4 as
curves of type 1L

The time intervals during which the individual opposite fields act add together (this
means it is impossible to pass to larger 4 with @ remaining constant). Curves of type III in
Fig. 5 are an example of demagnetization curves for @, = 0.1 and 0.3 and for ¢ = 10 sec.
In reality the hysteresis curve will commence from the curve for t = 1'sec, but will end
in the region of the curve for ¢ = 10 sec. '

In Eq. (18), instead of the critical value 0, there is an interval 46 where cos ¢ varies
from cos ¢, to cos ¢, continuously. This interval may be estimated by assuming ‘that /v
varies with 0 between 10 and 10, what gives

An(0,h) = o’ = a[l+41n10/(25+1n )] - (19)
A0y, h) = o'’ = a[1—In 10/(25+1n £)] (20)

40 = 0,—0,.
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From Eqs (19) and (20) one can see that the values of integral (18) will not be identical
for various @, and ¢ giving the same a (as 46 will not be identical). Moreover, the demagneti-
zation curves originate not from /4 corresponding to the intersection of the straight line
a = a* with curve I in Fig. 3, but approximately from & determined by the intersection with
the A7(45°) = a(142 In 10/25) versus h curve (curve 3 in Fig. 3). Curve 3 is the boundary
of the areas I and II in Fig. 3.

~ For increasing ¢, the a’ and o'’ values approach @ and the 40 effect may be neglected.

The values of coercive force determined from the intersection points of the type II
curves (Fig. 4) with the k-axis, are lower than the values obtained for the type I curves.
The difference is small and grows from 0 to 0.005 (for @ variable from 0 to 0.5). The values
of coercive force for curves of type I (determined with an accuracy of 0.001) are plotted in
Figs 3 and 6 (circles).

Time variations of magnetic parameters

For the time variations of coercive force it is possible to write in terms of moduli the
approximate formula

he(t) = holay)—S(ay) ;‘—; In ¢ @21)

)7}

|
Fig. 5. Magnetization after saturation and application of oppositely directed reduced field h=—0.31 as
a function of a for a; = 0.1 (curve A) and a, = 0.1368 (curve B). Log 1 ¢ values are indicated at the curves

where h,(a,) is the coercive force whena = ay, i.e. fort = 1 sec,and S(a,) = —(dh,|da),_ g,
If we acknowledge the H, vs a depéndence as linear, that is, b, = ¢ (0.5—a) (¢f. Fig. 6},
we get ' -

dH, LT

~

AT P R o PR g
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Sy is, as shown by Mizia (1969), identical with the constant for the analysis of relaxation
along the hysteresis curve introduced by Street (1952).

It is also possible to analyze the time variations of magnetization in this model. The
value of a increases logarithmically with time, so that even if the point (A, a,) is in the
region I (Fig. 5) @ may reach the curve 3 (Fig. 3) after a certain time. At longer times there
will arise a change in magnetization. By way of illustration the magnetization for A = —0.31
and a; = 0.1 (curve A, Fig. 5) and for a; = 0.1368 (curve B, Fig. 5) were computed from
Eq. (18) by substituting an exponentially increasing ¢. Both curves are drawn as a function
of a given by Eq. (14) (values of log ot are given with the curves). Both curves originate
approximately at the intersection of the straight line 4 = —0.31 with curve 3 (Fig. 3) and
terminate at the intersection with curve 2 (Fig. 3).

The changes of magnetization are: faster for smaller % (as regards absolute value),
but for small A the assumption 7,;/7;5 31 is not satisfied.

Discussion on the Ty:[7; 531 assumption

The previous relations were derived with the assumption that the equilibrium state for
any very small 4 is that in which all magnetic moments are in position ¢,. In reality, in the
equilibrium state

Tig My = Taily 22)
whence
g {4 VBT EOote 103
= - = e = exp (al Amne ) (23)

where A1, 4 & 7(®1) — 1(pe). 2 decreases gradually from large values to unity when 6

increases from 0°to 90° (for H<0). For e Any, , =15 (the curves with values of 0 labelled,
a

Fig. 3) it may be assumed that 2~ is approximately equal to zero.
It is seen from Fig. 3 that for small % the ratio of occupation numbers z cannot be
neglected for a large group of angles § and it is then necessary to put into equation (18)

cos p(0, h) = % (1—e=*%) cos g+ (1 +271) (z7t+e=7) cos ¢ (24)

and
v = 2% exp [—25 (1— ey (25)
These expressions-ate valid for A > 0, too.

Analysis of h, and hg

Figure 6 depicts the curves of /, and Ag as a function of a. The data for hg (reduced
remanence coercive force) are taken from the paper by Gaunt (1968). As is seen from the
figure, the differences between hg and 4, for a given a are minute. The difference between
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Hy and H, is evidence of the effective dispersion of the energy barriers in the direction of
the measurement. The small difference between Az and A, is caused by the fact that the
dispersion of the energy barriers due to the isotropic distribution of easy axes is relatively

small.
h
o he
06 R
—— — ¢c(05-a),c=0686

04 05-a

02r

1 L I 1
0 o1 0.2 03 0.4 0.5 a

Fig. 6. Reduced fields %, and kg, and the stréight lines 0.5—a and ¢(0.5—a) for a chaotic distribution of
uniaxial anisotropy axes

In rough approximation /g and %, may be assumed to be equal and described by a single
straight line, 0.5—a, or to be somewhat more exact, the line ¢(0.5—a) (Fig. 6). This is
equivalent to the statement that the mean spatial energy barrier is given by

E=K,V+ % ViIsH (26)

where H has a positive sign for the direction agreeing with that of the saturating field, as
had been assumed at the beginning of this paper.

Conclusions

It was shown here that thermal fluctuations give rise to a dependence of the magnetic
25T (. Int
2K,V E

properties of fine particles on a factor of the form @ =

T35

The shape of the hysteresis loop and magnetic relaxation of single domain particles
under the effect of thermal agitation were found numerically. Shown is the thermal narrowing
of the hysteresis loop (Fig. 4) for small volumes, what together with the narrowing due to
incoherent rotation for larger volumes causes that the values of coercive force corresponding
to the Stoner-Wohlfarth hysteresis loop can never be achieved.

For the coercive force of such a cluster with a chaotic distribution of easy axis the follow-
ing approximate formula was obtained:

S AR e\
Hq—— CT[; —C—V.E— (1+—2‘5—), c ~0-86..
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This formula is a generalized version of the Bean-Livingston formula derived for
microregions with easy axes aligned parallelly to the magnetic field.

Tt follows from this formula that —dH [d(ln¢) = ¢ ;'—IT =Sy, in which, according
s

to Mizia (1969), S, is the constant for magnetic relaxation introduced by Street (1952).
It was shown that the dispersion of the energy barriers due to the distribution of easy
axes is rather small as regards its effect on magnetic observables.
Proof is given that the spatial mean energy barrier of microregions with uniaxial aniso-
tropy and a chaotic distribution of easy axes is approximately described by the linear

relation £ = K, V+ e VIgH.
c
A new type of curves for magnetic relaxation is proposed (Fig. 5).
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interest in this work.
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