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By minimizing the saturation-state energy of a spin system with pseudo-dipolar and
quadrupolar short-range interactions in the nereast-neighbour approximation, the magnetically
preferred directions of a ferromagnet with a simple or body-centred tetragonal crystal lattice
are determined and their dependence on the lattice deformation and on the sign and magnitude
of the coupling constants is examined.

1. Introduction

The use of short-range multipolar spin couplings in describing the anisotropic pro-
.perties of ferromagnets was first proposed by Van Vleck [1]. Since then, this type of semi-
phenomenological interactions has been successfully applied to many problems of ferro-
-magnetism [2-11], usually by restricting the coupling to dipolar or, at the most, to quadru-

polar terms. Notwithstanding the fact that multipolar spin couplings are mathematically
hard to handle, their clear advantage compared to simpler phenomenological anisotropy
forms is that they need not be specified for each particular crystal symmetry. In other
words, multipolar spin couplings are believed to lead automatically to correct anisotropy
directions- when applied to a specific crystal lattice.

However, proof that this is true has thus far been established only for the cubic and hexa-
gonal crystal lattices and is given in [5]. The aim of the present paper is to extend the proof
of [5] to tetragonal crystal structures (s. ¢. and b. c. £.), and to examine the influence of the
lattice deformation and the sign and magnitude of the pseudo-dipolar and quadrupolar
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coupling constants on the magnetic anisotropy of the crystal. As we are interested in deter-
mining the magnetically preferred directions only, we shall disregard surface effects (magnetic
surface poles, demagnetizing field, and shape anisotropy) and work in the saturation-state
approximation (cp. [12, 13]), i. e., we shall minimize the spin system’s energy in the satura-
tion state with respect to the direction of spin alignment. This is precisely the same approxi-
mation as was made in [5] and corresponds, strictly speaking, to the case of small (i.e.,
below the critical dimensions; see, e. g., [14]), spherical, single-domain ferromagnetic part-
icles in which the magnetocrystalline anisotropy is the sole factor that determines the di-
rection of spontaneous magnetlzatlon

Except for the first two Sections where the general minimum conditions are derived,
we restrict ourselves to the nearest-neighbour approximation. For the b. c. t. case, we extend
the considerations to include next-nearest-neighbour interactions in the tetragonal plane.
The influence of lonig-range dipole-dipole coupling will be considered in a subsequent

paper.

2. The minimization

We start with the Hamiltonian
H = Z P“ﬂ S“ Sﬁ 2 M1Hzl‘sl‘ASa1Szleﬁ‘aSﬁa (1)
w;

Pty

where the tensor

ref _af
P, = [C(r) — () — ] ()] 3053 [(C0=0) —~Dr*)) Lt @
comprises the isotropic Heisenberg exchange interaction J(r*), the classical dipole-dipole
interaction

2,)2

N =as 3)
with the Landé factor g and Bohr’s magneton y, and the short-range pseudo-dipolar aniso-
tropy C(r*f). The tensor

5 Q()  op ap ap ap A
Zx#z#alla = (aﬁ)‘l Zz Tu, ’Zs r:h . (4)

describes short-range pseudo-quadrupolar anisotropic coupling. The indices a, B refer to
lattice sites, and uy, fiy, ... denote tensor (vector) components to which Einstein’s summa-
tion rule applies. The components of the lattice vector between sites & and § are denoted
by r“ﬁ and the distance by r“. The spin operators S7 satisfy the conventional commutation
rules.

With the familiar spin raising and lowering operators S% = S%4iS% the saturation state
|—S > along the negative z-asix is defined as follows:

Sf—S > = —S|=8 >, S$1|=S>=0. G
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Following [15], we introduce the unitary transformation U(#, ¢) which first rotates the
spins around the y-axis by the angle 9 and afterwards around the z-axis by the angle g.
Hence, the state

18,9 > = UHB, ¢)| —S > : ©)
represents saturation in the direction given by the angles @, ¢. Since
US,U+=R,S} 7
where
cospcos? —sing cos@sind
R, = | sin ¢ cos 9 cos @  sin ¢ sin ¥ ®)
— sin & 0 cos ¢
the quantity to be minimized with respect to 9, ¢ is
=0, ¢ |H 9 ¢>= (S |H-S) ©)
where

'FI = UHU+ N Zﬂ P:fuzszlslliz_l_ Zﬁ Oz?ﬂxﬂal‘aszls:asﬁssza
) @)

P:ﬁ‘z 5 P’ZfaR”xllIR”z.“z . (10)
Q;ﬂlzﬂa!‘a = Q:ﬁa”a”aR”1!41R”zﬂaRVsl‘sR”4/‘a'
According to [15] one has
h =823 (Pg+0Q) 11
B

with the abbreviation
~ 1 ~ ~ ~ ~
0% = T (0% + 0% + 0%, + Q%s) +

1 .~ ~ ~ ~ ~
+ 5 S(Qfss + Q% + Qbss+ Q%22) +S 205553 (12)
The necessary minimum conditions are

on  oh
L 1
5 " 9p 0 (13)

and the sufficient ones read

aSh (Y, o

dp* 992 g T 9P

The explicit form of & = h(#, ¢) in the general case is given in Appendix L. In the

following, we shall assume tetragonal symmetry and consider the simple (s. ¢.) and body-

centred (b. c. t.) crystal lattice in the nearest-neighbour approximation. The extention of the

considerations to the case of next-nearest-neighbour coupling is demonstrated for the b. c. .
lattice with b > @ where b is the lattice constant in the tetragonal direction.

> 0. (14)
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3. The tetragonal crystal lattices

It is easily proved that in the case of tetragonal crystal symmetry one has

P =2, PE =0 if £ (15)
and ;
Q s, = “Zﬁ Qs = 0 (16)

if there are three different or three identical indices among p,...u,. For the remaining
quantities one obtains the relations

P. TR P, 229 Quil = szzza (17)
Qs = Qazzs = Q.P[1133j = QP[2233]

where the symbol P[] denotes an arbitrary permutation of the indices in the brackets.
Due to Eqgs (15)-(17) the conditions (13) take the form

sin 4@ sint § — 0, (18a)
sin 20{}(4Q1135— Q1111 — Q1122) +25%(301133—Vsss8) +
+S(Qa333—7Q1135 + Q1111 + Qr1z) +(S—%)? sin® # X

X [2(Q1111 1 Q3333 —6Q1135) +5in® 29 (301100 —C1111)] + P11 —Pys} = 0 (18b)

and the solutions are

I. sin¥® =0, ¢ — arbitrary

II. cos P =0
a) sing =0 (20)
b) cosp =0
¢) cos2¢p =0

I sin? 9 = [$(4Q1135— Qr111 — Q112) +252 (3Q1133 — U3333) +5(Uss33 —7Qn1s3 +
+ Q1111+ Q1129) + P11 —Pis] +[2(S—$)? (601133 — Q1111 — Us333)] (21)
a) singp =20
b)cosp =0

IV. sin29 = [$(4Q1133— Q1111 — Q1192 +252 (3Q1133—C3333) +5(Vs333—7Q1sa+

+ Qllll + QIIZZ) +P11 _P33] - [(S —%)2 (1201133 . Qllll -203333 —301122)] (22)
cos 2¢ = 0. '

The conditions following from (14) under which the solutions (19)—(22) represent
a minimum of A are given in Table I. The last two conditions for the solutions III and IV
follow from the obvious restriction

0<sin?d <1
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For the special case of cubic symmetry we have in addition to (15)-(17) the relations

Py = Py, OQuu = Qaszsy Qrrze = Quass (23)
and the minimum conditions from Table I reduce simply to the sign of the difference
3Q1105—Qy11 as shown in Table TL. In the nearest-neighbour approximation with the qua-
drupolar coupling constant @) the minimum condition reduces to the sign of Q as shown
in the last column of Table II. The correspondence to [5] is thus evident.

TABLE I

Solution Minimum conditions

p,—P
1 Q1111 + Qi + 23S — 2)Qy135 — 25Qy505 + % -0

— 1
2
[

3011220111 > 0
ITa,b Py —Pgy
2501131 + Qu12a—2 (35—1) Q1155 Qs + Ts_1 <0

2

3Q1190— Q111 > 0

11 P,—P.

¢ 25+ 1)Ou1r + (65—1)Q1120—4(35—1)Q1155—2 Qg5 + 2 -‘;,1—_1—33— <0
2

301122~ 0n11 >0
Ouut 03353_601153 >0

, P,—P,
IMa, b 2501117+ Quo2 —2(35—1) Qr1a5— Qsas5 +- —'—51'1_ 133

P,—P.
Quurt Q1202035 —2) Q15— 2503355 + % <0

3Q1120— 01313 < 0
Q1111 + 301120—120,5; -+ 203333 > 0

P,—P,
A Quin + Quas + 2(35—2)Qugs—250s5; + ——— 2 < 0

51

@5+1) Quyirt- (65—1) Q15— 4(35—1) Q5 —

P,.—P
—2Q3355 + 2 ——11—1—33 >0
S—3
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TABLE II
Sign Q|
Solution Minimum condition Simple Body centered | Face centered
cubic lattice | cubic lattice | cubic lattice
I
sind — 0, [001] 3Qu22—0qy11 > 0 i + +
@ — arbitrary
IIa
cos¥=0,sinp=0 [100] 3Qu192—0Qnn1 >0 S + +
I1b
cos $#=0, cos ¢ = 0 [010] 30119501111 > 0 - + +
IIc Not fulfilled
cos¥ =0, cos2¢ =0
IITa
1
sin? 9 = 50 sin p =0 Not fulfilled
11Tb
1
sin? ¢ = oL cosp=10 Not fulfilled
v
2
sin? 9 = 5+ 08 20=10 [111] 3Qu20— 01 < 0 + - .

* Corresponding crystallographic direction

4. Nearest- and next-nearest-neighbour approximation

For a more quantitative analysis of the results listed in Table I further approximations
and specifications are necessary. First of all, we shall henceforth disregard the long-range
dipole-dipole interactions. Furthermore, we shall restrict the short-range interactions to the
nearest or next-nearest neighbourhood and thus confine the tetragonal deformation of the

crystal lattice as follows:

for the s. ¢. lattice (nearest-neighbour approximation):

and for the b. c. t. lattice:

1 b

5 < =<2,

Vzﬁ<—2—‘<1/§
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in the nearest-neighbour approximation, and
b -

when taking into account next-nearest-neighbour interactions in the tetragonal plane.
Here, b and a denote respectively the lattice constants in the tetragonal direction and plane.
Let J, € and Q be respectively the exchange integral and the pseudodipolar and quadrupolar
coupling constant for the nearest neighbours in the tetragonal plane, and J’, C" and Q' the
respective quantities for the neighbouring atoms above and below this plane. Then, we

assume after Van Vleck [16] .

1 :
€l ~1T1(g—~2)% 101~ [TI(g—2)* (24)
and the same for the primed quantities. Hence, in this approximation we have
QI Cﬂ J/ C Cl B
R YD 25
0" C T ¢ o~ = (g—2) r (25)
Lo
¢ !

Finally, we specify S = 1 and g =21, i.e., r = 4400.

a) Simple tetragonal lattice

With the above assumptions we have, according to (15)-(17),

Qun e 2NQ
Q3333 = 2NQ’ ..\P 11—P33 = 6N (CI_C) (26)
01122 = Qnsa =0

where N is the number of lattice sites. Now we examine the minimum conditions listed in
Table I. For the solution I we obtain

Q{1—2¢+6r(g—1)} >0 (27

Depending on the sign of C and (, the above inequality leads to different conclusions.
1) If Q>0 and € > 0 one has
1 6r—1

q>§3r—_1~>1 (28)

which implies b < @, i.e., the lattice must be constracted in the tetragonal direction if this
direction is to be magnetically preferred.

2) If Q < 0and C < 0, one easily proves that again ¢ > 1, i. e., the above conclusion holds.
3) If Q <0 and C> 0, it follows from (27) that ¢ < 1 which implies b > a, i.e., the
lattice must be expanded in the tetragonal direction if the latter is to be magnetically pre-
ferred.

4) If Q <0and C <0, again ¢ <1 and b > a.



710

TABLE. IIT

Solution Sign Q Sign C o Condition for a and b

b<a
b>a
b<a
b>a

I+ 1+

ITa, b = b<a

b>a

IIc -+
+

b>a
b<a

s il R S

_For the remaining solutions in Table I the analysis is analogous though a bit more
complicated, as there are two or four inequalities to be examined. The results are listed
in Table I1I. For the solutions IITa, b and IV (except for the cubic case) the minimum condi-
tions are not satisfied.

b) Body-centred tetragonal lattice; nearest-neighbour approximation

In this case we have, according to (15)-(17),

8NatQ 8Nb4Q
le = WW = Quzz ’ 03333 = W ?

8Na?bQ

24C(b2—a?)N
Quiss = '(m ’ T 9212

2a%+b%
The analysis of the conditions from Table I is analogous to the preceding case, except that
now the lattice deformation enters explicitly the inequalities through @ and b, according
to (29). It leads to the results given in Table IV. Again, for the solutions ITa, b IV (except

for the cubic case) the minimum conditions are not satisfied.

P 11 =1 33 — (29)

TABLE IV

Solution Sign Q Sign C Condition for @ and b

b>a
b<a
b<a
b>a

I+

Pediiar

P+ 4+

IIa, b b>a

b<a

++

Ilc — b<a

b>a

=5




TABLE V

Conditions
Solution Sign Q Sign C i
for ¢ ’ for —
a
1 } -
+ -+ 0<g< oy i not fi 141l d
1 ' b
—<q<l1 — > A4
4 a
; .
q>1 A = V;‘l
I . 1
+ -_ 0<g< — none
»-1~<q<1 [/7<-{)~<4
b
q =1 — < A
(¢
|
+ + 0<g< — [ none
L yE<?
—<g<l1 | J2< —<4
- a
b
l<g< 16 B<-—<4
a
-+ — 16 < ¢g< oo not folfilled
1
0<g< vy not fulfilled
Uy
— < g<16 A< =<2
a
Ila, b b ~
16 <g<2 B<— <2
a
- -k 2<qg< oo not fulfilled -
0<g<— not {udfilled
1 — b
— <g<1l6 ]/2<~<B
2 a
- b
16 <g< V2 <—<4
a
- — 0<g<l16 not fulfilled
b ~
16 <q< oo d<—<|f2
a
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TABLE V — continued

Conditions
Solution Sign Q Sign C
for ¢ for —
a
1
+ + 0<qg< -2— not fulfilled
1 - b
—<g<l6 2< —<B
2 7 V a-
b
16<qg< o ]/5< — <4
a
4 — 0<g<l6 not fulfilled
b —
16<g< oo d<—<|2
a
1
— + I<g< 7 none
IIe
1 b
—<g<l1 2< —< A4
4 i V— a
b
l1<g<1l6 B<—<4
a
lo6<g< o not fulfilled
1
- - 0<g< T not fulfilled
1 b
—<g<lé6 A< — 2
4 E B a S V—
‘ b _
16<q<2 B<—<]2
a
2<g< o0 not fulfilled
2
dat2 _
4qg—1

Vi =5 -

c¢) Body-centred tetragonal lattice; next-nearest-neighbour approximation
in the tetragonal plane
For the quantities (15)-(19) we have

- 4atQ’
Quu=DN [Q+ m] ’
Qua = NQ

8b1Q'N
Qaass = ma
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4a%0%Q'N , 4b2—24"
Q1133 = (“argz)av P11_P33 =06 (C T—l—lﬂ *C> (30)

and now the lattice deformation manifests itself implicitly (trough q) as well as explicitly
(trough a and b) in the minimum conditions from Table I. This complicates the analysis
insofar as there is the additional obvious condition to be accounted for, namely, ¢ < 1 if
(b/a) > 1 (and vice versa). The results are presented in Table V which lacks the solutions
IIa, b and IV as the corresponding minimum conditions are not fulfilled (except for IV
in the cubic case).

5. Final remarks

The method applied here in determining the magnetically preferred directions in te-
tragonal ferromagnets is based on the minimization of the system’s energy in the class of
saturation states (6). Inasmuch as there are assumed anisotropic interactions of dipolar and
quadrupolar type, this procedure may raise objections because the saturation state is not
an eigenstate of the system. In fact, it is yet to be proved that the saturation state is at least
a reasonable approximation of the system’s exact ground state. None the less, there is
a strong experimental justification for our approach, as small single-domain ferromagnetic
particles of spherical shape are indeed spontaneously magnetized to saturation in magneti-
cally preferred directions. Furthermore, even in larger single crystals with domain structures
the domains themselves are also magnetized in magnetically preferred directions. We there-
fore believe that the saturation-state approximation should in this case work well. A further
argument in favour of this conviction is provided by the fact that the inclusion of long-
range dipole-dipole interactions in our considerations leads to restrictive conditions for the
dimensions of the single-domain crystal and, for crystals of ellipsoidal shape, to shape-
dependent magnetically preferred directions — quite like in the phenomenological theory.
This will be shown in a subsequent paper.

The authors wish to thank Dr W. J. Zietek for reading and correcting the manuscript.

APPENDIX

The explicit form of the average energy h(d, ¢), Eq. (11), in the saturation state (6)
is as follows:

h =382 Zﬂ P+ 2Oty +0%,) +250%85 +S Qs +
@,

. Pab _ Pap
+o—panto [T om0 205208, —2508, | +

+3(5—3)% sin® $(QB,, —6Q50, +Q8,5) +
+ 4(S—2)2sint @ sin? P(3Q%,—0%,)}.
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