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‘The diagonalization problem for the Hamiltonian of a thin - ferromagnetic film is solved
strictly within the framework of the Boundary Inhomogeneity Model. Complete generality is
ensured by assuming the spin quantization axes in each layer as different. Parameters having
the physical meaning of boundary spin pinning parameters are introduced, and their role in
the boundary condvitions. ‘is discussed.

1. Introduction

Haisenberg’s model, when applied to a description of the ferromagnetic state of thin
films , has proved equally fruitful as in its application to bulk materials. However, the rather
simple mathematical formalism involved by it requires some amount of modification’in the
case of films, since the theory has now to take into account correctly the existing boundary
conditions, namely those resulting from the boundedness of the dimensions of the body
under consideration. In fact, since 1912, the theory of bulk bodies resorted almost exclus-
ively to the so-called ““cyclicity boundary conditions” (known as the Born — Karman condi-
tions) representing an idealization of the real conditions, which is justified well enough when
the dimensions of body are very large (Ledermann [1], Peierls [2]). Obviously, cyclic bound-
ary conditions could hardly be expected to lead to correct results in the theory of thin films.
Thus, the earliest attempts to calculate the spontaneous magnetization of a monocrystalline
film (Klein and Smith [3], Glass and Klein [4]) on the assumption of periodical boundary
conditions failed to yield results in agreement with experiment, notwithstanding the fact
that the disconiinity of the momentum spectrum (of quasi-particles) due to the finiteness
and thinness of the film had been taken into account.

Consequently, later theories could no longer ignore the true boundary conditions at the
film surface i. e. the fact that the atoms at the surface have a neighbdurhood of lower sym-
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metry (i. e. less neighbours) than the internal atoms. The first to take this into considera-
tion were Doring [5] and Ferchmim [6]. Numerous papers have since appeared in which the
true boundary conditions in thin films are given much aitention and their influence on the
physical properties of such films and the processes occuring in them is studied closely.

Déring’s method (of calculating spin-wave states and their energy spectrum in thin
films in Bloch’s approach) underwent considerable development in the work of Abbel [7]
and Jelitto [8, 9]. To Jelitto is due a highly general formulation of spin-wave theory for thin
ferromagnetic films applicable to bodies with arbitrary Bravais lattice and arbitrarily oriented
surface. His work is notable for a very convenient and effective method of solving the set
of difference equations to which the eigenproblem of the thin film always leads, consisting
in the introduction of fictitious lattice planes not physically present in the film. Our paper
is aimed at a further generalisation of Jelitto’s theory. In order to explain our intention,
we have to make some digressions.

The surfaces constituting the boundary of a finite body constitute a specific defect
of its structure, which can conveniently be referred to as ‘‘surface defect”. In essence, this
kind of defect resides in the fact that an atom at the surface interacts with fewer neighbours
than an internal atom. Consequently, the situation, with regard to energy, of a surface atom
differs from that of an internal atom. We shall be referring to such surface defect as ‘‘natural
defect”, since it r‘esdlts naturally from the property of boundedness.

~ In the theory of spin-waves in thin films, however, the use of boundary conditions in-
volved by natural defect alone proved insufficient, primarily because a number of experi-
mental results remained unexplained (c¢f. Davis [10]). In order to adjust the theory, it was
moreover necessary to take into consideration the existence of very thin strata of chemically
foreign compounds affecting the energy situation of the surface spins (and the deeper lying
boundary spins, too). This is accounted for by considering a supplementary energy called
“‘surface anisotropy energy”. Thus, by applying the concept of surface anisotropy energy
in the method of spin-waves, Davis [10] succeeded in explaining certain discrepancies between
the expenmental results of various authors.

Jelitto’s theory suffers from the essential limitation of using boundary conditions re-
stricted to mnatural defect When proceedlng to its generahsatlon, our first step will be to
introduce surface anisotropy or, more widely, boundary anisotropy. Another drawback of
Jelitto’s theory consists in his assumption of a collinear ferromagnetic ground state of the
thin film. In other words he omits to consider the influence of surface defect on the configura-
tion of the spins, which obviously is an arb1trary simplification. In the present approach,
the spin quantisation axes will be considered to depend on the distance of a given lattice
layer from the surface. Obyviously, such a modification of the theory extends to its very
fundamentals. As we shall show, it also affects essentially its mathematical formalism.
Thirdly and lastly, the present generalisation will aim at rendering the theory applicable
to non-translational structures also. In this pubhcatlon however, we shall not deal with
this matter to the end, from a certain point onwards, our considerations will be restricted
to lattices of the Bravais type.

Throughout, we shall be applying the Holstein-Primakoff spin-wave formalism.
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2. The assumptions

Let us consider a non-conducting specimen of the shape of a thin film, of uniform crys-
tallographical structure, extending unboundedly in the directions parallel to the surface
(. e. fulfilling in these directions the periodic boundary conditions of Born and Kérmaén).
On these assumptions, the atoms lying in one and the same lattice plane parallel to the
film surface will be in physically identical conditions and will thus be mutually equivalent,
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Fictitious layers ————
Fig. 1. Layer model of a thin ferromagnetic film

constituting a magnetic sub-lattice (Valenta [11]) Hence, the thin film can be divided into L
equidistant lattice planes parallel to the surface. We shall henceforth be referring to a lattice
plane parallel to the surface as a “‘layer”, and shall deal with each layer as a distinct magnetlc
sub-lattice. We shall label these layers (beginning by the lowest layer) [ =0, 1, 2, ..., L-1
{¢f. Fig. 1). Layers labelled 0 < l<£2_1 will be termed lower layers) and ones labelled

L-1
é.il < 1 < L—1 — upper layers; the layer I = e will be referred to as the middle

layer (it éxist only if L is odd). { Itis sometimes of advantage, with regard to symmetry of the

formulas, to label the lower and upper layers respectively as  and L—1—1, but this requires
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imposing the restriction 0 <1 < %} ) The position of a site will be denoted by the vector

m = [1, j], where j = [j,, j,] is a two-dimensional vector defining the position of the site
in its layer. It is our assumption that each of the lattice layers lis a Bravais lattice and that
they are all identical; for the time being, however, we refrain from assuming the set of these
layers jointly as a Bravais lattice.

We lay the reference axes as follows: the axes x and y lie in the plane parallel to the
surface of the film, with the z-axis perpendicular. Also, we introduce in each site of the
lattice a local reference system ', ¥', 2z’ with the positive direction of the z’-axis defined by
a unit vector y;; which is the versor of quantisation of the spin situated at this site. We more-
over assume that, in each site, the spin is acted on by a local effective magnetic field
H}"jﬁ = H® (the sum of ‘the external, demagnetizing and anisotropy fields), which depends
on the number [ labelling the layer only. With this assumption each of the layers / continues
to be a sub-lattice consisting of mutually equivalent spins, and we can write 77(1 =7, Thus,
the classical spin can be written in the form (we restrict ourselves to the case when Sy =5,
with S in & units): Sy =Sy,

The Hamiltonian of the system of spins in Heisenberg’s model is assumed in the form:

# =2 TyySy- Sry—sps 2 H" - Sy, -

N (% ¥ ; e
where Jy 4> & and pg have the meaning, respectively, of the isotropic exchange integral,
the gyromagnetic factor, and Bohr’s magneton, and where 4 is taken to belong to the layer

1(j €I) and j' to the layer.l’ (j' €1'); the symbol. >} denotes a sum containing each pair
G)
of spins once only. We shall be resticting our considerations to interactions between nearest

neighbours; for more generality, we shall assume that the exchange interaction integral
between two neighbouring spins 8j; and 8;; depends-on the numbers labelling the layers
to which the spins belong: -

gy = 2)

The Hamiltonian (1) can now be re-written in the form:
#=— 2 JuSySry—8is 2 H* - Sy @)

Ay L]

(Summation now extends over closest neighbouring spins.)
Nearest neighbours of a site of layer [ can lie in the same layer or in several other layers.
The question of how numerous these layers can be depends on the orientation of the surface
of the thin film with respect to the crystallographical axes (a problem already discussed
by Jelitio [9] for Bravais lattices). Henceforth, we shall denote summation over nearest
neighbours of a given site by »)’, whereas > will denote summation over the neighbouring
7

layers of layer 7 including this latter layer (i.e. admitting of I’ = I). We denote the number
of nearest neighbours (of a site of layer ) situated in a layer I’ as zp (since all the layers
are identical, we obviously have zj = 2;). We furthermore denote the total number of
spins contained in the plane XOY by N.
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For the sake of convenience, we shall moreover resort to a terminology which we now
proceed to define. A spin which, owing to its position near the surface, has (in the model
of interaction with nearest neighbours, as assumed here) fewer active neighbours (i.e. ones
with which it interacts) than a spin lying in the interior of the film will be referred to as
a boundary spin. Obviously, at certain orientations of the surface, the spins which ‘“feel”
a deficit of neighbours will all lie on the surface ( surface spins), whereas at other orientations
such spins will exist within the bulk of the body, in several consecutive lattice planes parallel
to the surface. We shall refer to lattice planes of this kind as boundary layers. From Jelitto’s
work [8, 9], it is in some cases convenient to introduce spins which in reality are absent
owing to the boundedness in dimensions of the body. Such spins will be referred to as
fictitious, and layers consisting of such spins as fictitious layers. Finally, we shall term spins
lying in the bulk of the body and subject to no deficit of their active neighbourhood internal
spins, and the respective planes internal layers. The number of fictitious layers required
for our considerations will always be equal to that of the boundary layers. It should be
stated clearly, that, here, the notions “‘surface layer” and ‘‘boundary layer” cease to be
equivalent.

We shall now assume that the nearest neighbours of a given site of the layer [ lie in
2G+1 layers, which we shall label as follows: I' =1I+g, g =0, +1, 42, ... -=G. Thus,
G defmes the number of layers intersected by the radius of the first sphere (¢f. Fig. 1).
Labelling of the layers is, consequently, as follows:

l=—G, —-G+1, ..., —1 — lower fictitious layers,
1=0,1,..,6-1 — lower boundary layers,
l=6G,6+1, ..., L—-G~-1 — internal layers,
l=L—G,L—G+1, +,L—1 — upper boundary layers,
=L, L+1,..,L+G-1 — upper fictitious layers.

We now introduce the following convention concerning the sum '
G
+G

Z — summation over the neighbouring layers of an arbitrary internal layer,
>V — summation over the neighbouring layers of layer /,
4

> @) — summation over fictitious neighbouring layers of layer I,
g
with g running from —1 and from +1 (if the sum is to include g = 0 as well, this will be

L—1
indicated explicitely). Clearly, the following identities hold (provided o0<i< ~2—)

+G
D YEDILES !
g g g
= +G
2) Zf(l)E 2 s Zf(l«—l—l) — Z ;
g g=—(l+1) g g=I+1

+G 7

HX=F+3, T=R+3

g=1 g=-1 g g=—1 g=1
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Let us still draw attention to the nature of the model stated in the title of this paper.
Valenta’s model, where a physical ‘‘individuality” is attributed to each layer, can well be
said to represent a Volume Inhomogeneity (VI) Model. Its extreme opposite is the Surface
Inhomogeneity (SI) Model, which distinguishes surface layers and considers all the other
layers as mutually equivalent. The Boundary Inhomogeneity Model is in fact intermediate
between the VI and SI models, in that here boundary layers are considered as “‘individual”
sub-lattices whereas all internal layers are considered as mutually equivalent. Hence, the
number of sub-lattices is the largest (amounting to L) in the VI Model, smaller (amounting
to 2G+1) in the BI Model, and smallest in the SI Model- (where it amounts .to '241).

3. Transformation of spin operators to second quantization operators

" We now proceed to find the eigen-states of the Hamiltonian. As a first step in the
series of transformations which will be required, we perform a canenical transformation of
the spin operators from the crystallographical axes x, y, z to local axes &, ¥, 2" thus S,J—>SIJ
This transformation is of the form (Tyablikov [12]):

' "R oWl | O
Si= y5Sy + 2 (AySy" +A554 ), (4)
where y, is the already defined local versor of the quantization axis (the z’-axis), and Ay
is a vector defined as follows (on the simplifying assumption that the y’-axis is taken as
lying in the xy-plane):

Af = V2 )2+ D2 iy +ivds

A== sz [+ % O — 7

V2 [(y5)2+ () 1% ©)
The vectors y, and A satisfy the following relations:
Ta=7  Gpre =1 A4y =1, (6)
(Ay» )—;lj) =0, (4 Iiv ?’zj) =0, (44, =0, (6b)
Py A = idy,  Apx A= iyy. (6c)

We now go over from spin operators to Bose operators by way of the Holstein-Primakoff

transformation:
r+ — & — . ~ "_*_"
V2s 7 f,,a,,, S =V2S aif

IJ = S— al] a,,,

A\ %
y S % !
o (1 oL ) . SO
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On inserting (7) into (4) we obtain:
o aif ay = ° g o I
Sij= Syy (1— JT) +V/S (Aufuby+ Ay ). )
From this point onward our calculations will be performed in the approximation of quasi-
saturation (Z.e. restricting ourselves to low temperatures); this permits to assume fb:l

and, keeping in mind the assumption 77,,-: ; (which moreover involves 4;=A4),
we obtain the transformation which we shall be using throughout, in the form:

A A
A n &k B
Sy= Sy, ( 1— %) +V/S (Asay+ Al aif). ©)
The creation and annihilation operators aA,'J’-' and aAlj satisfy boson commutation rules:
[aAlj’ ‘2;’;"] = 611'6]';"9 [a’\ljj&l’j’] =0. (10)

Inserting the transformation (9) into the Hamiltonian (1), we obtain (to within terms

of order 2):

~

- 3’ At A 1 i A A
H = Eo(y)+ Z (P%li’al—iF ary+ R Qlt-Gylry +

by
i gl ol N pet
+5 Q*ii aZm;,Z.,) + Z (Rialj—l—Rla,;f), )]
where we have introduced the notation:
Euly) = —NS* 3, (P 7r) —gusNS % =% 5), (12a)
S @G ) veus R ) for Lj=1f,
pi={ (12b)
25T, (Af, Ay for Ij£U§,
for  Ij =y,
Qp = N (12c)
—25J(A,, Ay)  for  jAY,
‘Rl = —28 V§ Z, Zln]ln(Al’ 7_;71) —8H4p Vg(H?ﬂ7 Al) (12d)

With regard to the fact that Jyr = Jyp, we find immediately that the coefficients Pﬁ and
Qﬂ fulfil the relations:

) * o7 Ty ryYd
Pii =P, Qi =¥, (13)

which ensure the hermiticity of the Hamiltonian (11).
Ey is a classical expression, to be had from the initial Hamiltonian (3) on replacing
the spin operators by their classical vectors. It is found to be a function of the vectors ;,.

This can be written symbolically as Ey = Ey(3).
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4. The ground state

The ground state of the thin film (whose energy we denote by E;) will be determined
by the semi-classical method (see, Tyablikov [12]). To this aim, Ey(7;) has to be minimalized
with respect to the variables ¥, adjoining the L supplementary conditions:

Ey = min Eo(;l)o (_‘};1, ‘3./1) =1. { (14)
The usual variational procedure leads to the following equations:
IEy(y)
Toyy O (149)
l Z (77 2=1, 1=0,1,..,L-1; & = %, y,% (141))

whence the y% and indeterminate Lagrange factors 4, can be determined. With (12a) and
the equality z; = 2y, we can write Eq. (14a) in vectorial form:

2115"1+252N ;' 2y Py = —gupSNH;T, - (15)
1=0,1,...,L-1

The set (15) decomposes into 3 sets of inhomogeneous difference equations (of L equations
each) containing the unknown functions yf(@ = %, ¥, z), respectively. It should be noted
that these solutions have to fulfil the normalization conditions (14b). Multiplying both terms
of Eq. (15) by 7;, we get a formula for the Lagrange factors:

21, = —gugSNUH;T, y) —25*N ;' s Vr)- (16)

From the theory of difference equations, the solutions ¥, of the set (15) can be written
as a sum of its particular solution and the general solution of the set of homogeneous equations
belonging to it (we denote this general solution by ;,) For instance, ;= const =y
is a particular solution of (15). On insertion of this solution in (15) and summation of the
equations, we get the relation:

3 = —gupSN 2 HiT, (17)
where 4 is a new Lagrange factor, equal to:
— 9 Z A +282N ;} 2 » (18)
From (17):
?H(; Hi"). (19)

Consequently, we can write the general solution of Eqs (15) as:

=7+ ;l’ (20)
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where ;, fulfils the homogeneous equation: .
2091+25*N Y zpJypy = 0. 1)
=

The vector 531 defines the deviation of the local quantization axis (in the I-th layer) from the
direction ¥ due to the influence of surface defect.

In various papers (Abbel [7], Jelitto [8,9], Corciovei [13], Ferchmin [14], Wojtczak [15],
Puszkarski [16]), it was a current assumption that 9, = 7. As seen from (20), this constituted

an assumption which is correct in the case 7, =0 only. In order to determine the range
of validity of an approximation of this kind, it would be necessary to proceed to a detailed
discussion of Eqs (21) for each of the cases dealt with by the above-named authors.

Finally, let us note that the ground state determined by us semi-classically eliminates
from the Hamiltonian (1) terms linear in the operators @, at (Tyablikov [12], Kowalewski
[17]). In fact, multiplying the right and left hand sides of (15) by Aj, we find that R,
(formula 12d)) now vanishes:

R, = 24,N-1515(5, A) —0, 22)

with regard to the equality (6b).

5. The diagonalizing transformations

With the aim of finding the elementary spin-wave excitations, we have to diagonalize
the bilinear Hamiltonian

= 3 (Pl + § offainy+ § 0*Hafat). @
'y

We note that, where we assume y, = p (entailing A, A too), Eqs (12¢) would result
in Qf = 0and the Hamiltonian would contain terms a+4 only. This was the case considered
e.g. by Wojtczak [15]. A transformatlon similar to (9) was also applied by Corciovei [18]
in thin films (on the assumption of y;, = %); however, since Corciovei’s Hamiltonian con-
tained terms accounting for amisotropic interactions, he obtained a Hamiltonian of the
type (23) in spite of this simplifying assumption. Quite recently, Wojiczak® considered
the case of different axes P, in different layers but all lying in the film plane! Our considera-
tions will contain no restriction of this kind i.e. the ¥, can have arbitrary directions.

A general method for reducing the quadratic form (23) to its diagonal form is due to
Tyablikov and Bogolyubov (¢f. Bogolyubov [19], Tyablikov [12]). The method has been
applied to thin films by Puszkarski [20]. Significantly, as scon as the Hamiltonian (23) is
obtained, the problem of diagonalization of the Hamiltonian in thin films becomes much
more general than in Jelitto’s work, since his Hamiltonian is of a form (if one goes over to
second quantization) which is equivalent to an expression involving solely terms a+a.

1 Private communication (to be published).
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The first transformation to which we shall proceed will consist in a' Fourier trans-
formation in the xy-plane of the film; this is justified by our assumption of the periodicity
conditions in the x and y directions: -

~ 1 —-zn,) Aq 1 (2, e
a”'ZVTL ., a’?__VZ;\;Z e Coen

where % = %[k, k) is a bi-dimensional vector defined in the first Brillouin zone of the
planar reciprocal lattice (in the plane xy). One checks easily that the new operators satisfy
boson commutation rulés: :

by Bl = 07 8yps [byy, byl = 0. : (24a)

By thé:tfansforma'tion'“(24) the Hamiltonian (23) becomes: _
# = Z Z [P”'(:»c) b ba, + 5 Low (u)b”lb_u, + 5 Q,, (x)b+b_"l,], (25)

with coefficients of the form:

P zz'(;) —25Ty (A Iy + or[2S Z Zznfzn(Vza Vn) —l—g,uB(H, > ?’l)
Qu(x) = —ZSLI’(AD Ay) ¢t 12 (26)

II' Z e:lﬂ(":j_j) ; (27)

(jeELj €V and j glven)

2 , :
The expression [j5* is cominonly referred to as a “‘structure coefﬁcwnt”; it satisfies the
relations:

Iy = I Ty = Iy, Ty = 2y (28)

By (26), (27) and (28), the following relations result:
Py (;) = ll(;;) (29a)
Qu(#) = Qp— %). (29b)

We now perform the canonical Tyablikov-Bogolyubov transformation:
=3 Z [ul(r)é;:r"l_/ul (_T)E—n,—r]
btyi= 3 (-9 ru@El (30)

where 7 denotes a new quantum number taking L values; this transformation finally reduces
the Hamiltonian (25) to its diagonal form:

# = Z E(x; ‘c)z-‘_ih;;t-l—const. (31)
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Since # is hermitian, we obviously require that E(%, 1) = E*(%, 7). In order that the trans-
formation (30) shall lead to the result-(31), the transformation: functlons uy(7) and v,(7)

have to:
(1) fulfil the orthonormality conditions (see; Tyablikov [12]):

3 [ (&) o0 (7)) = 8 6w
3 (e o) —uDu(—n)] = 0, (32b)
2 w@ur@—v( =l (—ol =8,  ~  (33)
X @ @)~ (—Du(—)] = 0; (33b)

T

(2) satisfy the so-called Tyablikov-Bogolyubov set of equations.
To derive the latter we write, with regard to (25) and (31) the following Heisenberg

equations of motlon

iby = bz ] = 2 Py (b + Qi (b 231, (349
I’Em' [fx-z’ ” ] E(Ma T)Ex-;a ) ‘ h (35&)‘
4y = €4y B = —E(—% —)f*s .. (35b)

Inserting (30) into (34) and applying the relations (35a) and (35b), we obtain an equality
which can hold only if the coefficients of the linearly independent variables § and. Ei',;:

vanish. This leads to the equations:

() E(%, 7) = IZ [Py (#)ur(@) + Qi (R)oe (1)),
~0) (—1) B(—%, —7) = Z [Pu()oy (=) +Qp(@u (=) (36)

On con]ugatlng the second of these equations and on performing therein the substltutlon
%> —2%, T—> —T, We finally obtain:

u (1) E(%, 7) = Z [Pyy(e)uy (®) +Qp (v ()],

~y(7) E(#, 1) = Z [P —#)vp(2) + Qul —H)uy(x)], 37
l=0,1,..,L-1.

Eq. (37) is the Tyablikov-Bogolyubov set of equations of our problem.
We note that in accordance with a general property of these equations, their set remains
unchanged under the transformation:

u(7) >0 (=), v(r) > u(~7), (38)
E(%, 7) - —E(—#, —1), (39)
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meaning that if E(%, 7} is an eigen-values then so is — E(—%, —7) and the respective solu-
tions fulfil the relation (38). These two sets of solutions (i.e. corresponding to eigenvalues
E(x%, 7) and —FE(—#, —7)) cannot simultaneously fulfil the same normalization conditions
(32a) and (33a), and only one set is selected, namely the one corresponding to positive
values E. Solutions corresponding to E > 0 will be termed physical and solutions corre-
sponding to E < 0 non-physical. Henceforth, a solution of the Tyablikov-Bogolyubov set
of equations will be meant to imply a physical solution only.

In spin-wave formalism, the 2‘5 are creation operators of a spin-wave and (%, 7) is its
energy. The requirement of positive E is equivalent to considering elementary excitations
of positive energies only. In this way, we satisfy the postulate that the selected ground state
shall be a state of siable equilibrium of the system.

6. The concept of layer parameters of spin pinning

1. We now proceed to solve the set of Eqgs (37). It may be worth noting that the set (37)
is of more generality than the set considered by Jelitto [8]: in fact, his set of equations
can be obtained from the first equation of our set (37) by putting therein Qu(%) =0.
From this Section onwards, we shall be considering only bodies of Bravais structure (an
example of solving Eqs (37) for structures which are not a Bravais lattice will be given in
a separate paper). ]

By our assumption of a translational lattice, the following quantities are independent
of the index I:

\1.121’&3 = Zg,
2. i = Jpr

3, iy, =TI, I, =T"=T%
ME=T% 0=z, ‘ (40)

Moreover, from physical considerations, it seems justified to restrict ourselves to cases
in which the following relations are fulfilled:

4. (7719 ;l:l:g =€ = e:, e =1;

5. (A, A4,,,) =h, hg=0;

6. (4,4, )=w,, w_g= wy, wo = 1. (41)
Also, without loss of generality, we can perform the separation:

7. H® = H¥ + K", (42)

2. We re-write the coefficients Pyix) and Qy() (Eqs (26)) resorting to the definitions

and notation of the preceding Subsection:
Py g(a}') = —2SJw, T5" (43a)
‘ Py(#) = P(#)—ay, (43b)
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- . +G
P(x) = —2S] (I —zg) +gug(HE, y) +2S Z nggeg, (43c)
g
a,= 28 210 2] 0, —gup(K5", ) —gpa(HT, 7), (43d)
g
Qprag(®) = —25I b, T3, (44a)
Onl#) = —25Tsho Ty = 0. (44b)

We have intendedly given the diagonal terms P,() the form (43b). The distinction of two
components, P(%) and a;, only the second of which depends on the number [ labelling the
layer, will further on prove most useful. We shall refer to the a; as layer parameters, and
shall later distinguish between boundary parameters (i.e. parameters of the boundary layers)
and internal parameters (ones relating to internal layers).

Let us note that the following relations are true:

P(3) = P*(%), a; = a}, P(—%) = P(%). (45)
To achieve a higher degree of generality we assume, instead of (44b), ,
0ulf) = 0G)—, (460)
where we assume that
Q(—#) = Q(%)- (46b).

3. Using the preceding relations, we write the set of equations (37) in the form:
[P(9) — (3, 1) —aluy(x) +[Q*() —b] loy(r) —
—28 SV J[w Iy (@) +hE T (7)] =0,
£

[QGe) —b,luy(z) + [P(%) + E(%, 7) —a}v,(z) —
—28 Y Iy L%, () + ) T (0] = O, )

1=0,1,...,L—1.

This is a set of difference equations in two unknown functions u,(7) and (7). The
fact that it contains two unknown functions distinguishes (47) from the set of equations
considered by Jelitto, where only one function u,(t) occurred. In spite of this dissimilarity,'
Eqs (47) can be solved by Jelitto’s method, once the latter is appropriately modified.

We ask how the various equations of the set (47) differ from one another? The ““diagonal”
terms differ as to their layer parameters @, and b;. The ‘‘non-diagonal” terms, on the other
hand, are the same in all equations; but the equations corresponding to the bouridary layers
lack certain of the non-diagonal terms in Zl because of asymmetric neighbourhood (a con-

g
sequence of natural defect). The dissimilarities between the various equations are a mathema-
tical counterpart of the physical inequivalence of the layers. This inequivalence is obviously
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a result of natural defect (and concerns the boundary layers only) as well as the differences
occurring in the quantities which we have termed layer parameters. Thus, each pair of para-
meters a;, b; characterizes the specificity of the physical situation of a layer I. The layer
parameters a; and by can be considered as a measure of the defect “‘localized” in the layer L.
From Eq. (43d), the parameter g; is seen to account for the influence of natural defect

(Zf ®) as well as for the specificity of the quantizationaxis y; and effective field H;™.

g
Intuition would suggest for the parameters a; the physical meaning of parameters

of spin “pinning” in each layer /, and this attribution can now be made easily. Let us denote
by ¢, the energy per spin S; in the ground state of the system:

= —2 >} 2, J(Sp, Sy ,) —gupH,;, S) = const (1) +Sa;, (48a)
g=0
where we have used the notation:
+G
const () = 25 Z zJe,— g,uBS(H y) (48b)

g-—.
The energy & is a measure of the ‘‘pinning” of a spin S; to the local quantization axis of
layer . We now calculate the difference:

Ae,, = &—s,, = S(a;—a,). (48¢)

Hence, the difference between the parameters a; and a,, of any two layers expresses the
amount by which spin pinning differs between these two layers (I and m), and one is justified
in referring to @, and b; as spin pinning parameters. Eq. (48a) states that the larger is @,
the weaker is the pinning of spins of the layer [ — in other words, that they are the more
eas11y “diverted” from the direction ;. This means that the larger a, the easier it is to

“‘create” a spin-wave (a magnon) in layer I. Accordingly, _the quantity ¥, = —e¢, can be
regarded as a magnon potential, 7.e. the. potential ‘‘felt” by a magnon moving in the thin
film. One notes that —const (I) defines a constant value of this potential, and —Sa, the
magnon potential increment for the layer /. The magnon potent1a1 becomes infinite outside
the. film, at a distance from its surface which depends on the value of the layer parameters.

" For the internal layers, the first component of ‘(43d) is zero. We restrict our further
considerations to cases in which the remaining components, too, vanish for internal layers

i.e. in which K;=10 and when "7/,(% 0) can be neglected; consequently,
a=0,b,=0 for 1=6,6+1,..,L-G-1. (48d)

The preceding assumption will contribute towards simplifying the formalism of solving
the set (47). Its physical meaning is that we shall be considering the internal layers as physi-
cally equivalent to one another. In other words, the internal layers will form o single sub-
lattice. As a consequence, all equations corresponding to internal layers will become of the
same form. The model constructed on the assumption (48d) has been termed by us the Boun-
dary Spin Pinning (BSP) or Boundary Inhomogeneity (BI) Model.

%‘“ As statéd previously, the equations of the boundary layers differ from one another

because of (i) different “‘lacunes” in the sum >} over neighbouring layers, (iz) different
€
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parameters a; and b, The fundamental idea of Jelitto which we shall apply here consists
in the introduction of fictitious layers in a manner to bring the equations of the boundary
layers to the same form as those of the internal layers. The introduction of new (fictitious)
variables implies the adjunction of one new equation for each fictitious layer. The meaning
of these new equations will be that of boundary conditions imposed on the required solution?.
- Owing to the introduction of layer parameters (which do not occur in Jelitto’s work)
the physical meaning of the present method gains in clarity.
4. Thus, the set of Eqs (47) is replaced by two sets: a set of equations of the ““bulk
body” (all these equations are identical in shape): -

[P() —E(, 1)) +Q* (#)ey(7) —

+G -~ P :
—~25 Z Jg[wgr ;ul+g(77) ’|‘h: I ;"’1+g(7)] =0,
g

Q(ae)uy(7) +[P() + E (%, 7)]oy(x) —

-

_ZSALZG I, g[hgﬁ 5ul+g(;":) +wy v (0] =0, (49a)
1=0,1,2,..,L—1;
and _ia set of boundary equations:
—auy (1) —b¥v,(7) +z$ SO T [, T, (1) + b Py, (2)] =0,
¢
—buy(1) —av(v) + 28 ;f@ Tl T, (2) +10? Ty, (D)] = 0, (49b)

1=0,1, ..., 6G=1; L—G, L—G+1], ..., L—1.-

It should be reminded that in accordance with our convention concerning the meaning of
the symbol >/ the ‘index g cantake only values satisfying the inequalities:
g .
l+g <0 for the lower boundary,

I+g> L—1 for the upper boundary.

. 7. Spin-wave energy

We derive the dispefsibn relation E = E(x, 7) from the set of Eqs (49a) on inserting
therein a particular solution of the form:

ul(_r) ='Ocei’l,v 'IJ,(‘L’) — ﬁeiﬂ, (50)

2 Born and von K4rmén had the same idea when introducing so-called cyclic conditions in the linear
chain (Born and von Karman [21]). There, too, fictitious nodes were introduced with the aim of obtaining
a mathematically identical form of all equations of motion of the atoms. These adjoined equations con-
taining the new, fictitious nodes constitute the §o-calldi boundary condition of periodicity. The latter can
be shown not to correspond strictly to physical reality (see, Puszkarski [22]).
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where @ and f are unknown amplitudes. On insertion of (50) into Eqgs (49a), we obtain
(on dividing the right and left hand sides of the equations by ¢") the following two equations
which permit the determination of these amplitudes:

[P()—E(#, 7) — W% D]+ [Q* (o) —T*(%, 7)]6 = 0,
[Q(%) —T(2%, )]+ [P(%) + E(%, 7) — Wylth, )| = 0. (1)

Above, we have used the notation:

£G .
Wi, 7) = 25 Z JywgI'ge’™
g

+G .. - N v
=28 ) J [w "™ +w; T ;‘e"”"] = Wi, ), (52a)
¢
- ‘ =G > . L
W, 7) = 28 3] Ty T = Wy (%, 1), (52b)
€
- =G >,
T(x, 7v) = 28 ) Jh Te'™. (52c)
: ' 2
By the definitions (52) and relations (40) and (41), the following relations are found to hold:
Wy(—#, —7) = W%, 1), (53a)
T(—#, —1) = T(%, 7). (53b)

On equating to zero the characteristic determinant of the set of Eqgs (51), we obtain
two roots El/z(;‘” 7). With respect to what has been said in Section 5, only the positive root
is physically meaningful. We thus have finally:

EGi7) = By 1) = 5 V(s ) — Wi )]+

+ 1/ (Po)— 5 0 + Wil 0BT AP 6

In E,(%, 7), the root is preceded by the sign *‘—"" and, as easily seen from the properties
of (53), Eyp(%, 1) = —Ey(—%, —1).

From Eqgs (51) we can determine (to within a constant) the amplitudes & and f, which
are found to be functions of the variables % and 7.

It may be worth noting that already the general formula (54) provides some physically
meaningfull information. If the following relation is fulfilled in the ground state of the
thin film:

g— = const (J), (55)

1

i. e. if the projections of all spins onto the xy-plane lie on straight lines equally inclined
to the x-axis (in other words, if the spin disposition is not ‘‘fan-wise’), then by the defini-
tions (41) and (5).

* £
hy = hg and w, = w,
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and

T(x, v) = T*(%, 1), Wale, 7) = W% 7) (56)
so that the term 4(W,— W) vanishes in the energy of Eq. (54). This permits the conclusion
that the presence of a ‘““fan” in the ground state spin configuration necessarily involves
a shift AE(%, 1) = [ Wy(%, ©) —Wi(%, 7)] in the energy spectrum and that this shift, ob-
viously, is a function of the variables % and 7. This can prove essential e. g. with respect to
spin, wave resonance, the theory of which as yet provides no convincing explanation of the
deviations of experimental spectra from the 72-law. The subject, however, lies beyond the
field of our present considerations.

8. Spin-wave functions and boudary conditions

We now proceed to search for general solutions u,(7) and v,(7). Since (47) is a set of
homogeneous equations, its general solution can be written as a superposition of particular
solutions of the type (50). We note that, in its present stage, the problem presents degener-
acy: to one energy value E(¥%, 7) there correspond 26 particular values 7,(7), withv =1, 2,
2G. This degeneracy is due to our having ‘‘physically equated” the 2G boundary layers
with the internal ones on establishing the set of Eqs (49a), which served for deriving the
dispersional formula. In other words Eq. (54) was obtained on assuming the removal of
boundary defect. This, in fact, was the source of degeneracy Clearly, the latter has to
vanish on re-introducing the boundary defect (as represented by the set of Eqs (49b)). Deal-
ing with the defect as a perturbation, we can represent the general solutions in the zeroth
approximation of perturbation calculus as the superposition of all ‘‘degenerate* particular:
solutions #,(7,) and »(7,) corresponding to one and the same energy value. We accordingly
write: -

2G
uy(r) = Z a,c, e""(’) v (1:) /3 d,e™), _ (57
The superposition constants c, and d, will be determlned from the boundary conditions
(49b) and normalization conditions (32a), (33a). On inserting (57) into (49b) and after some
calculations we obtain the following 2G equations, permitting the determination of the c,

and d,’s:
Z a,e™ [—a,+2S Z Jow I”‘e””g]c +

v=1

+2 B~} +25 T TR TPeme) d, = 0, (58)

Z o ezrvl[ b —|—2S Zf(l) ]h Im nvg]c 4

y=1
+Z§ B,e™ ] —a,+28 SO [’ [%e™8]d, =0,
= g

1=0,1,..,6—1; L—G, L—G+1, ..., L—1.
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The condition for the existence of non-trivial solutions of the set (58) (with regard to
the fact that 7, = 7,(1)) leads to L values of the variable 7. These values obv1ously depend
on the boundary parameters a; and b; as well as on the quantum number %

" == olag by ). (59)

For different a; and b, we obtain different quantizations of the ‘“‘z-spectrum” and thus
a different quantization of the energy spectrum (as E == E(7)). But the energy spectrum
distribution is decisive for the behaviour of the macroscopic properties of the specimen
(e. g. its magnetization). In this way, the physical properties of a specimen are intimately
related with the boundary parameters. The advantage of introducing boundary parameters
a; and b, resides precisely in their direct relation to the spectrum of the quantum number ©
(Eq. (59)). The field K occurring in the expression for a; can comprise the field of magnetic
anisotropy K% Thus, the present theory enables us to discuss the influence of the local
anisotropy of boundary layers on the properties of the thin film. It has to be stated, however,
that the function (59) cannot be obtained in explicit form even in the simplest case of
G =1 (i. e. when the surface parameters only are taken into account). Nevertheless, the
equzitioné derived here are wéll adapted to numerical calculations.

The dependence of 7 on % apparent in’ (59) is peculiar to the theory of thin films. As
seen ‘on inspection of the set (58), this dependence results from the terms under the summa-
tlon symbol Zf @ there, and consequently is due to natural defect. In the case of the finite

hnear chaln :Vthh also pnvﬂeges one direction, 0bv1ously no dependence of this kind is
obtained, The existence of a functional relationship 7 = 7(%). gives rise to very considerable
difficulties when proceeding to calculate e. g. the thermodynamical function of state. These
difficulties cari-be circumvented only by making certain approximations.

Finally, it may be of interest to note that when non-physical solutions (thus, ones denved
from (57) by way of the transformation (38)) are inserted into the boundary equations (58),
the latter goes over 1nto an identical set of equatlons if — for the same boundary parame-
ters a;, b and fixed % — the quantization of 7 for the non- -physical solutions is given, in-
stead (59) in’ the form:

r=ﬂ%%fa, - (60)
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