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A new model of the scission mechanism for fission processes induced by slow and fast
neutrons on U235 is presented. In this model scission is considered a sudden process; the num-
ber of final states in which the fragments can be excited and a suitable scission barrier between
the two fragments are taken into account. The expenmental data are analyzed and the charac-
teristics of the barrier are discussed. o Lk

I, Introductl_ibn

Fission of heavy nuclei offers an extensive field for the investigation of nuclear proper-
ties. Many aspects of fission such as the existence of the saddle point, the evaporation of
neutrons from the excited fragments, the existence of two classes of compound nucleus
states, have been investigated and explained, however, a complete description of the whole
fission process is still lacking. ‘

In particular the mechanism of the scission of the nucleus into two fragments is not
understood. A number of authors (for a review see Wilets [1] and Swiatecki [2]), following
the ‘“‘adiabatic model” predict that the nucleus through a continuous deformation process,
assumes the configuration of two fragments connected by a thin neck; the neck becomes
thinner and thinner until it breaks and the fragments separate.

The aim of the present work is to offer a different model for scission, based on the
hypothesis that the two fragments blow up in a sudden process. In the model the properties
of the fragments are predicted by means of a statistical analysis.

In § 2 the basic hypotheses of the model are given. Experimental data are discussed
in § 3; the general statistical formulae are summarized in § 4. In § 5 the data are analysed
and the existence of a potential barrier, acting during the scission, is deduced. Finally the
characteristics and the meaning of the barrier are discussed in § 6.

* This work has been performed under the L. N.F.N. — C.L S. E. collaboration programme.
** Address: C.LS.E. CASELLA POSTALE 3986, Milano, Italia.
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2. The compound nucleus and the scission process

2.1. The compound nucleus

As it is well known the fission cross-sections of the nuclei in the Uranium region show
a well defined threshold. In 1939 Bohr and Wheeler [3] by means of the liquid drop model,
explained this fact as due to the existence of a saddle point in the deformation energy of
the nucleus. ‘

" In the following years the study of the liquid. drop model was thoroughly developed
and the total energy of the nucleus was carefully calculated as a function of the deformation
parameters [1], [4].

' More recently, by the use of corrective terms, which consider the role of single particle
states, Strutinsky [5] has shown that the saddle in the total nuclear energy has a structure,

i.e. there is a well defined- minimum after a first maximum, (Fig. 1).

Energy

Deformation.

Fig. 1. Two -humped barrier in the deformation energy of a heavy nucleus. In the figure the deformation -
energy following the liquid drop model (LDM) is also indicated

Experimental evidence of the presence of this second minimum is given by the existence
of spontaneously fissioning isomers [6], [7] which are supposed to lie in the very deformed
ground state located at the bottom of the second minimum and by the existence of a second
class of compound nucleus states corresponding to the very deformed excited nuclei.

An excited U?3¢ nucleus, for example, formed in the U?35+4-n reaction, can assume
both the compound nucleus states of quasi spherical shape located in the first potential
well (I class compound nucleus states) or pass beyond the saddle point and assume the
strongly deformed states corresponding to the second minimum (II class compound nucleus
states). According to the results of Strutinsky [5] the size of the major axis of the nucleus
in the II class states is about 1.5 R, R being the radius of the equivalent nuclear sphere.
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At around 6 MeV excitation energies the total and fission widths and the densities of
the I class compound nucleus states are directly obtained from the analysis of nuclear
resonances. The properties of the second class states at excitation energies slightly under
the saddle point have been studied recently by Mlgneco et al. [8] and Paya et al. [9] by
analysing the modulations of the single nuclear resonances..

At higher energies well above the saddle it is possible to hypothesize that the various
possible configurations of the compound nucleus are strongly mixed and are in statistical
equilibrium with each other.

The average life-time for fission at higher  energies can be obtalned from the expen-
mental values of the fission cross-section and from the statistical analys1s of the propertles
of the states; these life-times appear to be of the order of 10-11-10-15 sec. It’ appears that
the compound nucleus represents a sufficiently stable system which can decay through
the scission channels only after a given time even when the total energy of the system is
much above the saddle point.

2.2. The fission fragments

From the measurements we know directly the properties of ﬁssmn fragments, e
the final states of the system. = i " |

In the case of U235 +-thermal neutrons, the fission energy Q values for the various
fragment pairs 4,7, A,7, are of the order of 180-200 MeV. Most of this energy is found
as kinetic energy & of the fragments, the remaining energy transforms into their excitation
energy U. The total average kinetic energy & varies from 155 to 180 MeV for the different frag-
ment pairs and the energy spectra have an almost Gaussian shape with a 15-30 MeV width.

For thermal neutron fission, the total average excitation energy T is of the order of
25-35MeV. It is interesting to note the large number of final channels (formula (4)) corre-
sponding to these excitation energies and that the number of channels varies very sharply
with U (from ~10'2 MeV-1for U = 9 MeV to ~1022 MeV-1for U = 25 MeV).

2.3. The scission process

We have no direct information on the mechanism of transition from the excited com-
pound nucleus to the system of the two excited fragments. Before discussing the present
model we want to cover briefly the description of scission which one gets in the “adiabatic
model”.and in the ‘‘viscous model”.

a) The adiabatic model

As reported above, it has been suggested that the nucleus, when beyond the saddle
point, turns into the configurations of two fragments connected together by a thin neck;
these configurations correspond to the minimum energy of the system, which rapidly
decreases as the distance between the centres of the fragments increases (Fig. 2).

The nucleus goes up along these configurations adiabatically until the two fragments
split at the scission point: the coulombian repulsion energy: of the fragments directly turns
into their kinetic energy.
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The whole process takes place without phenomena of internal friction and the remaining

energy is left as deformation energy of the fragments. :
Tn a successive time when the fragments are completly separate, the deformation energy
of the fragments turns into their excitation energy by means of internal friction processes

which take place separately in each fragment. -

b) The viscous model .

Other authors, 1nclud1ng Fong [10], state that the adiabatic deformanon process takes
place very slowly and viscously, so that during deformation, a fractlon of the total energy
turns dlrectly mto 1nte1‘na1 exmtatlon energy :

N
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_ Fig. 2. Representation of the nuclear deformation in the scission process following the adiabatic model

In the “viscous model” the probabilities of the different fission channels are assumed
to be proportional to the number of the final states of the excited fragments.
With this model, Fong and recently Ignatiuk [11] have calculated the mass distributions

of the fragments in fission of U23®+thermal neutrons.

2.4. The sudden model for scission

For this model we must make some basical assumptions:
a) the statistical ‘hypothesis: the compound nucleus life is sufficiently long, for the
compound nucleus to face the different final channels with equal probability;

b) the sudden hypothesis: scission takes place through a process in which the two
fragments are formed and suddenly blow up from the compound nucleus: the process
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is not slow and adiabatic, but rapid and :occurs through the peculiar physical .conditions
which correspond to the formation of two fragments strongly coupled.
The fact that the intermediate configurations do not correspond to the minimum energy
curves is very important for the description of the process and will be discussed later;
" ¢) the reversibility hypothesis: the process is reversible, that is the basic configurations
assumed in the scission are the same as the ones assumed in the inverse process of - fusion
of two excited fragments into a given compound nucleus.
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Fig. 3. Values of average total kinetic energies Eplotted as function of light fragment mass for fission of U238
induced: by thermal neutrons: black points from Ref. [17]; by 6 MeV neutrons: llght points from Ref. [17],
by 15.5 MeV neutrons: dashed curve with crosses from Ref. [18]

The statistical hypothe51s together with reversibility allow the application of the
“‘detailed balance” formula to the entire scission process.

These formulae were studied by Ericson [12] in 1960 and they predict that the values
of fission widths are proportional to the number of the final channels multiplied by T(&)
the probability of the inverse process of fusion of two excited fragments A,Z;, A,Z, with
‘kinetic energy & into the compound nucleus.
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Knowledge of T(&) requires detailed knowledge of the whole process of collision and
fusion, but these processes are complicated and have not been sufficiently analysed elther
in experiment or theory:

In the present paper we obtain the anahtlcal expresion of T(8) from a thorough analysis
and fitting of the experimental data. This méthod was proposed earlier, in 1963, by Facchini
et al. [13], who obtained empirical expressions for T(&), which have been successively inter-
preted as transparencies of a suitable potential barrier [14]. -

TABLE I
Experimental data of U235 neutrons fissions
U854 neutrons permal U285 neutronsgpiey U’55+neutronsl5'5 MeV
A Z, _ ' - _
! ' Cexp _o? Cexp | ot Cexp o?
MeV] MeV] | MeV] | MoV | [MeV] | [MeVE:
a) b) ‘c) a) b) a) a) d) d)
84 34 155.5 157.0 1579 55 48 156.0 65 160.0 50
90 36 163.0 165.0 165.0 65 58 163.0 70 164.5 85
96 38 170.0 171.5 171.7 75 70 170.0 85 167.0 135
102 40 177.0 180.0 179.8 107 102 176.0 115 167.0 125
106 42 180.0 180.5 181.0 120 110 178.5 135 167.5 170
112 44 167.0 165.5 170.3 180 187 167.0 140 165.0 140
118 46 158.5 156.5 161.0- 160 144 160.5 110 164.0 120

a) Experimental values taken from Ref. [17],
b) Experimental values taken from Ref. [15],
c) Experimental values taken from Ref. [16],
d) Experimental values taken from Ref. [18].

We wish to. point out, that the present model is completely different from the viscous
model by Fong even though, in both cases, the number of the final channels enters the
calculations as an important term. It is sufficient to note that the viscous model by Fong
undergoes a very slow process, not a sudden one as in the present case.

3. Experimental data

Analysis is made of U235 fission induced by thermal neutrons and by neutrons of
6 and 15.5 MeV respectively. Correspondently the U236 compound nucleus results excited
for 6.5, 12.5 and 22 MeV.
~ The experimental data considered are the following: the kinetic energy spectra, the
average excitation energy, the mass spectra, the absolute values of fission widths.

3.1. The klnetlc energy spectra

The kmetlc energy. specira have been measured by various authors and are well in
agreement with each other [15], [16], [17].
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We have collected results of Vorobeva et al. [17] for fission- of U235 dinduced
by thermal and 6 MeV meutrons and of Dyachenko and Kuzminov [18] for 155MeV

neutrons..
The data for 1nc1dent neutrons of 6MeV and of 15 5 MeV must be corrected for the

effects of the secondary fission (n, nf) and (n, 2nf). The correction has been made [18]
. and produces a remarkable change in the results for the data at 15. 5 MeV. '
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Fig. 4. Total kinetic energy spectrum for thermal fission of U235; fragment pair A; = 96;
A, = 146, Ref. [15]

For convenience, the values of total average kinetic energies & by reference [17], [18]
are given in Fig. 3. Table I collects the total average kinetic energies & of the various authors
and at the various energies [15], [16], [17], [18] and the values of 62, variance of the total
kinetic energy distributions obtained by these authors..

A total kinetic energy spectrum [15] is represented in Fig. 4.
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3.2. The Q fission energy and the excitation energy

The Q values for fission of U2 in the different fragment pairs have been calculated
by various authors; we refer to the tables by Wing and Varley [19]. These values show a rela-
tive uncertainty of a few percent. -

The Q values can also be obtained from the energy balance of the fission reaction:

_ Q=6+T
with:
U=T+0, @

- The values of the average fragment excitation energies U, and T, can be obtained by
studying the decay properties.

We get for U; and T, the following formulae:
Uy = X B+ 81+ By,
1

U = 3} (Byui+ 82+ sy

¥y ¥y; being the numbers of emitted neutrons Bj,, By, and &y,, &, the binding
and the average kinetic energies of neutrons and Fl,,, E’z,, the average y ray energy.

In the case of U236 fission induced by thermal neutrons, we have used § values from
Refs [17], [18] (Fig. 3; Table I).

The values of ¥, ¥, have been measured by various authors [20], [21], [22], [23] the
agreement among the various measurements is not good especially in the zones of the

TABLE II
Experimental data of n and y emission

4 - 5 Cin Can E_'w Ezy '71 —ﬁs

: - 2 MeV] [MeV] [MeV] [MeV] [MeV] [MeV]
84 0.72 2.36 1.30 1.20 3.3 2.6 104 18.6
90 117 1.71 1.30 1.10 5.0 1.2 14.4 12.6
96 148 1.27 1.28 1.20 51 1.3 16.4 9.7
102 1.54 0.70 1.30 1.50 5.2 0.8 17.0 6.8
106 1.94 0.37 1.38 1.48 6.3 0.3 21.3 3.6
112 2.60 0.93 1.50 1.49 3.6 3.7 24.6 11.8
118 172 - 1.72 1.33 1.33 3.7 3.7 16.6 16.9

symmetric fission where the intensity of emission is low. It is therefore necessary to take
values ‘of »,, », averaged over various experimental results.

These values »; and ¥, are collected in Table II.

The B, values are obtained from the tables of Wing and Fong [19]. The average kinetic
energies of neutrons have been measured by Milton and Fraser [23] as well as the p ray
energies E, and they are collected in Table IL
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Fig. 5. Comparison of Q values predicted by Wing and Varley [19] indicated by asterisk * with the ones
from energy balance indicated by black points

The average U values obtained from these calculations are given in Table II.

The Q values are then deduced from the energy balance formula (1) and compared
in Fig. 5 with the results by Wing and Fong, the agreement is satisfactory. It is important
to note that the Q values, when plotted versus A4, increase up to the pairs in which 4, is
a magic nucleus, then they decrease in the region of the symmetric fission.

The U values for fission induced by neutrons with kinetic energy &; can be obtained
from formula. §+U = Q+&;. They are collected in Table II. ‘
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TABLE III
o Total pairing energy and total average excitation energy values

U235 neutrons;permal U%5-t-neutronsg pey | U5--neutrons; s 5 pmev

4 T Q U T
4 [MeV] [MeV] [MeV] [MeV] [MeV]
|

84 2.13 29.0 184.5:£9.0 34.4 40.0
90 248 27.0 190.045.0 33.0 41.0
96 2.11 26.0 196.0+7.5 32,0 4.6
102 2.22 23.8 . 200.848.5 30.7 49.2
106 2.15 - '24.9 - 204.94-8.5 30.4 51.0
112 2.50 36.4 ! 20344165 34.4 53.9
118 2.78 33.8 192.34-21.0 38.0 43.8

TABLE 1V

Mass distribption experimental data
U254 neutrons perm 2 A Ut neutronsg pey | U neutrons; 5 5 ey
4 Pm (%) | Pm (%) Pm (%)

a) b) o) a) d)
84 0.50 0.85 0.45 0.5 0.5
90 3.50 3.70 3.40 3.5 2.4
96 6.80 7.00 6.60 6.0 3.4
102 5.90 5.50 5.50 5.7 4.0
106 2.40 1.80 1.70 2.8 4.2
112 0.09 -0.02 0.04 0.2 2.1
118 0.04 0.014 0.01 0.15 2.0

a) Experimental values taken from Ref. [17].
b) Experimental values taken from Ref. [15].
c) Experimental values taken from Ref. [16].
d) Experimental values taken from Ref. [18].

3.3. The mass spectra

The mass spectra of fission of U235 {neutrons have the well known shape with a maxi-
mum for the heavy fragment having double closed shells; then the spectra fall rapidly at the
wings in both the strongly asymmetric and symmetric regions. This fall reduces when the
energy of the incident neutrons increases. It must also be pointed out that in the case of
fission induced by fast neutrons the effect of the secondary fission must be taken into

account.

'The mass spectra adjusted according to the analysis of Dyachenko and Kuzminov [18]
are presented in Fig. 6 and the relative values of fission probabilities of the various fragment

pairs P, are collected in Table IV.
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3.4 .Vglges of —5 ;

Inthe case of fission induced by slow neutrons the values of [’ fission widths and the values
of D, spacing of the compound nucleus levels, are obtained directly from the measurements
of the nuclear reasonances.: At higher energies the values can be obtained from formula:
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Fig. 6. Experimental mass distribution for fission of U%*® induced: by thermal neutrons: black points from
Ref. [17]; by 6 MeV neutrons: light points from Ref. (17]; by 15.5 MeV neutrons: doshed curve with ‘crosses
! from Ref. [18] -
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where o; and o, are respectively the cross-sections of primary fission and of neutron €evapo-
ration and I and I, represent respectively the fission widths and the neutron widths for
a given compound nucleus with a spin I. The I, and I, are the corresponding widths for
a compound nucleus with spin zero.
The values of g; and 6, at the various incident energies are taken fromreferences [24-]
[18] and are collected in Table V.
4 T, values can be calculated by means of the statistical formula:

J?l max

I, 1 mR2? ~
.Do =—;?— ‘/- éa”Q(O, U)dg,, (3)

0

é’nmax = U‘- "—A —B“

U, is the excitation energy of the compound nucleus g(0, U) represents the density of
levels with spin zero at excitation energy U

_ ey 1 ,l/n = 62“’(‘",")
00 V) = Fis = Timiics 12 ¢ W=y @

A = pairing energy and ¢% = 0.24 A'gt.

Assuming a = 30 MeV~?, we obtain the values for I, /D, and the corresponding values
for I%|D, which are reported in Table V.
The spacing D, is given by:

Do = (0, U)*

At various energy values we obtain the values of D, reported in Table V.
The values of I, |T7 are also given in Table V.

TABLE V
Values of neutron and fission widths
o On. Ly L Do Lo, I,
() (b) D, D, MeV] | [MeV] | [MeV]
U5 nger / y / 15x107% | 6.7x107 / ~1077
U2+ ng Mev 1.2 1.8 5.5x 104 3.7x 104 2.6x10710 | 1.45x107% | 9.6x 1078
U234 715.5 MeV 1.0 0.3 4.4x 101 1.4x 1012 14%x10715 | 6.12x 1074 | 1.97x 10-3

4. General formulae and parameters

4.1. The basic formulae used here are taken from the general work by Ericson [12].
The average value of the fission width of a nucleus A having excitation energy U, and spin I,
relatively to the scission into two fragments 4, and A, with nuclear charge respectively Z;



549

and Z, and for a given direction of emission n, making a 4 angle in respect to the direction
of the incident neutrons, is given by:
' ‘ @ - Qo-¢

g . . a
FAnZ:;A”Za(I’ Uc’ ’-;) = (27'6)7/; Qc(I, Uc) f T( (?) of 91(U1)92(U2) (0,%_}_0%)%)(
o) g
I? s1n2 0\ ., sind 6 :
X exp (" e +a_%))"° (‘I HT+ob ) e o

In this formula T(&) represents the transparency factor between the two fragments for
a given total kinetic energy &; g, and g, are the nuclear state densities of the final fragments
at excitation energies respectively U; and U,. oI, U,) represents the level density of the
compound nucleus having spin I and excitation energy U,.

In the case of low values of spin of the compound nucleus states, we may use a simpler
formula, overlooking the slight dependence of the I” on the ¢ angle, the total fission width
integrated over all the angles and all the possible pairs is then given by:

‘ 2
LaEw= 3 T
Q Q-¢
< [ 16 [ et gy vis ©
0 0 ;

with gl, U;) = (2I+1) e~II+Di2w% (0, U,).
From this formula the total kinetic energy spectrum of the fission fragment pairs 4,7,
A,Z, is obtained as:

- _
P(&)aT(8)I(U) = T(8) [ ey(Upeys(Q— &—Uy)dl, ™
()
It is interesting to note that the integral I(U) is maximum for any given value of
U= Q— & when the dlog ey _ dloser i. e. when the fragments have the same tempera-
dUu, dU,

tures.
The total probability to have a given pair 4,7, 4,7, is:
4 Q-é-4

Las B0 0 =gy [ 1O [ et g avas
0 0 (8)

We assume in the following that the level densities ¢,(U;) and go(U,) are given with
particular values of @, and a, as in formula (4). It must be noted that a group of heavy
fission fragments have double closed shells and the level density of these nuclei slightly
deviate from formula (4) due to the effect of the energy gap which is present at the fermi
top of the closed shell nuclei. For simplicity we will consider in the following that the
law (4) is sufficiently approximate for our calculations.
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4.2. Simplification of the integral of levels

The integral of Eq. (7) can be easily simplified by developing the “to be integrated”
formula in succession up to the II derivate and assuming for it a gaussian shape.
.We have:
Q-¢

P . eNaUs+2VaU;
I0) = g (@)™ | ~—gm—— 4%
Ul = U,—4,
U, = Uy,—4,

27;'/: a‘/a e2 Va(Q—?—'— Aar)

IU) = 75 ai8y (Q—& —Ar)'h with @ = a,+ay; Ar = 4, —
and then: ’
P(6) aT(@)I(V) () = oa-T-ar (9
(74 a
Q-6 A7) )

This type of simplification has been introduced by Fong and developed by Ignatiuk [11]
et al.

4-i3. Values of al,';x"z-z" o by s e |

The authors Erba, Facchini, Saetta-Menichella in 1961 [25] and recently Facchini and
Saetta-Menichella in 1968 [26] collected @ values for ~200 nuclei and observed that these @
values show marked regularities when they are plotted versus the mass number A. The a
values of the selected nuclei are reported-in Fig. 7 in order to show their average be-
haviour versus A. The a values for the fission fragments are not known, because the frag-
ments have a smaller number of protons than the corresponding stable nuclei. Moreover
a group. of them, namely the fragments of mass around 132 fall in a region where both
neutron and proton numbers are magic: N = 82, Z = 50.

' We shall see that the values of a, and a, referrmg respectively to the light fragment 4,
and the corresponding heavy fragment A, are related (see formula (10")).

As said in § 4.1 the statistical distribution of the excitation energy between the two
fragments gives equal temperatures for them. At the maximum value U of the energy
spectra we have:’

i A dlog'el(Ul) _ 1 (dlog ey (10)
0}“ ) dU1 ‘ vi—u: 93 dUz U,=Us

191 and 0 bemg the correspondmg temperatures of,the tWo fragments.
The average values T, and T, correspond to Uy and U, approximately. From formu-

iae Ac) and (10). it follows: : s

e A .I/al 5 &/— ’5—4 . (101)
U1 i 4U1 - Ug 44U, ‘




551

When the a; value for one fragment is given, from formula (10°) it is possible to. obtain
the a, value of the other fragment. We note from Fig, 7 that the light fragments 4, are in
the region where the a value increases monotonically with the mass number 4, but the
heavy fragments 4, are however in a region where there are the double magic closed shells

and we must expect particularly low values of a.-
Due to'these facts we have chosen the a, values from interpolation on the curve of Fig.7

and calculated the @, values from formula (10’).
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Fig. 7. Values of the level density parameter a distinguished as: black points: selected @ values from Ref. [26]
and corresponding to stable or neighbouring nuclei, .crosses: a, values for fission fiagments A; asterisks:
a; values for fission fragments A4,, values ftom the formula (10’)

-
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The a, and a, values are collected in Table VI and plotted in Fig. 7. It is very important
to note that the a, values plotted versus A4 give a strong minimum in the region of N = 82,
Z = 50, where the double closed shell nuclei are present. It is very interesting to note that
this minimum is quite similar to the minimum already known in the double magic region
N =26, Z =82, as can be seen in Fig. 7. ’

The given values of @ are in good agreement with the onescalculated by Lang [27].

5. Transparency T(&) and the two body potential

5.1. The two body potential

As was already pointed out, T(&) represents the probability of two fragments Ay, A,
with relative kinetic energy & and with total excitation U to collide and coalesce into the
compound nucleus.

TABLE VI
Values of the level density parameter a of the fiagments
4 @ @3
L [MeV—1] [MeV-1]
84 13.0 21.9
90 13.5 12.3
96 15.0 9.9
102 18,5 8.5
106 19.0 5.1
112 18.7. 9.7
118 18.5 18.5

Various forces act during the fusion process: coulombian and repulsive forces, attrac-
tive nuclear forces and repulsive nuclear forces (see next section).

At large distances where the two fragments are not in contact there act only the coulom-
bian forces, whereas the nuclear forces intervene in the collision and coalescence regions.

In a simplified model it is possible to consider the two fragments as two interacting
single particles and to represent the interaction with a two body potential V(r) as a function
of the distance r between the centres of the two fragments.

The potential ¥{(r) represents the interaction energy of the system ‘A, + A, nucleons
in the various intermediate configurations of the fusion process.

This potential will have the shape of a barrier which reaches a maximum value and then
decreases in the coalescence region; under these assumptions T(&) represents the transp-
arency of this potential barrier. Following the WKB approximation we have the relation
between T(g) and V(r) as given by the formula:

e
- | V=
T(8) =e X (1D
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M is the reduced mass of the two separated fragments. The range of integration extends
over the barrier thickness.

A few points must be discussed:

a) The potential ¥ and particularly its maximum height B will depend on the fragment
pair 4,2, AyZ,, for example the coulombian term depends on their charges Z,Z, and the
nuclear term may depend on the masses 4;, 4, and may contain shell effects. -

b) The potential describes the transition between the two excited fragments and the
compound nucleus and can consequently depend on the particular states in which the
compound nucleus is excited, i. e. on its excitation energy U.

¢) The potential V(r) might also depend on the total excitation energy U of the frag-

ments. .
This effect cannot be investigated through the proposed procedure. In fact, since the
energy U is related to the kinetic energy & through formula (1), a possible dependence of
the V(r) on the excitation energy U will appear in the transparency as mixed and indistin-
guible from the general & dependence. .

We suppose in the following that, at least in the first approximation the dependence of
V(r) on the excitation energy of the fragments is small and does not play an important
role.

This conclusion is supported by the results. In fact the shape obtained for ¥{r) is typical
of a fusion process, when the latest views on the coalescence of two big nuclei are considered.

5.2. The expression for T(8)

It is possible to obtain the empirical expression for T(&) comparing the experimental
energy spectrum of the fission fragments with the statistical formula (7). In this formula
the integral describing the level density can be calculated accurately with the given para-
meters and from comparison between formula and the experimental spectra, the depend-
ence of transparency T(&) versus the kinetic energy is obtained. First of all, we can observe
that the energy spectrum P(¢&), represented by formula (7), reaches its maximum value
P(&%) (correspondingly U’ = U*')

when
dlog T(6) \ - _ a 7
( dé &=+ = W — 4U*"" (12)

To a good approximation the maximum value of the excitation energy will correspond to

its average value U’ and we have, putting (.(.i_l(%g@_) = p*.
e=a+

*'=]/i . 12
@ T (12)

The values of @* for the different fragment pairs are collected in Table VII for thermal
neutron fission and for fission induced by 6 and 15.5 MeV neutrons repectively. The values
of ¢* show a small dependence on the various pairs. The different values of @* for the
various fragment pairs could represent different shapes of the interaction barrier acting
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between the fragments but at the moment the differences in ¢* values cannot be assumed
as really meaningful: in fact errors in the measurements and uncertainties in the level
density expressions slightly affect these values. ' :

It is interesting to point out that @* values reduce with the increase of the -total
energy of the compound nucleus. The value of the second derivate of log T(&) for & = &*
can be obtained by developing into a series, up to the second derivative, the whole spec-:
trum P(&) and assuming for it a gaussian shape.

2 ,
We have approximately, when = (M) .
e=a+

aé*
VW Va
P(&)aT(6*) < TR . o7 €8~ gy U=UD go(e-euyfact (13)
TABLE VII
@* values
U235 neusronspermal U235 neutronsg pfey 'U235{-neutrons;s 5 Mev
4 ¢* 7" ?*
(MeV-1) (MeV-1) (MeV-1)
84 1.06 1.02 0.90
90 0.95 — 0.85 0.77.
96 0.93 0.84 0.71
102 1.06 0.93 : 074
106 0.96 0.87 "0.66
112 0.86 ) 0.81 -0.72
118 1.03 0.92 0.93

We obtain directly from the formula (13):

= e SR
Y= El/_ﬁ g : (14)

Taking into account the given values of @ and the experimental values of U’ and o?,
from formula (14) we obtain the values of  which are given in Table VIII in correspond-
ence with the various excitation energies of U236 and the- various fragment pairs.

Even taking into account the incertitude on v values due to the various possible errors,
it appears clearly that the y values are rather small with respect to ¢ * and reduce pratically
to zero at the higher excitation energies.

The expression for T(&) is finally given by:

T(éﬂ) = T( é"*) (&~ &*)-'- o) (@—&*)’ (15)

This expression of T(&) refers to the energy interval corresponding to an experimental
spectrum reglon centered around &*. -

For a more accurate analysis it should be observed that the. experlmental spectrum has
a small asymmetry and has wings a bit higher than the gaussian curve; these details could:
be obtained by refining the calculation and developing the series to higher terms.
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5.3. Shape of the two body potential

When the expression for T( &) is obtained ,it is then possible, by means of formula (11),
to deduce the shape of the two body potential F(r) acting between the two fragments.

Tt will be useful to discuss briefly a few simple cases of potential barriers in order to
deduce the shape of the potential barrier (Fig. 8) corresponding to the obtained trans-
parency: s

a) the coulombian barrier with infinite attractive potential.

The predicted barrier is given by:

V(r) =—Z_—1rZ—ze2 for r> Ry; V= —oo for r <R,.

The transparency will be [28]:

T (&)o e~ 2 (16)
with
0.147 R

(A +A)y2( 1A2)1/

V— (B g)s/,
B being the top of the barner

It results that, if the log T,(&) is developed up to the second order, the second derivate
at & = &* has a sign opposite to the experimentally obtained values for 9. This means
that the transparency of the coulombian barrier varies too rapidly with the kinetic energy
and consequently the energy spectra calculated with the coulombian transparency should
result too narrow. This point was already cleared by Newton in 1956 [28].

b) The parabolic barrier, given by

V=B-— ——;— K(r—rp)?

r, being the radius corresponding to the top B and K a suitable coefficient; its transparency
is simply expressed by

T(8) = ¢~ »E—9) a7y
where: ¢ = i——ﬂ —JI\g; in this case p = 0. -

From comparison with Table VIII we see that, in the case of fission induced by 15.5 MeV
neutrons, ¥ is rather small, the barrier of the parabolic type is quite close to the one represen-
ted by these values of .

¢) The empirical barrier.

From Table VIII it appears that the ¥ values are positive and have values of
~1072 Me V-2 for thermal neutron fission and of ~5 1073 MeV~2 for 6 MeV neutron induced
fission respectively. These values of p correspond to the fact that the empirical barriers
are steeper than the. parabolic one and closer to a rectangular potentlal barrier.

‘We want to recall here that the expression (15). for T(&) is referred to the values of ﬁ
centered around the maximum of the experimental spectrum, so that we have no direct



556

TABLE VIII
v values
U235 |- neutrons,permal U2354-neutronsg prey U235 neutrons; 5 5 pev

A v P v
H [MeV-2] [MeV—2] [MeV-2]
84 2.810°8 111073 —7.61073
90 551072 101072 -1210"%
96 7.7107® 3.01073 111073
102 -17.010°% 8.81078 0.010°2
106 1441078 9.01073 1.010°*
& 112 8110 3.51072 0.010°3
118 111078 5.01073 401072

information on the barrier shape above this region and in the top region in particular. We
cannot therefore obtain the detailed shape of the barrier in the top region.

In what follows, for sake of simplicity, we assume that  values remain constant versus &
up to the top value B. Under this condition the whole expression for transparency T(&)

--s '.-

T:|1||14111

‘ }
Of’@—“g

Coalescence \

QP Sy
-
-
-

-
~

~15fm r[fm;

Fig. 8. Empirical potential barrier acting between the two fragments during the fusion process The potential
is plotted versus r, distance between the centres of the two fragments. Schematic rapresentation of the inter-
mediate configuration. The Q; value, for fragment pair 4; = 96, A, = 140 for spontaneous fission, and the

value S of saddle point energy are indicated



557

becomes
—o (B=8)+ ¥ (B—&)
TE@) =¢ 2 T (18)
@g being the logarithmic derivative of T(8) evaluated at the top B. @p is given by:
¢p = ¢ +9(B—E). (18)

Assuming the given values of @* and 9 it is possible 1o note that the width of these
barriers at energies of 50 MeV under the top, is of the order of 2f. It is also important
to note that with increasing excitation of the compound nucleus the o value decreases, and
correspondingly the shape of the barriers changes and approaches the parabolic shape.

5.4. Height of the barrier and mass spectra

Formula (8) allows us to relate the absolute values of the fission widths for a given frag-
ment pair to the value of the B, the top of the fusion barrier, In fact, by assuming the

parabolic barrier we obtain the simplified formulae:

I Iy 21 1 a 1 2Va?7’—¢5(8-—-€*)+%"(3—6*)'
P pr "'F‘,_—I/;__*— ¢ (19)

= —ﬁT Als. . TF T, % 7
X-O.l%]/—a-Za,A, ; being 2Val’ =2T'g*+ .

Formula (19) indicates that the fission widths for the different fragment pairs and the shape
of the mass spectra are very sensitive to B values. 1 per cent variation of B produces an
effect 3 times greater in the fission probability of a given fragment pair.

In some way it is therefore impossible to attempt a prediction of the mass spectra on
the basis of the knowledge of the values of B, as the B values are not known with great
accuracy.

. TABLE IX
Values of the parabolic barrier height B

U235{-neutrons ypermal - U2%85{-neutronsg pev U238 neutrons; 5.5 Mev

A Z, B B B Verer
: : [MeV] [MeV] [MeV] [MeV]
84 34 206.0 206.0 212.0 189.3
90 36 205.0 203.0 199.0 193.5
9 38 210.0 206.5 203.0 197.0
102 40 210.0 209.5 215.0 199.7
106 42 215.5 211.0 212.0 201.6
112 44 223.0 220.5 221.5 202.7
118 46 208.5 209.0 206.5 203.1

The errors in the B values are estimated to be 310 MeV, due to the uncertainties in the experimental data.
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Fig. 9 Obtained B values for fission of U235 induced by thermal neutrons: black points, by'6 MeV neutrons:
light points, by 15.5 MeV neutrons: crosses.

On the other hand, it is possible to check which, values of B can reproduce the experi-
mental mass spectra. By introducing a, U and ¢* and v values of ‘the tables we obtain from
formula (19) the B values shown in Table IX and in ‘Fig. 9. B values prove to be of the
order of 210 MeV and they vary slowly for the various fragment pairs. In Table IX also the
values of the coulomb potential calculated at r = 16 f are given.

It is interesting to note that B is practically constant when the excitation energy of the
compound nucleus increases.

6. Fusion and scission dynamical barriers

The analysis carried out in the preceding paragraphs has shown that the fusion of two
excited -fragments undergoes a tunnelling effect through“a sharp potential barrier of an
almost parabolic shape. -

The top of the barrier is around 210 MeV and the barrier extends, with quasi parabolic
shape, down to 150 MeV, ¢. e. to the lower limit of the kinetic energy spectrum of the
fragments. .

We have now to establish at which distances this barrier acts and in which way it is
connected at large distances with the coulombian potential. This coulombian potential starts
from zero at infinite distance and increases as r—* as the fragments.approach éaeh other; it
reaches values around 150 MeV at distances of the order of 20-22 fermi. According to what
has been_ assumed, . deviation from the coulombian law should begin at this dlstance

It does not seem poss1ble, however, that the sharp repulsive barrier acts at 22 fermi,
when the two fragments are not yet in a strong contact. i

. The model for the potential presented is the following: the long range tails of the
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attractive nuclear forces begin nuclear interactions in the region at 20-22 fermi; interactions
can:take place at these distances by means either of vibrations or of deformations of the
fragments and as the fragments approach each other the increased nuclear attractive forces
balance the increase of the repulsive coulombian potential; a rather flat potential region is
formed.

" At smaller distance, when the fragments cores come into closer contact, strong
repulsive forces intérvene and the whole potential starts to rise steeply and assumes the.
predicted quasi parabolic shape. The top B of the barrier can be tentatively located at
distances of the order of 15 fermi.

A potential having these features has been pointed out in the C12--C12 collision process
by Vogt and Mc Manus [29] etc. and recently in the 016+018 collision processes by
Block and Malik [30]. .

The whole éxpression of the potential (Fig. 8) is given by:

V="Vt Vy+Vg

‘where V) is the attractive part, Vg the repulsive part of the nuclear forces and V- ¢ the coul-
ombian potential. In order to have the flat potential region, the ¥, value must be at least
of the order of 30 MeV (Fig. 8). If the top B is supposed to be located at- about 15 fermi,
we have V& 200 MeV and correspondingly V¥ should prove of the order of 50-70 MeV.

Let us now consider the nature of the repulsive forces. In a recent work, various authors,
i e Greiner et al. [31] and Sona and Erba [32] assume that in the coalescence process
of two  heavy nuclei there can be regions where the two nuclei are partially superimposed
with nuclear densities greater than their usual values.

This effect produces, repulsive forces, which according to calculations of Sona and
Erba [32], are of the order of 50 MeV/fermi. The two fragments under collision pass through
these configurations of.anomalous density and are affected by .the strong repulsive forces
(Fig. 8).

The descent of the barrier in the compound nucleus region can be due to the forces
originated by rearrangement of the nuclear shells; in fact in the coalescence process the
nucleons present in the two fragments, change their orbit and reduce their total _energy.

-As the process is reversible it can be also considered, from the viewpoint of the compound
nucleus, i. e. in the scission process. The corresponding scheme for scission is the followmg
the rearrangement of the shells: represents the barrier rise that the compound nucleus meets
for the scission. It is interesting to note that the bdrnel s 10 MeV above the revlon of
Bohr saddle. = 5

The two fragments configurate in their 1nternal structure, and w1th the glven exmtatlon
energy, and suddenly blow up passing-under the barrier for. tunnelling effect. Their kinetic
and exc1tat10n energles are deterrmned by the channel number and by the penetrablhty
factor.

This scheme is glven 1n ﬁrst apprommatlon a thorough analys1s both for scxssmn and
fusion should take into account possible deformations of the fragments in the final states and
the corresponding deformation energies.

The part of the barrier near the top where the Pauli forces act could depend on the state
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configurations . of ‘the compound nucleus and consequently on.its excitation. At the
highest excitations the rearrangement of the nuclear shells gradually reduces- owing to
the large number of states, which are available in the compound nucleus. This effect
may explain the fact that the shape of the barrier changes shghtly when the compound nucleus
excitation energy increases.

As the described barrier represents the configurations which the system assumes in the
sudden dynamic process of scission and fusion, we indicate it as dynamical scission and
fusion barrier in order to distinguish it from the Bohr saddles describing uniform de-
formations of the nuclei.

We can therefore conclude our analysis by observing that, though transparency T(&)
is very small, the product of transparency by the large number of the final channel I(U)
gives values of I} well fitted to experimental values: the sudden process can therefore be
dominant. The proposed model should apply even when the initial system is below the
saddle, as, for instance, in the spontaneous fission of U236, In fact the energy spectra of the
fragments in the spontaneous fission show the.same shape and width as discussed for the
fission induced by neutron capture. The system, owing to the tunnelling effect, goes both
under the deformation saddle and under the scission dynamical barrier.

A more refined model should take into account the fact that the fragments are not two
single bodies, but sets of nucleons, transparency then should be calculated with more complic-
ated and general formulae.

It is however interesting to note that the simple model of a two body potential barrier,
allows a good description of the basic properties of the fission fragments of heavy nuclei.
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