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CHANGES IN RAYLEIGH SCATTERING OF LIGHT CAUSED BY
LASER OPTICAL SATURATION
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Rayleigh scattering of a light beam by substances whose molecules, macromolecules or
colloid particles are totally aligned in the electric field of an intense laser ‘beam is discussed.
Formulas are derived for the nonlinear changes in vertical and horizontal scattered intensity
components involving five optical reorientation functions, which are calculated numerically and
plotted for arbitrary values of molecular reorientation parameters. These changes are shown to
be particularly large in solutions of polymers and colloids, where even total optical saturation is
achievable by usual laser technique. The present line of investigation is proposed as a new method
of determining the sign and value of the optical anisotropy of macromolecules and colloid par-
ticles. It is shown moreover that Krishnan’s reciprocity relations are not in general fulfilled by
the scattered intensity components in the presence of an intense laser beam, but hold only if
the scattering microsystems are axially-symmetric and the laser light oscillations vertical.

1. Introduction

Rayleigh light scattering is subjecf to more or less considerable changes when the optically
anisotropic molecules or macromolecules of the medium are subjected to reorientation
by a DC or AC electric field [1-4] or by the electric field of a laser beam [2, 5]. Experiment-
ally, hitherto, changes have been observed in the intensity of light scattered by solutions
of polymers and colloids placed in a DC or AC electric field [1, 8, 4]. Recent measurements
by Lalanne [6] with the aim of finding and determining nonlinear changes in light scattering
by molecular liquids were inconclusive as a result of certain anomalous effects emer-
gence of the theoretically predicted, induced nonlinearity [2] at sufficiently high laser
intensity was preceded by irregular deviations (dispersion of values of usual, linear Rayleigh
scattering) probably due to the signalled optical breakdown, rendering the liquid “‘opaque”.

" It is our aim here to carry out a detailed, quantitative analysis of the problem in order
to determine those conditions in which nonlinear changes in Rayleigh scattering induced by
strong laser light can be observed and measured to the best advantage. We shall in particular
consider the cases and conditions admitting of optical saturation, meaning total alignment of
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the microsystems (molecules, macromolecules or colloid particles) in the electric field of
a laser beam. In molecular liquids, optical saturation cannot generally be achieved in experi-
ment even if the focussed beam of a giant ruby laser is recurred to, because the liquid scatte-
rer undergoes destruction by optical breakdown before saturation sets in. The anisotropy
optically induced in molecular liquids is insignificant, and the changes in scattering due to
it require more refined and perfected methods for their detection. However, present measur-
ing techniques have proved sufficient for detecting optically induced nonlinear changes
in Rayleigh scattering of light in macromolecular and colloidal systems, where a high degree
of alignment of the microsystems can easily be obtained.

2. Usual Rayleigh light scattering

Let us consider a system of NV rigid noninteracting microsystems (molecules, macro-
molecules, or colloid particles) immersed in another, isotropic medium of volume ¥ scat-
tering light incident with electric vector B = E° ¢/’ oscillating at frequency w. We assume
the linear dimensions 2r of the microsystems as small with respect to the light wavelength
4 = 2mc[o permitting to restrict considerations to scattering of the electric kind in the
dipole approximation (i.e. neglecting scattering processes of higher multipole orders related
with inhomogeneities of the electric field within the limits of a microsystem). Once we assume
moreover that the probe electric field strength E® is small, the dipole moment induced
in a microsystem at frequency  can be expressed as:

my = ag, E7, 1)
with a;; denoting the tensor of linear optical polarizability of the microsystem with respect

to the frequency .
We now introduce the tensor of scattered light intensity [8]:

o _ o [dmg dmy
Ioe = ct ( di2 di2 Q’;, (2)

where ¢ = N[V is the number density of microsystems and the symbol { g, stands for
averageing over orientations £ of the microsystems and over the time ¢ of one oscillation
period of the optical field.

By Eq. (1), we can rewrite (2) as follows:

4
2= (2) tamacrpy ®

With the aim of further calculations, it is convenient to transform the tensor a®, from
laboratory reference axes =, y; z to axes 1, 2, 3 fixed at the centre of the microsystem by
means of the transformation formulas:

ag, = caac,ya;’y, 4)

where the ¢, ’s are cosines of the angles between axes o and @ belonging to the two reference
systems respectively.
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Assuming the tensor a2, given in the molecular reference system as constant, the scatter-
ing tensor (3) can be written with regard to (4) as follows:

I;;. = a’u_; 2(1';)7“‘[;)6 <cqactﬁcvycga>91::sga (5)

where we have introduced the tensor of isotropic light scattering:
. w 4
I:'sg =0 (7) aﬁ(ﬂ Eg >la (6)

a, = a2 /3 denoting the mean polarizability of the isolated microsystem.

In the absence of externally applied fields, we are justified in performing in (5) an un-
weighted averageing over all possible orientations of the microsystems with respect to
the laboratory axes [9]:

1
LConteptnfoya = 55 {(40.280y5 — Oy 05 — 0050py) 02 0vp +-

+ (402,055 — 02808y — 0030ys) OarOzo + (400508) — Oy — OayOps) OogOr} 0
leading finally for optically inactive substances to:

o =1 4 %ijmzi: 59, ®

where we have introduced the following optical anisotropy of polarizability:

w o (2]

2 3(!,“/30/“,3 —a:,,,a,g,g (9)
LA o o
18amaﬁp
If the incident light propagates along y and observation is along #, the elements of the
scattering tensor for vertical oscillations 7 (directed along z) and horizontal oscillations H

(directed along y) are defined as follows:
.Vw = Izz(zz)’ Hv - Iyy(zz)7
V= L), Hy=IL(xx), (10)

where v and & stand for oscillation directions of incident light.
With regard to the preceding definitions, we have by Eq. (8) the well-known relations
for usual light scattering by small microsystems [10]:
Ve 4 ,

=1+ gad, (11)
R2

LA T L ) 12)

Eq. (12) expresses Krishnan’s reciprocity relation.
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3. Linear changes in scattered light intensity

We proceed to consider the case when the scattering system is acted on by the light
wave of an intense incident laser beam with eleciric vector E“L = E%“L* oscillating at
frequency ey, in general not equal to w. If the field strength E°L is sufficiently large, two
processes take place, consisting in: (i) nonlinear electronic polarizability of the micro-
systems giving rise to multiharmonic light scattering, which we shall not consider here [8],
and (zi) reorientation of microsystems in the electric field of the laser wave (intensity %),
described by the statistical distribution function at thermodynamical equilibrium [8]:

- 0. E°L
F(Q,18) = exp (—p(u< ,Ew»:) ’ (13)
J exp (=Bu(@, B*D)0)ao
where f = 1/kT and the potential energy of a microsystem averaged over one oscillation
period of the laser field is:

1
(R, E°L)); = — 5 agiKEg"E™y, (14)

a’L being the polarizability tensor at frequency w;.

In the case now under consideration, the unweighted mean value ¢ o in Egs (3), (5)
has to be replaced by the statistical mean value in the presence of laser light of intensity
defined as:

(GYF = [ G@DAL, IM)aQ. (15)

In this formulation of the problem, computations can be effected to the end on the
simplifying assumption that the microsystems have the axial symmetry (thus, with respect
to the 3-axis) when the transformation formula (4) reduces to:

Gy = (1 —%) 0, +3axcyc,s, (16)

where we now have:

1 — Q33— 0n
E5 3 (ags+2ay), »= m . In
Let the 3-axis of the molecular system subtend the angle © with the laboratory z-axis.

We have the directional cosines:

C.3 = sin ¥ cos @,

cy3 = sin 9 sin g, (18)
C,3 = cos ¥,
@ denoting the azimuth.
Clearly, the components (10) are now functions of the laser light intensity J= which
we can express quite generally by the tensor:

I, = CELEDS,. 19)
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Recurring to Eqs (3) and (15), (18), we now obtain the relative, laser light-induced variations
of the components (10) in the form:

VI~V 200a®(E) +16:22W(IL)

V) = = il , (20)
oy =T L) o, e
ovem = TAE=Th — o, m), (22)
oty(rr) = BE) = gy, L2

where the components V,, H,, V, and H, in the absence of the laser wave are defined by
the expressions (11) and (12).

Above, we have introduced the following functions defining reorientation of micro-
systems in the electric laser field:

d(IL) = —21- (3 cos? 9 —1>eF, (24)

YLy = 11—6 45 cost 9 —30 cos? 9+ 1) . (25)
Qu(IF) = (1—15 cos? @ sin? & sin? gL, (26)

Qo(IF) = {115 cos? & sin?  cos? pHE, 27)

T (I*) = (1 —15 sin* & cos? @ sin® o, (28)

where the statistical averageing procedure has to be performed in accordance with the
definition (15) with the distribution function (13) involving a potential energy of the form:

(R, IX), = u(0, I¥) — % (a2E —a2p) {sin? & (In, cos? g+ Ly, sin? @) +Ir, cos ¥} (29)

resulting from Eq. (14) with regard to Eqs (16)—(19).
In particular, in the absence of a laser field (IX = 0), when the statistical mean value (15)
goes over into the unweighted mean value, we have the following non-vanishing quantities:

1
o2 —
{cos®* ¥, el
2k—1)!!
cos* @y, = ‘(“2;e - ]:! s (30)

and the reorientation functions (24)—(28) are all seen to vanish quite obviously.
In the case of a not very strong electric field E“Z, reorientation of microsystems is
but slight and, with regard to Eqs (13) and (29), is given by the following distribution
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function:

f(Q, It) = (2, 0) {1 + g (a2 —a2F) [sin? & (In cos? @+

+1; sin? ) +1z; cos? 9 — —;— (I,%,,+15y+'1;)1} 31
transforming the reorientation functions (24)—(28) to:
D(IL) = “3;;0 k‘;sl @IE, —IL - 1%), 32)
v = AL or 1L 1), (33)
0ure) = B (ot —pt, 1), (34)
0utt) = B2 orf, 1L 1), (35)
T = S orl, 1L 1), (36)

On inspection of the above derived expressions (20)~(23) one sees that the laser light-
induced variations of the respective scattered intensities no longer fulfil Krishnan’s reci-
procity relations (12) generally. However, if one assumes the vector E“Z to oscillate in the
z-direction, Egs (21)—(23) and (26)—(28) lead to the following relation:

1 agk —afk
L) = L) = — — (L P83 N1 4L
OH(IY) = OViIF) = — o OH(I") = —5r—r- L Gy
This relation permits direct determinations of the sign and value of a microsystem’s optical
anisotropy at the oscillation frequency of the laser light wave [2].

4. Light scattering at optical saturation

We shall now consider the situation which arises when the electric field E“L of the
-incident laser beam is so large as to cause a considerable degree of orientation of the micro-
systems or even, in the limiting case, their total alignment. With the aim of simplifying our
calculations we assume the field E“* to oscillate in the z-direction, I%, = I5+= 0, and with
regard to Eq. (29) the distribution function (13) can be written as:

exp (£ar cos? 9)

JER, IF) = (38)

4

27 [ exp (ar cos?9) sin & dd
0

where

lagF —aPE]

ST e (39)

ar =
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is a dimensionless, positive reorientation parameter of the axially-symmetric microsystem.
In Eq. (38), the sign “‘+ is for positive anisotropy when ag3 > ay; (prolate molecules,
like CS,) whereas the sign ‘“—” is for negative anisotropy, ag; < ay (oblate molecules,

such as CgHg).
As obvious from (37), the distribution function depends on the angle 9 only, so that
the functions (26)—(28) can in a first step be averaged over all possible values of the azimuth g,

yielding:

QL) = QuF) = QuIF) = 5 <15 cost 915 cost B+2)h, (40)

T(IL) == Tlg_ {30 cos? ¥ —15 cost 19—7)5. (41)

With respect to Egs (15) and (38) the following Langevin functions of even order can
be introduced:

fcos2k & exp (& ar, cos? 9) sin & dd

Ligar) = “— : (42)
[ exp (£ar cos? §) sin 9 dP
0

At not too large values of the reorientation parameter (39) one is justified in expanding
the Boltzmann factor in (42) in powers of a; and, with Eq. (30) taken into account, one
obtains:

o]

Li(ay) = 2 ch(Far)", (43)

n=0

where the expansion coefficients are of the form:

n

1 Chy

kLo  Car
O @2kt ]) & TTEHD) (44)
To a satisfactory accuracy, Eq. (43) yields:
1 da;  8a} 164
+ — 4 oL 9L o 2OL
Lfla) =3+ 45 + o535 T 1ar55 ~ 7
1 8ar 164} 32a}
+ = 4 2oL 4 L 0f0L
Lite) =5 + 155 * 1575 T 51055 ~ (45)
and the reorientation functions (24), (25), (40) and (41) take the form:
N 2_0,1: 4a3 8ad
D (ar) = + 15 + 315 + 4795 T v (46)
_aL | 4d} 4a%
VYilar) = + 91 + 315 + 10305 ~ (47)
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__2ar 44} = 8d}
Qslar) = F 51 + 315 + —-—2079 — ey (48)

dar  -4dal 32a3
21 T 315 T Togos

If the reorientation parameter a;, is equal to or larger than unity (that is, if in
accordance to Eq. (34) — either the laser intensity I~ is very large or the absolute
optical anisotropy |agf —ayf|is considerable), the Langevin functions (42) have to be calcu-
lated without expanding the Boltzmann factor. The substitution ¢ = VG—L- cos #.now trans-
forms (42) conveniently to:

Ty(ar) = + (49)

Var,
f 12k o2y
Lia) = =2 (50)
& [ e*tds
—Vaz
and integration per partes of the numerator:
ﬁ%eit'dt J— i_- % tzk—lezlzl2 :F .gk_T_l_ /;%—2eﬂ:t’dt (51)

leads to the following recurrential formula:

1 2k~1 ;&
L% =4 —— L, ),
3i(ar) 2 Varls(an) F S o a(arL (52)

where LF =1 and where we have introduced the integrals:

VGL
I(ay) = 7L [ e*ndt, (653)-
o

The reorientation functions (24), (25), (40) and (41) expressed by way of the Langevin
functions (42) take the form:

D,(ar) = —;— {8Lg(ar) 13, (54)
Vi(or) = < (45 Liar) —30 L(ar) +13, (55)
0u(ar) = -;— (15 Li(a) 15 Li(az) +2}, (56)
T, (ar) = % {30 L (ar) —15 Li(ar) — 7, (57)
involving, with regard to (52), the Langevin functions:
Lior) =2 m F o (58)
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Graphs of the Langevin functions (58) and (59) are shown in Fig. 1. The reorientation func-
tions (54)—(57) for positive and negative optical molecular anisotropy are plotted in Figs 2
and 3 respectively. The reorientation function (54) intervenes in the effect of optical birefrin-
gence [11, 12] and has been tabulated by O’Konski et al. [11] for positive anisotropy and

by Shah [13] for negative anisotropy.
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Fig. 1. Graphs of generalized Langevin functions (52) for positive and negative anisotropy (prolate and oblate
molecules), respectively
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Fig. 2. Graphs of optical reorientation functions (54)—(57) for prolate molecules

Let us consider the limiting case when a; — co. For prolate microsystems, we now

have:

Lf(o0) = Lf(o0) =1, (60)

and all reorientation functions (54)—(57) tend to unity:
D, (00) = Wy(o0) = Q4(00) = Ty(o0) = 1. (61)
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Fig. 3. Graphs of reorientation functions (54)~(57) for oblate molecules

This indeed is the case of optical saturation, when all the microsystems are aligned with
their axes of maximal polarizability along the direction of oscillations of the electric field
of the intense laser light wave. The variations of scattered components (20)—(23) now achieve
their extremal values: ‘

20 3, +16 52 g
(3V:-(°°) = T 5142 (62)
0H} (o00) = 6V;;"(00) = 0H}} (c0) = —1. (63)

Of particular interest here is the change in vertical component (62) which, for small
values of the anisotropy parameter %, < 0.1 can be written in a good approximation as
follows:

OV (o0) = 4w, (64)

and thus yields directly the value of the optical anisotropy of the microsystem.
For the remaining case of oblate microsystems, optical saturation gives a value of

Ly (e0) = Ly (e0) =0 (65)

and consequently the reorientation functions (54)—(57) assume their extremal values:
1 1 7

O(0) == 5, Pl =15 Q(o)=1 T(o) =—5 (66

leading respectively to the following variations of the scattered intensity components
(20)—(23):

. 105,22

8V5 (o) = C 54ud

O, (00) = 0¥} (00) = —1, (68)

(67)

OH, (00) = -g-. (69)
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For microsystems presenting low anisotropy, we have by Eq. (67):
OV, (0) = —2%,,. (70)

It is thus seen that investigation of the change in components (63), (64), (69), and (70)
due to the state of optical saturation permits determinations not only of the value but also
of the sign of the anisotropy of the microsystems. By Eqs (11) and (12), studies of usual
Rayleigh scattering provide information only regarding the square of the optical molecular
anisotropy.

5. Discussion and conclusions

Before proceeding to a discussion of the results derived, we shall consider the case
when the scattering molecules undergo alignment under the effect of an AC electric field
E° = E°%** oscillating at frequency o sufficiently small to orient the permanent molec-
ular dipoles g also. Assuming the symmetry axis of a microsystem to subtend the angle ¢
with the direction of the field E® acting along z, the statistical distribution function takes
the form [8]:

) — p cos ¥ iwt ﬁ o ‘u2 1
f(Q,E) f(Q 0) {1 + kT(l‘I‘W)TD) E 15 12 (a33 —ant T kT 1-I-ZOJTD %
72wz
2 ¢ 2
X (8 cos® 9 —1) (1 +t 1 Swrs )Eo-l- }, (1)

where 75 is the Debye relaxation time and 75 the relaxation time of anisotropy [14]
mutually related by the formula 7, = 375.

With regard to Eq. (71), the reorientation functions (24) (25), (40) and (41) become:

() =&, (72
T(w) = ~20() = 4¥(0) = o &% (13)

the reorientation parameter now being of the form:

E2 [ 2 1 gi2ot
87 4T | 98T T BT wrp) T 1520t ) (74)
In the case of a DC electric field w = 0, the parameter (74) takes the form:
Ebc u?
0o DG o 0 . K
g SR \ 938 a1y + i) (75)

whereas in that of an electric field of high frequency, when wzp — oo and wtg — oo simul-
taneously, we have:

oo B33 05 g _ 0505
g g = g ! (76)
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Thus, as could be expected, at oscillations at optical frequencies the permanent dipoles
take no part in the reorientation process and do not affect the scattered. light intensity.
The sole contribution in this case is that from reorientation of the ellipsoid of electronic
polarizability.

~ In the general case, the parameter (74) is a complex quantity and can be resolved into
a real and an imaginary part:

cos 2wt +2wTpsin Zcoz:)

W) — Eg a)‘ [ B
Re (g%) = W{(“as_au (1 + 1+4wt}

L # | (1=202 7p7H) cos 2wt -+ (vp+273) sin 2t | )
1+w2t} ’ 1+4w27% ]
2 ® __ 40
Im (g©) = 45;1 { 1a__|3_34w6;-151% (2wTg cos 2wt —sin 2wt) +
u? o(tp+273) cos 2wt —(1 —2w27p7p) sin 2wt |
14+ w2t} [m” + 1+4073 » 1) (78)

Benoit et al. [1] and, recently, Stoylov [3] studied theoretically and experimentally the
changes in light scattering by solutions of macromolecules and colloid particles subjected
to a DC electric field. Stoylov extended his investigations to the case of electric saturation.
Jennings et al. [4] performed similar investigations for the case of an AG electric field and
studied in particular the component scattered at double frequency 2w which, as seen from
Eqs (77) and (78), accompanies the steady (non-alternating) component. In this connection,
the question arises of whether laser technique permits studies of the reorientation effect
in disperse systems? In molecular liquids, the relaxation times are known to lie between
10-10 and 10-13 sec [15] and are thus sufficiently short for reorientation of molecules to
occur during a single light pulse of a strong laser having a duration of 10-6 to 10-1° sec.
Since the anisotropy of polarizability of molecules is, at the most, of order 10-23 cm?, the
reorientation parameter (39) results of order 1010 ], at room temperature. As a conse-
quence of this, with the aim of achieving a value of a; = 1, upward of which optical saturation
sets in, one would have to apply a focussed laser beam of intensity I, . = 101 esu in the
focus. Regrettably, however, optical breakdown of liquids occurs in electric fields of order
105 esu, before optical saturation can take place. Thus, in molecular liquids, only small
changes in scattered light intensity of an order of 10~2 at the best can be hoped for. Such
variations can be observed when recurring to very sensitive measuring procedures.

Conditions for observation are much more favourable in macromolecular and colloidal
substances. Thus e.g. for aqueous solutions of protein molecules of dimensions 50700 A,
the relaxation times lie between 10-6 and 10-8 sec [16], so that reorientation of the micro-
systems can still take place in the electric field of laser beams of pulse duration exceeding
10-% sec. For these molecules, the reorientation parameter a, is of the order of 104 I.
Consequently, optical saturation can now be achieved even at an intensity I; of the order
of 10% esu requiring the nonfocussed beam of a ruby laser with extended pulse duration.

The author wishes to thank J. Baumann, M. Sci and J . Wyszowski, M. Sci., for programm-
ing and computing numerically the functions shown in Figs 1-3. Thanks are also due to
K. Flatau, M. Sci., for the English translation.
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