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GAUGE INVARIANCE OF QUANTUM ELECTRODYNAMICS

By S. TaTur
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Is is shown using perturbation theory that the transition amplitudes in quantum electro-
dynamics are gauge invariant; taking into account the gauge dependence of the renormalization
constant Z, for the electron field. A class of gauges which are generalization of the Coulomb
gauge are considered. '

Introduction

It has been pointed out by Bialynicki-Birula [1] that the theorem on gauge invariance
of transition amplitudes in quantum electrodynamics, as given by Feynman [2] and used
by many others [1], is incorrect. The aim of the present work is to prove the invariance of
the S matrix elements using the perturbation theory under the gauge transformations and
taking into account the gauge dependence of the renormalization constant Z, for the electron
field. We shall make use of the Feynman diagram technique. In perturbation theory, differ-
ent gauges correspond to different free photon propagators. The Fourier transform of the
electron propagator, in the lowest order of the perturbation theory, is the same for all gauges
and is given by

Sr(p) = —1—

_ﬁ—m°

We shall consider a class of gauges which are a generalization of the Coulomb gauge. For
this class of gauge transformations the photon propagator D,,(k) becomes

D,, = D (k) +k,Dyaf *+Dpaf byl Jo,Doaf £ * @
where f,(k) is a real and odd function of k, depending on the arbitrary number of the external
vectors. We shall assume that the S matrix element for a given process, in the n-th order of
perturbation theory, is calculated by taking the mass shell limit of the expression obtained

1 2
from Feynman diagrams multiplied by (p-m) -V——- for each electron and —— for each pho-
%2 %3
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ton, and by inserting the free particle wave functions for each external line. Since in the
expression for the S matrix element there appear renormalization constants, we must give
a method for their calculation for the class of gauge transformations considered.

Generalization of the renormalization constant

The electron propagator in the relativistic gauges has the spectral representation [3]

[

1.\ Zy(p+m) Do1(M?) + o,(M?)
Silp) = gty + | an 2T @

ma
where Z, is the gauge dependent renormalization constant for the electron field. As p->m,
we find that

’ Z,
Sp > pA—_z; 6)

Zy is found from the expression for Sy in the n-th order of the perturbation theory

Zy(p+m) =lim (5= Sy(p). @

In a general case we encounter certain difficulties, viz., in the radiation guage [4, 5] we have
a spectral representation of the form

R Ay(p?, M2)y%°+ A%(B%,M?) 7p + C(p2, M?)
Sr(p*p?) = f £e pP—M32+ie

dM?, p® =pi+pi+pd  (5)
0

There are three spectral functions instead of the customary two and in the neighbourhood
of p? = m? the usual form of the Green function is not applicable.
Hagen [5] assumed an expression sufficiently general in this domain,

' (*)vp p® 2
vSF ) eW(P Yvp gz_(—p,n) eW(P )VP, W*(ﬁz) == W’(l_)2)’ (6)

and found Zy(p®) and W(p?) in the 2-nd order of the perturbation theory. The expression (6)
corresponds to

’ Ayp®+A, yp+Am
Sp ~ 1P p2_2;3320 3 @)
and
’ N A+m N
S ~ fop_—m) ®
where
N =V Zy(p? e¥* = B\(p® +By(p? 7p ©)

near the pole.



73

Hence we see that IV corresponds to VZ; for relativistic gauges. Even though NV is not
a constant but a matrix function of p, we shall continue to refer to it as renormalization
constant. For gauges from the class under consideration we have

1
Dy = — 75 (Buw+Sukstbufst+Fuks f?) (10)

where f,, may depend on the arbitrary number of external vectors (the rotational invariance
is broken).

If we assume the C, P and T invariance, the general expression for the electron propa-
gator near the pole has the form

¢ Ay YO+ Agy'pt+ Ay yPpP+ Ay v+ A5y Yy ppp P’
Sp~ —— (11)
p:—m
where A; (i =1 ...5) are the real functions of pland pp, Lk=1, 2, 3.
We may then write
’ J_V A—l—m N =
Sg ~ ———(p};—ml N = yO0N*0 (12)
and
N = By +Byy'p*+Byy®p®+Byy*p® + Bsy'y"p'p*+ Bey'yp'p* +
+Byy?y*pp® +Byly*y’p'p’p? (13)
B,a=1, 2, ...8 are real functions of p,2 and pp; I, k=1, 2, 3. In general, however,
N # N. From the form of the electron propagator near the pole it is not possible to deter-
mine N uniquely (more unknown quantities than equations). In the radiation gauge we
have only one external vector n, n,n* = 1,and the number of B,’s reduces so that N=N
and N is determined uniquely.

3 |"c>

There is also some freedom in the determination of N. If we introduce N' = N

a

and N' = 2 N we obtain
.m

N'(p+m) N' = N(p+m) N and N’ = N".

We shall assume that %0 is eliminated from the expression for NV by substituting y%° =
= yp+m.

Change of the expression obtained from Feynman graphs under gauge transformations

We consider infinitesimal transformations, in view of the group property of the gauge
transformations. For the photon propagators in the lowest order of the perturbation theory
we obtain for infinitesimally different gauges

D,y = D+, D30 *+,D,,07 ™. (14)
Let us consider all the Feynman diagrams with m external lines giving contribution to the S
matrix element in the n-th order of the perturbation theory.
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We want to find the change in the corresponding expression due to the change of the
photon propagator. This change corresponds to the replacement of the propagator of every
internal photon line by

Dyv+k/tDv).6fl+kaylafl‘
and taking into account the linear part in Jf* only.

In other words, we take the sum of the diagrams without changing any of the electron
lines nor any, save one, photon lines, and substitute for this one line the extra part of the
photon propagator

kD, *+k,D,,0f *.
We divide the contribution from this line into two independent parts and sum over two
possible choices of endpoints,

kuDvlafl-l-kaylafl e kavlafz_i_kaplafl'
In the next part of the proof we will use a result of Feynman which we shall call a lemma.

Let us consider a fermion line (being a part of the general diagram) to which 7 photons,
real or virtual, have been attached. This graph,

n In—1 In—2 oee s 92 Q

’
P a, Pn—1 Qup_1 Pp—2 Gp_2 as D2 Qg P1 @ P

is given by the amplitude

F(y', p) =ﬁ,i — g, ﬁn_ll—m ‘i""lﬁ,,_:—m 2l & ﬁ;m Gy ﬁl_l_m é, p_lm. (15)
If we insert a photon line, real or virtual, which has the momentum g'j and interaction vertex
g, and sum over all possible positions r where the photon can be inserted, we see that the
terms cancel pairwise. Only two terms resulting from inserting the photon ¢ on the right-
-hand side of ¢, and on the left-hand side of g, escape cancellation, and give the result

. 1. T PR |
F=—a,x Gyl oo Gy =—— G =—— —
p—m  pp1—m pi—m ~p—m
1 1 i 1
- — Ty = = 17 P U, F— By = ) 16
Fra—m P puatg—m ™ R e m M prg—m (16)

If the fermion line is an open line in an S matrix element, p and p’+¢q are momenta of real
external particles and the contribution of the graph to the S matrix is obtained by removing
the external propagator legs

= ? . Ay ~ ]. L2 ’ 1 A
S ~u(p'+q) [ lim (p'+g—m) = F(p', p)7= (p—m)] u(p). (17)
A Vz, Vz,

Feynman in his proof assumed that this contribution is null, but this assumption is
not valid. We shall see that when there are radiative corrections to the external electron

lines, factors I and singular on the mass shell occur in the expression for F

~y ~ A

p+g—m p—m
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making the contribution differ from zero. As it is seen from the expression for the S matrix
element we must first perform the multiplication by p—m and p'+q—m,and pass on to the
mass shell. Subsequently, we multiply by the spinors u(p) and u(p’'+q) (the use of the
equation (p—m) u(p) = 0 means that in the configuration space integration by parts is
employed and that adequate account must be taken of the boundary terms). If the fermion
line is a closed loop, the contribution to the .S matrix element is

s~ f T o Pl - f & e oy (D =FPrap )] (9)

and vanishes provided the origin of integration in the momentum space may be shifted
(we assume that all divergent integrals are regularized in such a way that the origin may be
shifted). Let us now consider the sum of the Feynman graphs giving contribution to the S
matrix element. If we take a diagram with one endpoint fixed corresponding to the vertex
VD ,;0f * — 97’ and a second endpoint corresponding to the vertex F, attached to a certain

electron line, the sum encompasses diagrams with all possible positions of the vertex I;\;
apart from that the diagrams remain unchanged.

Using the procedure described by Feynman’s lemma, we can express this class of dia-
grams by the difference of two diagrams with appropriate momenta but with one vertex less.
We shall show that some classes of diagrams give zero contribution when multiplied by
p-m and by the corresponding spinors, and we find an expression for the nonvanishing
contribution. It may be shown that for external lines the infinitesimal change of the potential
A, (proportional to the four momentum) gives no contribution to the observable processes).
Feynman’s original proof gives here a correct result, ¢f. Bogolubov [6]). We shall consider
only internal photon lines and we shall distinquish five cases:

(@) the photon propagator has both its endpoints on the same open electron line;

(b) the photon propagator has both its endpoints on the closed electron line;

(c) the photon line has its endpoints on two different electron lines which are both
open;

(d) the photon propagator has its endpoints on different electron lines one of which is
closed, and

1° vertex 87" is on the open electron line, i on the closed one,

2° vertex  is on the open electron line, §f' on the closed one;

(¢) the photon propagator has its endpoints on different electron lines both of which
are closed.

From the lemma and discussion of the closed electron lines it is seen that the contribu-
tion to the S matrix element is zero for the diagrams corresponding to the cases (0), (e)
and (d) 1°. Let us assume that the endpoint corresponding to % is on the open electron
line. From the expression for the .S matrix element

_ . . 17 1 1 il 1
S~ (p'+9) [hm wism Ll L L G —
2 (#'+e )]/Zz P—m " paa—m TN R p—m  p—m
@' +a) »m?
1, il i 1 1
T A, A Qy, 7~ (i_ ...C? S = d\ R = "—m) u ].9)
PHa—m " pugtg—m T P pitg—m 1p+q—m] VZ, (? ] (2
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we see that the contribution differs from zero when P;» p; exist such that p,+q = p or
p'+q=p,
1
Let us consider the first case. We must nave q = — ) g3 where g are the momenta
£=1

of the photon lines whose endpoints can be located:

1. on the same electron line (number of vertex smaller or greater than i);
2. on different electron lines, open or closed.

i

However, not all g are independent, since we can have in ) gz cancellations corresponding
k=1

to self energy insertions

@+, =0 Lim<i).

It is also possible that a group of some momenta can be expressed (making use of the
fact that the sum of momenta incoming to a closed loop is zero) by momenta of the external
lines, momenta of the lines corresponding to vertexes with numbers greater than 7 or mo-
menta of lines with endpoints on different open electron lines. We have q = — 2} g, where

%

gy, are external momenta or the momenta which are independent variables of integration.
Because of the independence of g, the equality ¢ = — » is possible only in the
P 9 quality g < dr18 P y

case when the sum reduces to one term ¢ = —g,. This means that the sum of i momenta of
the corresponding photon lines must be either equal to the momentum of the one photon
line or to the sum of the groups of momenta of photon lines whose other endpoints are on
the closed electron lines. The discussion of the case P’ +q = p; is analogous. However, the
two conditions p’+¢ = p; and p;+¢g = p cannot be fulfilled at the same time. From the
two terms in the expression for the S matrix element only one gives a nonvanishing contribu-
tion.

It follows from the discussion that in the case (c) the contribution to the S matrix ele-
ment is zero. From the expression for the S matrix element we can see that for a class of
diagrams, when the endpoint of the photon line corresponding to 5}’ is attached at such
a point of the electron line that on both its sides photon lines with the other endpoints on the
open electron lines or external lines occur, the contribution vanishes.

For subclasses of diagrams for the cases (a) and (d) 2° we obtain results different from
zero. This may be presented schematically as follows:

p’DpB ptq

A

hb-g B p y, P

We find what diagrams correspond to paft B, and draw several of the lowest order diagrams
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Part B zero order

A

Part B first order

Part B third order

e gl ol
i&i@i&

In the higher orders of the perturbation theory the procedure will be analogous. It is
seen from the diagrams that in part B we have corrections to the electron propagator, vertex
part, and photon propagator. Taking into account the normalization factors we obtain for
part B the expressions for the incoming electron line

o [ : v s rn A%
—1ze? / F”(p,p-l—k)SF(P +k)D,,u6f” W (20)
and the outgoing electron line
. dk )
- f s O DiSelp A5+, ). @y

Let F, ... (p', Dy -+ Pro P> P1 -+ P G1 -+ ) denote an expression obtained from Feynman
diagrams for the process with m external lines in n-th order of the perturbation theory.
The change of this expression under infinitesimal gauge transformation of the photon
propagator is given by (contribution from one open electron line with momenta p, p’),

1 rtad ol
S ~u(p) (p' H u(pj) (p;—m) ~ OF .., (p', P1 -+ Pho P> P1 -+ Pho 91-+-q) X
7

x T] 3 (mmyu (5

3
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(p m) u(p) H @ —= V_ A, = u(p’) [( —m) % 5F(p’,p)%(ﬁ~m)] X

x u(p) =u(p) | [p'—m) TF@',p) (—ie?) | I*(p,p-+k) Se(p+k) D df* X
N .

X -z (Bl u(z) +

+ u(p') [(p )= A f (2 Byt Diw O SE(p+8) T(p" . p') F(p's )

X 7\7- (p—m)]u(p). (22)

When we have a diagram with a fixed endpoint corresponding to 87", we can give a class of
diagrams in which the endpoint % of the photon line is attached in all possible ways to the
electron line considered, the remaining part of the diagram is unchanged. This class, accord-
ing to the lemma, gives a contribution to the S matrix element which either vanishies or
differs from zero, and in the latter case we can ascribe to this class a diagram from the group
of diagrams described by the expression

F(—ie?) f I*(p, p+k) Se(p+F) Dyw 8f* (;;f‘l

' d4 /
or  — ie? f 8f“D.nSr(p’ +H) I*(p' +F, p')—(ﬁﬂ | (23)

Part B described by the above expressions must include all corrections to D;,,SI', and I7,
because we have started from a group encompassing all possible diagrams giving contribu-
tion to the S matrix element.

Conversely, to every diagram from the group of diagrams corresponding to the expres-
sion (23)

.
F(—ie?) f T¥(p, p+1) S'F<p+k>D;vaf”(§74§ior f PDLSHE +H I ) s F

we may ascribe in a unique way the class of Feynman diagrams from the group of diagrams
we started with. If we fix the part B to be of the k-th order in the perturbation theory, part A
will include all the diagrams corresponding to the S ‘matrix element of the n—k-1 order.
If we were to find a diagram missing in A, this would mean that the starting group of dia-
grams was incomplete.

Analogously we find an expression for the change of the electron propagator under
infinitesimal gauge transformation of the photon propagator

. ! A h d4
0Sp = —ie? f Sr(p) I*(p» p+k) Se(p+k) Dwdf* (2n];4 B

et f SHp-+8) D(p-+,p) SHP) D o (24)
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Gauge independence of the S matrix element (relativistic gauges)

Let us assume that the photon propagators in the two relativistic gauges have the form

D/w =—l (g#vf k_ﬂk_v) and blﬂ' = - ! (gl“’ kﬂk +d(k2) kﬂk”)

k2 k® k2 k2
Fr
ofr = — ]?éa(l) oA, (25)
From the expression for the infinitesimal gauge transformation of the photon propagator
ke ke
0Dy, = | kuD,, 5 + kD e 5 a(2) 4. (26)
Let us further assume
1 kyk, k
D) = = 13 (gu» k2))- @7
We then have
dF
a7 = 2F(4) a(2) (28)
. 1
and taking the conditions o(d) = o7
A=0 D,A=D, (29)
A=1 D,2) =D
we obtain
1 kuk,
D (%) = — 72 (gﬂ”— T ) (30)

The electron propagator in the relativistic gauge has the following form near its pole
v Zo(p
Sp~ B2 _ (31)
p2—m p—m

(p+m) Zy = lim (p?—m?ASp(p) or  Zyu(p) = [Se(p—m)lu(p)

D om?

0Z, is obtained from the relation

st utp) = (05t5-m ) = | (= i 2 [ st P seio+ D) By s =
_1326—;’ Sk(p+k) I(p+F,p) Sk(p) Djn Zz (g ‘;)( = m)] u(p) 32)

I, Sg and D;,, are functions of 1. From D;,,k” = - -k—z k,Ad(k?) and the generalized.
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Ward identity we have

d*k

0Zy(2) u(p) = ie? @)

Z(N u % 82 (33)

and from the expression for 0F(p’, p), obtained from the perturbation theory, we see that the
change of the renormalization constant Z, compensates the change under gauge transforma-
tion of the expression obtained from the Feyman diagrams describing the process.

After integration we obtain from the equation for Zy(1) when 4 = 1 the known [7, 8]
relation

" [y d%
Z, = Z, exp ie? f % ot (34)

Gauge independence of the S mairix element (general case)

Suppose the photon propagator in a gauge from the considered class of gauge transfor-
mations has the form

~

1
Dy =~ 72 (gp,,+k,,ﬁ+kyf,4+k,,kvf2)- (35)

The expression for the change of the photon propagator under infinitesimal gauge transfor-
mations gives

0D,(3) = (k,D,.f ’H—k,,DM Fha(A)or  ofF=f oy (1) OA. (36)
We assume that
Dy(2) = — % (8wt (Fufotkufu) F(A)+k ik, f2G(A)) (37
hence,
—Z—ii = [1+(kf)F(2)] (%) %ZG— =2[F(2) +(kf) G(A)] «(2) (38)
. 1 .
taking a(d) = T(kf) and the conditions
D,0) =D, D,Q1) =D, (39
we obtain
D) = — k—lg (8wt kufo+Fofu)A+ 22k ik, £2). (40)

Let us assume that the electron propagator has the following form near the pole:

- N(f)—l—m)N

S;: P2_ m2

(41

17
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and in an infinitesimally different gauge

S~ (N+6N) (p-l-m; (N+6N) 42)
pi—m
The difference can be written
. N(p+m)8N+ON(p+m)N
05 = P—m? . (43)

From the expression for 6Sg obtained from the perturbation theory we have

d4k
8 — —ic? f SH(p) (P p+BSE(p+BDWdf* 5 =

. , ) , dk
el fSF (p k) I (P +k, p) Sk (P) D;wéfﬂ —(2 )
and near p%2 = m? we have

) . N(ﬁ ) N’ 1 d4k
— 2 A 4

| | 4 A
— e aafs,—:(p+k) I* (p+k, p) Diuf? (%4 1+(kf)zN(’;+”‘)N. (44)

pi—m?

Let us consider two cases:
1. Renormalization constant N can be uniquely determined in the perturbation theory
from the expression for Sp(2) in the pole. Comparing two expressions for 0Sg we obtain

ON = — ie? aANfrv(p,p+k) St(p+8) Dinf* 1+(1kf)l (;EI; (45)

and for the contribution to the S matrix element (from one.open electron line) under an
infinitesimal gauge transformation of the photon propagator we have

s |56 (5-m) 3 P, 7 - p) |
=u(p’) (p'—m) & ( ; ) F(p', p) N(p n) u(p) +
5l (F-m) 7 Fop) 8 () (5=m) up)+3(p) (5=m) x
x < OF(p'. ) 7 (=m) u(p)

I A .
= — WP (§'=m) 5 N < Fp',p) 7 (p—m) ulp) -



+ u(p') (p'—m) % 02 (—ie?) f Dy " (W) Sg(p’ +E) I*(p'+k, p') x

4k .
X —(-gWF(p’,p) }N(p—m) u(p) +

+0p) (5/-m) = F) (6% 7 f T™(p: p-+H) Sh(p-+1) Dinfrald) x

x —(% T (=m) u(p) = 0. (46)

After summation over all open electron lines we obtain gauge independence of the S matrix
element.

2. Renormalization constant NV cannot be uniquely determined from the expression for
Sg(2) near the pole.

To define unambiguously the change of the renormalization constant under infinitesimal
gauge transformation we can use the relation

1 a*k
= —je2 d L4 4 =
ON ie20AN(1) f I'"(p, p+k)Se(p+k) Dy, f* TFE @ (47)
The electron propagator described near the pole by the expression
Sy~ N(p+m)N (48)

p2_ m2

under gauge transformation, with ]V as given above, does not change its mode of behaviour.
For 0N defined in this way we obtain analogically as in case 1 gauge independence of the S
matrix element.

The differential equation for N(4) can be formally integrated, and with the initial
condition N(0) = VZ this gives a unique results,

2
d%
—ie" [ dA | ot 'SED),, 1 a()
N = a0 ) oo Yz, @)
where: A is the ordering operator with respect to 4, and Z, is a renormalization constant
in the Feynman gauge. The expression for N(%) at 4 = 1 is a generalization of the relation
(34) for relativistic gauges.

The author is indebted to Professor I. Bialynicki-Birula for suggesting the problem,
valuable discussions and many critical remarks.
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