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Preface

The proceedings volume contains selected papers presented during the 14th Symposium
of Magnetic Measurements and Modelling �SMMM'2023�, which took place in Zakopane
(Poland), October 16�18, 2023. The Symposium was organized by the Cz¦stochowa Branch
of the Polish Society of Theoretical and Applied Electrical Engineering (PTETiS) in co-
operation with the Faculty of Electrical Engineering of the Cz¦stochowa University of
Technology and the Institute of Metrology and Biomedical Engineering, Faculty of Mecha-
tronics, Warsaw University of Technology.
The Symposium has emerged as a continuation of the Symposia of Magnetic Mea-

surements held previously. The 14th Symposium of Magnetic Measurements & Modelling
provided an excellent opportunity for scientists and engineers dealing with magnetic mea-
surements and modelling of magnetic properties to present and discuss the results of their
research. The scope of the Symposium has been extended to include modelling of proper-
ties and applications of magnetic materials and covered the following topics: measurements
of magnetic quantities, indirect measurements of physical quantities using magnetic mea-
surements, measurement techniques in a high-frequency range, nondestructive evaluation
of materials, modelling of magnetic properties, magnetocaloric and magnetomechanical
e�ect, structure and properties of magnetic materials, sensors and actuators, magnetic
circuits in electrical machines, mechatronics systems.
Over 30 people from domestic and foreign academic centres, research institutes and

industry participated in the Symposium, including:

� Professor Marcos Flavio de Campos, UFF � Federal Fluminense University (Brasil);

� Professor Peter Kollár, Pavol Jozef �afárik University in Ko²ice (Slovakia);

� Professor Branko Koprivica, University of Kragujevac (Serbia);

� �ukasz Mierczak, PhD, Brockhaus Measurements (Germany);

� Professor Denisa Olek²áková, Technical University of Ko²ice (Slovakia);

� Professor Zdenek Roubal, Brno University of Technology (Czech Republic).

During the Symposium, 7 sessions were organized and 28 presentations were presented.
In the plenary session, two invited talks were given:

(1) �. Mierczak, �Advanced measurement technologies for magnetic materials used in
automotive applications�,

(2) M.F. de Campos, J.A. de Castro, �Comparative view of coercivity mechanisms in
soft and hard magnetic materials�.

The Organizing Committee would like to express its gratitude to all participants for the
high-level presentation of their research, which concerned the scienti�c and engineering
aspects of measurement and modelling the properties of soft magnetic materials.

Jan Szczygªowski
Mariusz Najgebauer

Editors of the Proceedings
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This paper focuses on two models used for the determination of power loss components in steel samples
under dynamic magnetizing conditions. The considered models di�er in their approach as far as the
possibility of distinguishing bulk and localized eddy currents is concerned. Two samples of non-oriented
electrical steel di�ering in silicon weight contents are the subject of experiments. A comparison of the
obtained results, as well as their discussion, is given in the paper.

topics: soft magnetic materials, core loss, loss separation, modeling

1. Introduction

The concept of loss separation in soft magnetic
materials is considered an important problem for
practitioners [1, 2]. The present paper is focused
on two approaches to model power loss in chosen
grades of electrical steel. For analysis, we have cho-
sen non-oriented (dynamo) electrical steel with a
thickness of 0.35 mm (grade M330-35A) as well
as steel with silicon content increased up to 6.5%
(grade JNEX, 0.1 mm thick, produced on commer-
cial scale by the Japanese enterprise JFE Steel).
The aim of the paper is to compare two possible
approaches to the separation issue in terms of their
predictive capabilities and accuracy. The �rst one
relies on the so-called three-term separation scheme,
which in the contemporary literature is usually as-
cribed to G. Bertotti [3]. The other one was pro-
posed several years ago by one of the authors of the
present paper [4].
As pointed out in a recent publication [5], non-

oriented electrical steels are the most widespread
soft magnetic material (SMM), accounting for
around 80% of the total amount. They are com-
monly used as a core material in rotating electri-
cal machines. According to [6], energy loss due to
re-magnetization processes in electrical steels is es-
timated at a 5% level of the total produced en-
ergy worldwide. Therefore, a better understanding
of energy dissipation processes in these SMMs may
stimulate potential energy savings and reduction in
environmental burden (greenhouse gas emission).

The range of produced non-oriented electrical
steels includes several di�erent types of steels, fea-
turing miscellaneous silicon and aluminum content
(the volumetric percentage of these two chemical el-
ements is usually provided as a whole) and various
sheet thicknesses. The volumetric silicon content in
these materials is in the range of 1�3.7%, whereas
for aluminum � 0.2�0.8%. Considering silicon con-
tent alone, it is expedient to introduce a distinc-
tion between low silicon steels (up to 2 wt% Si,
used in household appliances), conventional steels
(around 3.2 wt% Si), and high silicon alloys (around
6.5 wt% Si + Al).
Increase in silicon content in the alloy leads to

signi�cant changes in the material properties:

− the admixture of silicon signi�cantly in-
creases the resistivity of the material, which
is equivalent to limiting its loss during re-
magnetization by limiting loss associated with
the �ow of eddy currents;

− the saturation induction value and the magne-
tostriction coe�cient are reduced. This e�ect
is more noticeable for high silicon alloys;

− the coe�cient of magneto-crystalline
anisotropy is reduced, which results in
an increase in sheet permeability;

− magnetic aging (deterioration of magnetic
properties of cores over time) is inhibited by
capturing carbon atoms;

− the strength and sti�ness of the considered
alloys increases.
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Aluminum a�ects the alloy properties in a similar
way to silicon, which explains why it is sometimes
used as its partial replacement. Article [7] draws at-
tention to the fact that increasing the percentage of
silicon and aluminum in the alloy may have an ad-
verse e�ect on the mechanical properties of the al-
loy and the values of saturation magnetization and
thermal conductivity. These parameters are also im-
portant in many applications. From the point of
view of a manufacturer of electrical machines, it is
desirable that the steel has a low level of loss and
high values of magnetic permeability and thermal
conductivity. From the steelmaker's perspective, it
is preferred to keep the silicon and aluminum con-
tent as low as possible in order to make workability
simpler.
The development of technology for producing

sheets with increased silicon content is one of the
latest achievements in contemporary research on
soft magnetic materials [8]. Research on this group
of SMMs was initiated in the mid-eighties of the
last century in Japan [9�11]. Tests on magnetic
properties of high silicon alloys produced in labora-
tory conditions, most often by rapid solidi�cation of
molten metal, have also been carried out in the USA
and China. Alloys with approximately 6.5 wt% Si
feature unique magnetic properties, such as almost
zero magnetostriction, the highest value of perme-
ability, and the lowest core loss among all electrical
steels that contain silicon. Japanese enterprise JFE
Steel Corp. is the only commercial producer of mi-
crocrystalline high-silicon steel (the brand name is
JNEX).
Figure 1 depicts a comparison of material core

loss per unit weight (commonly referred to as
core loss density), measured at 1 T and 10 kHz.
From Fig. 1, it is clear that electrical steels
with increased silicon content are highly com-
petitive against other comparable materials. Iron-
based amorphous alloy, i.e., Metglas, features lower
core loss, however, it is more di�cult to pro-
cess (harder workability, material available commer-
cially only as cylinder-shaped cores wound of thin
ribbon).

2. Loss separation issue

One of the most controversial problems in mag-
netics is the proper description of energy dissipation
in SMMs. According to the approach prevailing in
contemporary literature, one can distinguish energy
loss due to the hysteresis phenomenon and the �ow
of eddy currents in di�erent time- and spatial scales.
This approach is usually attributed to G. Bertotti, a
representative of the so-called Torino school of mag-
netics [3], although the concept seems to be much
older. Within Bertotti's framework, it is assumed
that there exists a direct relationship between the
macroscopic properties of an SMM subject to cyclic

Fig. 1. Visual comparison of core loss for several
alloys used in electrical engineering. Source: own
work, based on JFE Steel Corp. promotional ma-
terial.

re-magnetization (power loss P , amplitude of �ux
densityBm, excitation frequency f) and the dynam-
ics of the so-called magnetic objects (MOs) [12, 13].
The de�nition of MOs is, however, somewhat im-
precise; in order to prove this we shall use a direct
citation from the landmark paper [3]: �In partic-
ular, it has been shown that a single MO can be
identi�ed with a single Bloch wall in grain-oriented
materials with large domains [20], whereas, in mi-
crocrystalline materials, the whole domain struc-
ture inside a single grain plays the role of a single
MO [21], [22].�†1

An applied magnetic �eld with uniform spatial
distribution tends to introduce a uniform distri-
bution of magnetization within the sample cross-
section. In a structurally homogeneous material,
the equilibrium state is indeed achieved, and the
loss related to the re-magnetization process is then
given with the well-known expression for the so-
called classical loss. The tendency to obtain a uni-
form distribution of magnetization is counteracted
by structural inhomogeneities existing in the ma-
terial, which are the sources of internal �elds of
magnetostatic origin, local coercive �elds, and/or
reaction �elds related to eddy current �ow. The in-
ternal �elds feature highly inhomogeneous spatial
distribution.
The �statistical� approach to the description

of power loss within the SMM is based on an
observation that domain wall movement during
re-magnetization has a discontinuous character,
which naturally leads to the concept that the

�1The reference numbers given in the quote come from
work [3] � editorial note.
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TABLE I
Fitting results for the M330-35A steel (Bertotti's formula).

Bm [T] Parameter Uncertainty Residual SSQE Adj. R-square

0.5

K1 0.00485 8.33× 10−5

2.43× 10−8 0.99921K2 1.65× 10−5 1.07× 10−6

K3 1.19× 10−4 2.13× 10−5

1.0

K1 0.01499 1.34× 10−4

1.65× 10−8 0.99957K2 7.58× 10−5 3.88× 10−6

K3 2.56× 10−4 4.81× 10−5

1.5

K1 0.03705 7.98× 10−4

5.90× 10−7 0.99644K2 1.78× 10−4 2.32× 10−5

K3 2.70× 10−4 2.87× 10−4

TABLE II
Fitting results for the M330-35A steel (two-term formula (2)).

Bm [T] Parameter Uncertainty Residual SSQE Adj. R-square

0.5

K4 0.00549 4.10× 10−5

1.39× 10−4 0.99999K5 2.14× 10−5 1.58× 10−7

α 2 �

1.0

K4 0.01596 7.66× 10−5

5.45× 10−5 0.99998K5 9.16× 10−5 9.11× 10−7

α 2 �

1.5

K4 0.03796 1.07× 10−4

1.07× 10−4 0.99999K5 1.96× 10−4 1.28× 10−6

α 2 �

magnetization process might be described as a
time�spatial stochastic process, which consists of
random sequences of elementary magnetization
changes, each of them corresponding to a sudden,
localized jump of a segment of domain wall. Loss
due to hysteresis is related to the dynamics of ele-
mentary jumps of single domain walls, which lead to
the �ow of signi�cant, localized eddy currents even
in the case when the average magnetization values
change slowly. Dynamic loss, on the other hand, is
the result of overlapping eddy current paths. If one
assumes the time�spatial independence of jumps,
one obtains the expression for classical loss. Taking
into consideration the time- and spatial correlations
between jump sequences leads to the introduction
of an additional term, representing the so-called
excess (anomalous) loss, into the energy balance
equation.
Di�erent morphologies of SMMs used in prac-

tice imply di�erent mappings of �internal� quanti-
ties n (number of MOs) and Hexc (excess �eld).
Article [14] includes a compilation of formulas use-
ful for determining n = n(Hexc). In particular, the
relationship used for NO steel with 3.2 wt% Si is
n = Hexc/V0, where V0 is a phenomenological pa-
rameter related to microstructure. The value of this
parameter should be constant, however, the depen-
dence V0 = V0(Bm) disclosed in [15] for the NO
steel is an indirect proof of the existence of weak
points in Bertotti's theory.

Paper [14] additionally provides a more compli-
cated relationship for the dependence n = n(Hexc)
in microcrystalline 6.5 wt% Si steel, however, no
explanation for the speci�c choice of a second-order
polynomial in the form n = n0 +

Hexc

V0
+ (Hexc

V0
)2 is

provided.

From the practitioner's perspective, Bertotti's
theory reduces to the following relationship for total
power loss (valid for the simplest �internal� relation-
ship n = Hexc/V0)

P = K1f +K2f
2 +K3f

3/2, (1)

where K1,K2, and K3 are coe�cients, whose val-
ues depend on maximum �ux density. Note that
the values of exponents are �xed to �2� and �3/2�
� they correspond to two limiting cases of weak
and strong skin e�ect. The �rst term corresponds
to the Steinmetz relationship [16], the second one is
the relationship for �classical� eddy current loss [17],
whereas the third one is interpreted as the ex-
cess (anomalous) loss due to eddy currents induced
around moving domain walls.

In [4], it is argued that the distinction be-
tween macroscopic and microscopic eddy currents
in SMMs is hardly possible, and thus loss separa-
tion into three terms is somewhat arti�cial. In order
to overcome this de�ciency, an alternative relation-
ship was proposed

P = K4f +K5f
α, (2)

11
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TABLE IIIFitting results for the JNEX steel (Bertotti's formula).

Bm [T] Parameter Uncertainty Residual SSQE Adj. R-square

0.4

K1 0.0019 5.49× 10−5

6.18× 10−9 0.99317K2 2.05× 10−6 5.00× 10−7

K3 2.06× 10−5 1.17× 10−5

0.8

K1 0.00592 6.77× 10−5

9.39× 10−9 0.99929K2 6.26× 10−6 6.16× 10−7

K3 1.16× 10−4 1.44× 10−5

1.2

K1 0.01316 2.49× 10−4

7.37× 10−8 0.99827K2 1.19× 10−5 2.79× 10−6

K3 3.83× 10−4 5.82× 10−5

TABLE IVFitting results for the JNEX steel (two-term formula (2)).

Bm [T] Parameter Uncertainty Residual SSQE Adj. R-square

0.4

K4 0.00196 1.69× 10−5

6.16× 10−9 0.99432K5 5.38× 10−6 1.54× 10−7

α 0.9 �

0.8 K4 0.00631 4.83× 10−5

5.02× 10−8 0.99682K5 2.06× 10−5 4.39× 10−7

α 0.9 �

1.2 K4 0.01445 1.72× 10−4

4.62× 10−7 0.99133K5 5.40× 10−5 2.06× 10−6

α 0.9 �

where the fractional exponent α accounts for eddy
currents dissipated in all time- and spatial scales in
the sample. Two-term expression (2) was proposed
by analogy to the Poynting theorem. Let us notice
that K4 should take comparable values to K1 (this
term is the Steinmetz formula, representing quasi-
static loss due to hysteresis). Both (1) and (2) have
the same number of degrees of freedom (three pa-
rameters), which facilitates their comparison.

3. Modeling examples

For the NO steel grade M330-35A, modeling was
carried out for three values of magnetic �ux den-
sity (0.5, 1.0, and 1.5 T), which are often provided
in the catalogs of steel producers. The considered
frequency range was 5�400 Hz for this steel. In or-
der to facilitate �tting, the relationships (1) and (2)
were transformed (measured values of power loss
density were divided by excitation frequency), and
thus energy dissipated per unit mass and per vol-
ume was determined. The determined values of co-
e�cients along with their uncertainties and other
measures of quality of �t (residual sum of squared
errors (SSQE), adjusted R-square) are provided in
Tables I and II. Measurements were carried out us-
ing a Single Sheet Tester device connected to a dig-
ital computer used for signal waveform control and
data acquisition.

When �tting the P = P (f) dependence using (2)
for the examined steels, we tried to use the same
value of exponent α regardless of excitation �ux
density. For the examined NO steel, it was found
that the value which might be assumed for subse-
quent analysis was equal to α = 2, thus the relation-
ship (2) reduced itself to Bertotti's formula with the
third term skipped. Therefore, there would be no
need to introduce the concept of anomalous (or ex-
cess) loss in order to describe the energy dissipation
process for this material. This conclusion is consis-
tent with the observations by Brailsford [18]. Let
us notice that despite the residual sums of squared
errors, which are the measure for deviations of ex-
perimental data points from the predicted trends
(curves obtained with (1) or (2)), are smaller for
Bertotti's formula (1), the uncertainties in deter-
mined values of model parameters are considerably
higher. The estimated values of K4 are somewhat
higher than their counterparts from (1), i.e., K1.
Tables III and IV contain the �tting results for

the microcrystalline steel with increased silicon con-
tent. Since the explanation for the necessity to use
more complicated relationships for n = n(Hexc)
(leading to the altered formula for total loss) was
missing in [14], and, on the other hand, the pro-
ducer of this SMM claims that this steel is isotropic,
we used the same relationships (1) and (2) for �t-
ting as in the previous case. We used data for three
equidistant values of �ux density, namely 0.4, 0.8,
and 1.2 T, corresponding to three di�erent regions

12
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TABLE V

Loss separation for chosen data points (M330-35A).

Measured (1) (2)

1 T, 50 Hz 1.03 W
kg

1.03 W
kg

1.03 W
kg

Dynamic [%] 25 27.2 22.3

Hysteresis [%] 75 72.8 77.7

1.5 T, 50 Hz 2.39 W
kg

2.39 W
kg

2.39 W
kg

Dynamic [%] 22.5 22.5 20.6

Hysteresis [%] 77.5 77.5 79.4

TABLE VI

Loss separation for chosen data points (JNEX).

Measured (1) (2)

1.2 T, 50 Hz 0.816 W
kg

0.823 W
kg

0.814 W
kg

Dynamic [%] 13.3 20 11.2

Hysteresis [%] 86.7 80 88.8

0.8 T, 50 Hz 0.350 W
kg

0.353 W
kg

0.350 W
kg

Dynamic [%] 10.6 16.1 9.9

Hysteresis [%] 89.4 83.9 90.1

0.8 T, 400 Hz 4.285 W
kg

4.298 W
kg

4.331 W
kg

Dynamic [%] 39.6 44.9 41.7

Hysteresis [%] 60.4 55.1 58.3

on the magnetization curve. In this case, the value
of exponent α was �xed at 0.9. The considered fre-
quency range was 10�400 Hz for this grade. Mag-
netic measurements in this case were also carried
out using a computerized Single Sheet Tester de-
vice.
The �nal veri�cation of the usefulness of both

considered formulas is their predictive ability for
several chosen data points. We compared the results
of the computations with the experimental results,
where the loss separation was determined using the
method of two frequencies [19]. The results are com-
piled in Tables V and VI. It can be stated that both
relationships (1) and (2) yield quite comparable re-
sults as far as the values of total loss density are con-
cerned. The second formula describes the loss sep-
aration components slightly better than Bertotti's
formula for the microcrystalline JNEX steel, how-
ever, generally speaking, it can be stated that both
considered relationships were found to be useful for
practical computations.

4. Conclusions

Both two- and three-term formulas for power
loss separation can be useful for the prediction of
the quasi-static and dynamic component(s) of total
power loss in the case of the examined non-oriented
steel grades.

The quasi-static component is dominant at lower
frequencies, in particular at power frequency. It
can be noticed that its contribution to the to-
tal loss decreases with the increase in frequency.
Therefore, special attention will be paid in future
research to the more accurate calculation of the
model parameter related to this loss component for
a wider range of frequencies. Future work might
also be focused on a comparison of dependencies
Pmodel = Pmodel(f) for nominally the same mag-
netic material but measured with di�erent methods
(Epstein frame, Single Sheet or Strip Tester) in or-
der to analyze the e�ect of measurement technique
on the values of model parameters and predictive
capabilities of both considered power loss separation
schemes.
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Presented work concerns thermally activated 2D materials inducing an electric �eld in the presence
of a magnetic �eld. The thermomagnetic Nernst e�ect combines these quantities, and several works
reveal results that could be used for validation of the experimental setup before investigations of other
structures with potential thermomagnetic e�ects. The paper shows experimental studies on the ther-
momagnetic Nernst e�ect observed in pure nickel samples. The scope of experimental studies covers
relationships of the sensitivity of the Nernst coe�cient to magnetic �eld ranging to 1 T and tempera-
ture gradient above room temperature. The obtained results were discussed in relation to the referenced
works.

topics: direct current (DC), Nernst e�ect, thermomagnetic e�ect, nickel Nernst coe�cient

1. Introduction

Currently, there is a trend towards sources of
green energy exploitation and better energy con-
version methods [1]. The article �ts into these
trends because it refers to the Nernst e�ect as the
conversion of thermal energy into useful electrical
energy.
The Nernst e�ect (NE) is a thermomagnetic

phenomenon that combines thermal and electrical
quantities and establishes a physical link for uti-
lization as a direct energy converter between these
two domains [2]. Thermomagnetic e�ects (e.g., mag-
netic hysteresis loop or eddy currents) are often ex-
cluded from research interest because of their dis-
sipative and parasitic nature [3, 4]. Thermoelectric
and thermomagnetic e�ects play a crucial role in
linking thermal and electrical generators. The most
popular type of thermoelectric generator is based on
the Seebeck e�ect, which is mainly observed in semi-
conductors and provides good sensitivity in systems
where thermoelectric generators act as sensors. The
performance of these generators is still insu�cient
to make a breakthrough. Recent studies show that
thermoelectric generators (TEGs) have the poten-
tial for further development and improvement.
A critical review of thermoelectric e�ects pro-

vided a breakthrough by highlighting the giant
Nernst e�ect observed in URu2Si2 samples [5]. Sev-
eral papers show signi�cant values of the Nernst
coe�cient and achievable voltages, providing

encouraging indications of materials in which the
Seebeck e�ect is signi�cantly higher. In paper [6],
signi�cant evidence is given that the thermal cur-
rent and the electron current are compatible. Thus,
in the Nernst e�ect, there can be a self-replication of
the lift current due to the compatibility of the ther-
mal and electron currents. In thermoelectric mate-
rials, the opposite phenomenon occurs, where the
thermal current counteracts the electron current,
and thus thermoelectric e�ects have a self-damping
mechanism [7]. An interesting solution has also been
presented in works [8, 9], where the authors show
the combination of both thermoelectric and ther-
momagnetic generators [10]. The same situation oc-
curs when observing the spin Seebeck e�ect (SSE),
where the voltage due to SSE and the Nernst e�ect
appear simultaneously. Very often the presented re-
sults on SSE are strongly distorted by the parasitic
(NE) [3, 4]. Several papers show that NE can be
used in direct energy conversion systems [11], but
they do not represent a breakthrough.
There are several works showing that research is

being carried out in the area of thermogenerators
using the Nernst e�ect [3, 5]. The scienti�c papers
do not con�rm each other to determine the most
promising direction for this technology. With this
in mind, the authors of this paper wish to pro-
vide an overview of NE in the most commonly used
nickel samples and will present a comparative anal-
ysis. The lack of convergence in the presented data
leads us to attempt to revise the experimental re-
sults with our own experiment.
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2. Overview of the Nernst e�ects

Three Nernst e�ects are distinguished in the sci-
enti�c literature [12]. The �rst of these is the Nernst
e�ect (NE). The NE is a thermomagnetic e�ect in
which a temperature gradient in the presence of a
magnetic �eld results in an electric �eld due to the
de�ection of di�using electrons by the Lorentz force.

In metals, NE is the generation of a transverse
electric �eld ENE when a perpendicular external
magnetic �eld Bex is applied to the sample and a
temperature gradient ∇T is present in the plane of
the sample (Fig. 1) [8, 9]. This means that the elec-
tric potential is attainable if the product of the �eld
strength and the temperature gradient is non-zero
and the �eld strength increases. The resulting elec-
tric �eld is expressed as the product of the magnetic
�eld, the temperature gradient, and the Nernst co-
e�cient Q0 and is given by

ENE = Q0

(
Bex ×∇T

)
. (1)

In ferromagnets, the observed electric �eld can con-
tain two components that depend on the source of
the magnetic �eld. The electric �eld is proportional
to the external magnetic �eld whose origin is outside
the sample. The second component is due to the in-
trinsic magnetization M of the residual �eld and is
known as the anomalous Nernst e�ect (ANE) [13].
The resulting electric �eld can be expressed as

E = ENE+EANE = Q0 (Bex×∇T )

+QS (µ0M ×∇T ) . (2)

Another simpli�ed approach is presented in pa-
per [14], where the electric potential E is described
as

E = QH B
dt

dx
. (3)

In this case, the dependence of the electric potential
E is the result of the interactions between Nernst
coe�cient Q, the intensity of the magnetic �eld
H, the breadth of the specimen B, and the pri-
mary temperature gradient dt/dx. ANE is associ-
ated with high remanence materials. The obtained
electric �eld values are usually very small, but they
can be measured.

There is also the planar Nernst e�ect (PNE) [15],
but it is not considered in this work.

Despite some signi�cant work and the discov-
ery of the giant Nernst e�ect, there has been no
progress in the development of NE and related ef-
fects. On the other hand, there is no conclusive
evidence that these e�ects are useless. TMEs are
not popular because they do not represent a po-
tential for large-scale energy conversion systems,
but the continuing development of technology al-
lows the use of micro-generation sources in ultra-low
power devices where, in our opinion, these e�ects
could �nd application as generation e�ects in energy
converters.

Fig. 1. The diagram of the electric potential E,
the intensity of the magnetic �eld Bex, and the
temperature di�erence representing (a) the classi-
cal and anomalous Nernst e�ect and (b) the planar
Nernst e�ect.

This study conducted experimental measure-
ments of the Nernst e�ect (NE) in nickel and com-
pared the results with those presented in existing
publications. The current investigation extends the
temperature range and enhances measurement ac-
curacy, providing new insights into NE in nickel.
While previous analyses focused on NE in pure ele-
ments, this study o�ers a more comprehensive un-
derstanding of the phenomenon. Papers [14, 16] pro-
vide selected measurement data and adjust a predic-
tive curve for NE in nickel. This study aims to �ll
the data gap left by previous studies, which were
extensive but lacked completeness and had a lim-
ited number of measurement points. Our research
was carried out within the temperature range typ-
ical of human environments, and the results were
compared with existing scienti�c data.

3. Preparation and measurements

The thermomagnetic Nernst e�ect was investi-
gated in nickel samples under magnetic �eld excita-
tion of 1 T in the temperature range of 263�232 K.
Samples with overall dimensions 20 × 4 × 0.2 mm3

were tested in a transverse arrangement, i.e., in
one in which the applied magnetic �eld vector was
applied transversely to the temperature di�erence
along the sample length, as shown in Fig. 1a [12].
Prior to comparative analysis, all necessary results
and relevant coe�cients had been normalized. Units
of physical quantities were converted to be in agree-
ment with the SI unit system.
The nanovoltmeter Agilent 34420A was used to

measure the Nernst voltage. High accuracy and res-
olution are required as typical Nernst voltage values
are in the order of a few µV [7]. The source of the
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TABLE ISummary of instrumentation accuracy.

Device Accuracy Abs error

Lake Shore 475 DSP

gaussmeter
0.05% RDG 0.3 mT

Agilent 34420A

nanovoltmeter

50 ppm RDG

+ 20 ppm FSR
0.1 µV

Keithley DAQ6510

4-wire thermometer
0.06◦C RDG 0.26◦C

Omega PT100 sensor 0.2◦C RDG

constant and homogeneous external Bex magnetic
�eld is an electromagnet from Dexing Magnet, with
�eld strengths ranging from a few mT to 2 T
in the air. Lake Shore 475 DSP gaussmeter with
HMMT-6J04-Vf test probe was used to measure the
magnetic �eld applied under tests. The test bench
holder consists of three pairs of voltage probes, al-
lowing for the simultaneous measurement of up to
three samples (e.g., reference samples and a tested
sample). Samples under test were placed in a ther-
mostatic chamber to ensure constant ambient tem-
perature and the applied ∆T between two sides
of the tested samples (Fig. 1). The temperature
inside the chamber and ∆T were controlled us-
ing a high-performance, low-noise LTC1923 Ana-
log Devices thermoelectric temperature controller.
Temperatures were measured by means of Keith-
ley DAQ6510 multimeter and Omega PT-100 sen-
sors (accuracy class 1/3B). Instruments were auto-
calibrated, zero reference level was adjusted, and
NPLC averaging was enabled. Instruments' accura-
cies were collected in Table I.
The process of measurement involves taking si-

multaneous readings from probes measuring Nernst
voltages and the value of applied magnetic �eld
strength on the surface of the test samples. At each
measuring point, more than 100 measurements are
taken, and the �nal result is the average of these
measurements. The system repeatedly exposes the
samples to an external magnetic �eld of up to 0.6 T
with a �xed step throughout the cycle (Fig. 2).

4. Results and discussion

The relationships between the potential VNE and
biasing magnetic �eld Bex are depicted in Fig. 3.
Measurements were carried out in the steady state.
The measurements were repeated a given number
of times for each setup of magnetic �eld and tem-
perature di�erence. The paper presents averaged re-
sults that demonstrate the comparable magnetiza-
tion characteristics of nickel. Saturation occurs at
around 50 mT, representing the maximum value
achieved by the potential VNE. The voltage peaks
are observed at∆T = 60◦C. Our �ndings are consis-
tent with results published in other papers [14, 16].

Fig. 2. The schematic diagram of (a) tested Ni
sample and (b) thermostatic chamber with mea-
surement setup.

Fig. 3. The Nernst voltage as a function of the
magnetic �eld at selected temperatures.

Figure 4a and 4b compares the obtained measure-
ments with previously published �ndings [14, 16].
A.W. Smith examined two samples of pure nickel
(black dashed line and blue dotted line) [16]. The
red and the purple straight lines represent data ob-
tained by the authors of the present study. The rela-
tionship between the resulting voltage VNE, temper-
ature di�erences ∆T , and external magnetic �eld
strength Bex are consistent with the predictions
of the theory of the thermomagnetic Nernst e�ect
in ferromagnetic materials [4]. These exhibit simi-
lar magnetization characteristics to that of nickel.
Saturation transpires approximately at 40 mT,
which marks the highest value attained by the volt-
age VNE. The voltage reaches its peak at∆T = 60◦C
in this study, whereas A.W. Smith's research in-
dicates that the maximum value occurs between
300�340◦C, followed by a decline, which is normal
and attributed to the Curie temperature. For nickel,
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Fig. 4. The Nernst voltage as a function of the
magnetic �eld at selected temperatures. (a) A
comparison of data obtained in this work (red
straight line) and data obtained by A.W. Smith [16]
(black dashed and blue dotted line) and by A.E.
Caswell [14] (dash-dotted green line). (b) The
Nernst coe�cient Q as a function of the magnetic
�eld at temperature di�erence ∆T ∼ 60◦C and
∆T ∼ 35◦C.

the Curie temperature is about 350◦C. A.E. Caswell
presented data for a pure nickel sample, depicted as
a green, dash-dotted line (Fig. 5).

The selected �eld-dependent Nernst coe�cient Q
for a ∆T ∼ 60◦C is shown in Fig. 4b. The rela-
tionship in the steady state is comparable to those
presented in work [16] for two di�erent materials.
An increase in temperature leads to a rise in the
number of unpaired electrons, which in turn re-
sults in an increase in the material's magnetic mo-
ment. According to the Curie�Weiss law, magnetic
susceptibility is proportional to the magnetic mo-
ment, and therefore, a temperature increase also
causes an increase in magnetic susceptibility. At
low magnetic �elds, the atomic moments of Ni are
chaotically oriented, leading to a linear increase in
magnetic susceptibility. As the magnetic �eld rises,
the atomic moments begin to align, resulting in a

Fig. 5. A comparison of the Nernst coe�cient Q
as a function of temperature T obtained in this
work (red rhombus) and data obtained by A.W.
Smith [16] (blue circled and black squared line) and
A.E. Caswell [14] (green triangulated line).

decrease in magnetic susceptibility. At su�ciently
high �elds, all atomic moments align, and the mag-
netic susceptibility reaches a saturation point [16].
The highest recorded value of Q was 26.6 µV/K at
approximately 40 mT. This result was con�rmed by
Smith, who obtained a similar value of 26.8 µV/K
under the same conditions. The di�erence be-
tween the two measurements was only 0.75%,
which is within the permissible error of the applied
nanovoltmeter.
The authors of previous studies [14, 16] have con-

ducted measurements and �tted a curve to char-
acterize the Nernst e�ect in this material. How-
ever, these investigations were not exhaustive and
included only a limited number of measurement
points. In contrast, our current study has under-
taken comprehensive measurements across a tem-
perature spectrum typically encountered in the hu-
man environment, which holds signi�cant potential
for thermoelectric generation applications. We ob-
served that the maximum value of the Nernst co-
e�cient, Q, which is 158 µV/K, was achieved at a
temperature of 340 K.

5. Conclusions

The study has shown that the value of the Nernst
voltage in the nickel samples is in agreement with
the literature data. The investigations also show
a strong dependence of the Nernst voltage on the
magnetic properties of the substrates. The e�ect ob-
served in nickel means that this type of substrate
cannot be used in thermomagnetic generators. The
experimental setup for studying the Nernst e�ect
has been thoroughly veri�ed, and the results are
in agreement with other works. Experimental data
allows for a more complete understanding of the
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Nernst e�ect and its potential applications in en-
ergy conversion technologies. Moreover, the results
may indicate a new area of application of devices
using the Nernst e�ect as sensors.
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The cumulative distribution functions can be used as the basis for hysteresis models. Here it is de-
scribed how, using only 3 parameters, including one representing the shape, hysteresis curves can be
constructed using symmetric distribution functions. The model is useful in the interpretation of mag-
netic Barkhausen noise data. The model also has a clear physical meaning because it represents the
distribution of coercivity inside the sample. An isotropic Stoner�Wohlfarth hysteresis was partially
modelled by a three-parameter cumulative distribution function of Gaussian hysteresis for the 1st and
3rd quadrants. Asymmetric distributions will provide better hysteresis adjustment, but these are four-
parameter models.

topics: hysteresis, magnetic Barkhausen noise (MBN), Stoner�Wohlfarth, cumulative distribution
function (CDF)

1. Introduction

Hysteresis modelling has been the subject of
many recent studies [1�7] because it allows, among
other things, a better understanding of the pro-
cesses related to the reversal of magnetization. The
main idea of this study is to use a function repre-
senting the shape of hysteresis. Cumulative distri-
bution functions (CDF) are a very reasonable choice
for describing the hysteresis form, as discussed in
this paper.
The inspiration for using the cumulative distri-

bution function comes from several sources, espe-
cially from the Benitez model [8] for the magnetic
Barkhausen noise (MBN). This model [8] assumes
that the envelope of the MBN signal can be divided
into two Gaussians and has previously been applied
to study the grain size e�ect [9]. The physical ba-
sis for the Benitez model [8] is that MBN can be
interpreted as a di�erential dB/dt [10]; see, for ex-
ample, the paper by H.J. Williams, W. Shockley,
and C. Kittel [11].
In the case of a soft magnetic material, even

in a quasi-static condition with a frequency near
zero, several di�erent processes take place inside the
hysteresis [12]: (i) irreversible rotation of domains,
(ii) irreversible domain wall displacement, (iii) cre-
ation and annihilation of domain walls, (iv) elim-
ination of �90◦ closure domains�, associated with
magnetostrictive e�ects. Thus, it is di�cult to cover
all these di�erent processes within a single model.
Besides, the fact that soft magnetic materials

have 3 easy axes (iron) or 4 easy axes (nickel) makes
it very di�cult to evaluate the magnetization pro-
cesses, also due to the di�culty of evaluating the
demagnetizing �eld [13, 14].

The sigmoidal shape of the hysteresis is due to
magnetocrystalline anisotropy. Otherwise, the hys-
teresis would be an ellipsoid, as assumed, for exam-
ple, in the superellipse model [15]. Cumulative dis-
tribution functions well re�ect the sigmoidal shape,
such as the error function, which is used to study
atomic di�usion processes [16].

One of the objectives here is to �nd a model with
a small number of parameters. For example, the
Jiles�Atherton (JA) model has 5 adjusting parame-
ters, as described in the Sablik�Jiles model for plas-
tic deformation [17]. However, even with 5 parame-
ters, the JA model was not able to �t or obtain the
experimental hystereses, which were modi�ed due
to the plastic deformation in electrical steels [18].
The reason is simple, namely the JA model im-
poses a Langevin function as the �skeleton� of the
curve. However, this is an unrealistic assumption.
Thus, the JA model can be considered a purely
phenomenological model. In other words, the JA
model only gives a geometric description of hystere-
sis. Therefore, other functions can be considered as
those representing the �hysteresis skeleton�. One of
such functions is the Gaussian distribution [19].

The Stoner�Wohlfarth (SW) model has been suc-
cessful in describing the complete hysteresis of 2:17
type SmCo magnets [20, 21], and the reason is that
the only reversal process in that case is coherent ro-
tation. Thus, as a starting point, the Gaussian CDF
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Fig. 1. Isotropic Stoner�Wohlfarth model.

Fig. 2. The dm/dh curve for the isotropic Stoner�
Wohlfarth model.

model will be compared with isotropic SW hystere-
sis. The derivative of any hysteresis is a distribution
function, and it represents portions of the sample
with reversal of magnetization promoted by a given
applied �eld.

2. Isotropic and anisotropic

Stoner�Wohlfarth model and its derivative

The isotropic Stoner�Wohlfarth (SW)
model [22, 23] is a case where there are only
3 parameters; 2 are the scale parameters related
to the abscise and ordinate, and the shape of the
hysteresis is due to texture � isotropic in the
case of Fig. 1. It is observed, even for this very
simple case, that the dM/dH curves only could
be represented by an asymmetrical distribution
(see Fig. 2).
In other words, the distributions obtained with

the dM/dH curves de�ne the shape of the
hysteresis. Then, by observing the derivative of

Fig. 3. Textured Stoner�Wohlfarth model; n=10.

Fig. 4. The dm/dh curve for textured isotropic
Stoner�Wohlfarth model; n = 10.

experimental hysteresis, a compatible distribution
can be chosen, and thus, the hysteresis can be
better modelled. In this paper, M is the magne-
tization, and H is the applied �eld, while m is
the reduced magnetization m = M/Ms, and h is
the reduced �eld h = H/HA, where HA is the
anisotropy �eld, and Ms is the saturation magne-
tization. The Stoner�Wohlfarth model uses dimen-
sionless parameters m and h.
Figures 3 and 4 show the hysteresis calculated

with n = 10 and its derivative, respectively. As
aforementioned, this is a 3-parameter model, with
the texture given by n = 10 and Mr/Ms = 0.917,
because Mr/Ms = n + 1/n + 2. In the case of
the isotropic SW model, f(α) = 1 [22]. For the
anisotropic SW model, the magnetization m(h)
needs to be altered according to the distribution,
i.e.,

m∥ =

2π∫
0

dα f(α) cos(α−φ) sin(α)

2π∫
0

dα f(α) sin(α)

. (1)
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Here, in Figs. 3 and 4, n=10 [23] was used with the
distribution given by

f(α) = cosn(α). (2)

The conclusion from both Figs. 2 and 4 is that
the distributions dM/dH obtained from SW hys-
teresis are asymmetrical. Thus, it is quite possi-
ble that the Gaussian function is not the best
option for representing the hysteresis in Figs. 1
and 3 because Gaussian instead has a symmetrical
distribution.
As a title of curiosity, a �perfect square� hystere-

sis would be obtained with n = ∞. By making
dM/dH, then for n = ∞ instead of the distribu-
tion, the line would appear at the point h = 1.
Thus, by increasing n, the squareness of the hystere-
sis increases, as well as the sharpness of the corre-
sponding distribution. Thus, by di�erentiating the
hysteresis curve, it is possible to establish methods
for determining the squareness, which is a relevant
parameter in some applications [24].

3. Cumulative distribution function:

Gaussian case

The integral of a distribution function is its cu-
mulative distribution function (CDF), here denoted
by Φ,

Φ =

∫
dx e−x2

. (3)

The most commonly used distribution is the �nor-
mal� or Gaussian distribution. But there are many
others, such as Cauchy�Lorentz, which is also sym-
metrical. In the case of the Gaussian distribu-
tion (3), there is a solution for the in�nite integra-
tion interval given by

Φ =

∞∫
−∞

dx e−x2

=
√
π (4)

� a famous result �rst obtained by Laplace. Note
that (3) can be solved numerically by means of a
Taylor series expansion.
Then, if the integral is to be equal to unity

or 100% by de�nition, it is necessary to divide it
by

√
π. If a constant a multiplies x2, as in the fol-

lowing expression

Φ =

∞∫
−∞

dx e−ax2

=

√
π

a
, (5)

then for obtaining the normalization
∫
dx f(x) = 1,

it is necessary to divide the integral (5) by
√
π/a.

As a consequence, the error function is de�ned
as

erf(x) =
2√
π

x∫
0

dt e−t2 . (6)

Fig. 5. E�ect of parameter s on the hysteresis
curve of the CDF Gaussian hysteresis model. All
curves used the same scale parameter p = 0.5. Thus,
all hysteresis have the same Hc.

Therefore, the cumulative distribution of a Gaus-
sian is given by the error function (erf), as follows

y =
1

2
erf

(
x√
2

)
. (7)

Cumulative distribution functions can be used as
hysteresis models, especially if the applied �eld al-
lows for proximity of sample saturation and, thus,
the hysteresis has a sigmoidal shape. In the case
of applied �elds distant from saturation, the hys-
teresis has an ellipsoid shape, and then the sig-
moidal hysteresis models are not valid. Thus, the
CDF model may not be suitable for describing mi-
nor loops. When plotted on the graph, (7) has a
sigmoidal shape. For (7), the center of hysteresis
at (0, 0) is obtained for y1 = y2 = y − 0.5, and
x1 = x− 0.5 and x2 = x+ 0.5.
The standard deviation s of the Gaussian func-

tion can be taken into account, as seen in

y =
1

2
erf

(
x

s
√
2

)
. (8)

Also, the shift parameter p promotes an alteration
in the hysteresis shape, and it is de�ned as xp =
x + p and xp = x − p, as seen in (8). Coercivity
is related to the parameter p, whereas permeability
is associated with the parameter s. For example,
increasing s has the e�ect of reducing permeabil-
ity, as observed in Fig. 5. The e�ect of the p pa-
rameter on hysteresis is depicted in Fig. 6. This is
only a 3-parameter model (in contrast with the JA
5-parameter hysteresis). A mean-�eld parameter, as
in the SW�CLC†1 model [20], can also be included if
necessary, increasing the number of parameters to 4.
It should be noted that in this model, for the same
p, the coercivity is the same, as can be observed in
Figs. 5 and 6.

�1CLC � Callen�Liu�Cullen
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Fig. 6. E�ect of parameter p on the hysteresis
shape of the CDF Gaussian hysteresis model. It
should be noted that, for same p, same coercivity.

In the CDF Gaussian hysteresis model, the scale
parameter of the abscise is p, whereas the shape
parameter is s. Thus, a third parameter related to
the ordinate � Ψ � is de�ned in

y = Ψ
1

2
erf

(
x

s
√
2

)
. (9)

The model is useful for application in the analy-
sis of Barkhausen magnetic noise data. Any other
probability function, such as, for example, Voigt or
Lorentzian, can also be used as the basis for sim-
ilar hysteresis models. The physical interpretation
of the parameter p is that it represents the coer-
cive �eld. The model, therefore, has a clear physical
meaning, namely, it gives the distribution of the co-
ercive force inside the sample, which may concern
di�erent regions (groups of grains) or individual
grains.
Another possibility for a symmetrical distribution

is the raised cosine distribution [25], i.e.,

y =
1

2Sc

[
1 + cos

(
x

Sc
π

)]
, (10)

and the respective CDF distribution given as

Φ =
1

2

[
1 +

x

Sc
+

1

π
sin

(
x

Sc
π

)]
. (11)

Here, Sc denotes the hysteresis shape parameter for
the raised cosine distribution. The Laplace distri-
bution [26] is also a possibility, i.e.,

y =
1

2SL
exp

(
− |x|
SL

)
, (12)

Φ =
1

2
exp

(
x

SL

)
for x ≤ 0, (13)

Φ = 1− 1

2
exp

(
− x

SL

)
for x ≤ 0. (14)

It should be noted that the CDF of the Laplace
distribution is di�erent for x < 0 and for x > 0
(see (13) and (14)). For the Laplace distribu-
tion, SL is the shape parameter. Both the raised

Fig. 7. SW isotropic hysteresis compared with the
CDF Gaussian hysteresis model. Model parameters:
s = 0.79, Ψ = 1.96, and p = 0.48.

cosine distribution and the Laplace distribution
are easy to integrate and do not present a very
complicated CDF.

4. Models comparison

In Fig. 7, the comparison of the CDF Gaussian
hysteresis model with the isotropic SW hysteresis
is presented. The �tting parameters are s = 0.79
and Ψ = 1.96. The parameter p was set to 0.48,
because in the SW isotropic model, the coercivity
is 0.48. In Fig. 7, it is noted that the adjustment
is only partial. However, by making the p param-
eter �exible, it was possible to model the 1st and
3rd quadrants of the SW isotropic curve, as seen
in Fig. 8.

5. Additional comments

The comparison of the two models in Fig. 7
shows the limitation of the CDF Gaussian hysteresis
model. However, a reasonable �tting was presented
in Fig. 8 for the 1st and 3rd quadrants of the hys-
teresis.
Modelling a hysteresis is a very laborious process

that involves trial and error to see if a given dis-
tribution can �t the experimental data. Instead of
�tting the hysteresis, �tting the derivative dM/dH
can be a more rapid method for �nding the hystere-
sis parameters.
Other functions can be considered. Unfortu-

nately, asymmetrical distribution functions have at
least 2 shape parameters, and this increases the
number of parameters to four. Even so, this is better
than the JA model with 5 parameters.
Alternative possibilities for the symmetric Gaus-

sian distribution are skewed distributions. Espe-
cially the asymmetric Laplace distribution [27]
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Fig. 8. SW isotropic hysteresis compared with the
CDF Gaussian hysteresis model. Model parameters:
s = 0.83, Ψ = 1.95, and p = 0.57.

could solve the problem of modelling hysteresis. An-
other possibility is the Weibull distribution [28].
The Gamma distribution is also an alternative [29].

The Gamma function was established by Euler
after studying the Wallis formula for π. This gave
its name to a family of integrals, i.e., the Wallis
integrals, which are solved using the Gamma func-
tion [30].

6. Conclusions

The cumulative distribution functions (CDFs)
can be used as the basis for hysteresis models. Here
it is described how, using only two additional con-
stant parameters, a sigmoidal hysteresis curve can
be constructed. The model is useful in the inter-
pretation of magnetic Barkhausen noise data. The
model also has a clear physical meaning because it
represents the distribution of the coercive �eld in-
side the sample. The model is �rst presented for a
Gaussian distribution function, but it can be easily
extended to Voigt, Lorentzian, or any other distri-
bution.

An isotropic Stoner�Wohlfarth hysteresis was
partially modelled by a three-parameter CDF Gaus-
sian hysteresis, but only in the 1st and 3rd quad-
rants. Asymmetric distributions will provide better
hysteresis adjustment, but these are 4-parameter
models.
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Iron-based rare-earth permanent magnets are in high demand due to a large number of their ap-
plications, including electric cars and cell phones. Alternatives to rare-earth permanent magnets are
discussed. Hard ferrites appear to be the simplest option for the replacement of rare-earth magnets due
to their easy processing and low cost. The possibilities of replacing NdPrFeB magnets are discussed on
the basis of the Bethe�Slater curve. Instead of developing alternatives to rare-earth magnets, research
should focus on cheap production of Nd and Pr.
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1. Introduction

Rare-earth permanent magnets are essential in
many applications, for example, motors of electric
cars [1], which may use 1�2 kg of NdFeB-type mag-
nets per vehicle. These magnets are described by the
stoichiometric formula RE2Fe14B, where RE (rare-
earth) element is neodymium or praseodymium,
and terbium or dysprosium can be added to increase
the operation temperature. NdFeB magnets are also
extensively used in loudspeakers of cell phones and
in hard-disk motors [2]. The large number of appli-
cations has led to a large increase in demand, which
has driven up the price of rare-earth elements Nd,
Pr, Dy, and Tb.
Reports by the U.S. government [3] and the Euro-

pean Union [4, 5] indicate that electric vehicles and
o�-shore wind turbines can signi�cantly increase the
demand for rare-earth permanent magnets in the
forthcoming years.
The present study discusses possible alternatives

to rare-earth magnets of the REFeB family. Possi-
ble ferromagnetic compounds are discussed on the
basis of the Bethe�Slater curve. From this analy-
sis, RE�Fe alloys with nitrogen or Mn-based alloys
with aluminum or bismuth appear to be good can-
didates. However, phase instability problems pre-
clude large-scale commercial utilization of SmFeN
or MnAl compounds.
SmCo-based magnets use cobalt, which is in high

demand due to a large number of applications, such
as batteries in electric cars. Therefore, cobalt-based
magnets are not an option for replacement of NdFeB
magnets due to the high price of cobalt.

The most clear alternatives for NdFeB are bar-
ium and strontium ferrite magnets, which have
the formula BaFe12O19 or SrFe12O19. These mag-
nets are oxides and have very simple processing.
Whereas ferrite magnets are in the range of 3�7
US$/kg [6, 7], NdFeB magnets are at 50 US$/kg or
more. Thus, although the maximum energy product
of ferrite magnets is 10% of NdFeB, ferrite mag-
nets are an option when there is no volume limi-
tation. As ferrites are oxides, they have low resis-
tivity and can be an interesting option in rotating
machines.
Ores containing Pr and Nd, for example, mon-

azite, are very abundant around the world. Thus,
Nd and Pr can become cheap thanks to better tech-
nologies for concentrating rare-earth elements from
ore, as well as improving rare-earth oxide separation
methods [8, 9] for magnet manufacture.

2. Rare-earth elements

Rare-earth elements are not particularly rare, but
they were �rst identi�ed in an ore from Ytterby
(Sweden) [10], which was considered rare at that
time. Earth was the name given to the calcinated
residues in the late XVIII century. Rare-earth el-
ements are not very common in Europe, but as
a phosphate monazite REPO4, they are found in
many parts of the world [11], for example, on the
shores of Brazil and the United States [12] as mon-
azite sand. Some rare-earth minerals, such as mon-
azite and xenotime, have also a signi�cant amount
of thorium and uranium. Uranium has applications
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TABLE I

Rare-earth proportion in some possible mining sites in Brazil compared with the Mountain Pass Mine in California,
USA.

CBMM Araxa

(Minas Gerais)

monazite

Morro do Ferro

Poços de Caldas

(Minas Gerais)

monazite

Serra Verde

(Goiás)

ionic clay

Pitinga

(Amazonas)

xenotime

Caldeira

Poços de Caldas

(Minas Gerais)

ionic clay

Mountain Pass

(California, USA)

bastnaesite

La2O3 30.6 26.6 32.1 0.5 46.8 33.79

CeO2 44.1 48.7 4.2 5.0 18.3 49.59

Pr6O11 4.6 5.0 5.9 0.7 6.5 4.12

Nd2O3 15.3 13.7 19.3 2.2 17.9 11.16

Sm2O3 1.58 1.5 3.3 1.9 2.0 0.85

Eu2O3 0.38 0.4 0.2 0.2 0.5 0.105

Gd2O3 1.28 0.9 3.2 4.0 1.4 0.21

Tb4O7 0.12 0.1 0.5 1.0 0.2 0.016

Dy2O3 0.42 0.5 3.2 8.7 0.8 0.034

Ho2O3 0.06 0.1 0.7 2.1 0.1 0.004

Er2O3 0.15 0.2 2.0 5.4 0.3 0.006

Tm2O3 0.01 � 0.3 0.9 0 0.002

Yb2O3 0.06 0.2 1.8 6.2 0.3 0.002

Lu2O3 0.01 0.02 0.3 0.4 0 < 0.01

Y2O3 1.29 2.0 23.0 60.8 4.7 < 0.13

Fig. 1. Abundance of elements in the crust of
Earth. In the red box � a lanthanide series. Ele-
ments with odd atomic numbers are less abundant,
which con�rms the Oddo�Harkinks rule.

in nuclear plants, but thorium has virtually no ap-
plications, and thorium disposal is usually a signif-
icant and expensive problem.

Figure 1 was constructed from data provided by
Lide [13]. Light rare earths (Ce, La, Pr, and Nd)
are abundant, but heavy rare-earth elements such
as Tb, Ho, and Eu are scarce. This is re�ected in the
ores, as can be seen in Table I. The data in Table I
was presented in a previous study [14], and now it
is updated with data from the Caldeira project in
Poços de Caldas (Minas Gerais, Brazil) [15]. For
comparison, data from the Mountain Pass mine
near Las Vegas in the United States [16] is also in-
cluded. After the bankruptcy of the Mountain Pass
mine in 2015 [17], many rare-earth mining projects

TABLE II

Polarization of saturation, anisotropy �eld, and Curie
temperature of 2:14:1 compounds.

Js [T] µ0HA [T] TC [◦C]
Ratio

µ0HA/Js

Y 1.41 2.0 298 1.4

Ce 1.17 2.6 150 2.2

Pr 1.56 8.7 296 5.6

Nd 1.6 7.7 312 4.8

Gd 0.89 2.5 387 2.8

Tb 0.70 22 347 31.4

Dy 0.71 15 325 21,1

Ho 0.81 7.5 300 9.3

in Brazil were either postponed or canceled. Many
projects have been announced in Brazil recently,
i.e., in 2023, aiming at the extraction of rare-earth
elements from the ionics clays. Deposits containing
ionic clays have gained much attention recently [18],
and one of the reasons is the larger amount of heavy
rare-earth elements, as can be seen in Table I. In
contrast, the Mountain Pass bastnaesite mine has
only traces of dysprosium and terbium (see Table I).
It can also be observed in Table I that most of the
ores contain Pr and Nd in an approximate propor-
tion of 1:3, con�rming the Oddo�Harkins rule [19].
Nd and Pr are not usually separated in the pro-
duction of a magnet, and this alloy is commercially
available under the name didymium. The separation
of neodymium and praseodymium is a very di�cult
task due to the chemical similarities between these
elements [20�24].

27



M.F. de Campos

Fig. 2. Chain e�ect. Reversal of magnetization in a given grain provokes a chain or cascade e�ect, with the
inversion of the magnetization in the neighbor grains. A high ratio µ0HA/Js avoids the chain e�ect.

TABLE III

Chemical composition of some magnets found in mo-
tors of electric vehicles, according to S. Munro [35].

Tesla Model 3

magnet

�standard automotive

magnet�

Dy 1.19 3.47

Nd 23.01 19.90

Pr 7.70 6.67

Sm 1.42 0.86

Fe 57.38 62.51

Co 1.72 1.79

Cu 2.11 1.10

Al 0.96 1.37

O 4.50 2.33

Table II was compiled on the basis of several
sources [25�30]. The three most relevant intrinsic
properties are TC � Curie temperature, Js � po-
larization of saturation, HA � anisotropy �eld, and
Ms � magnetization of saturation. Dy, Ho, and
Gd are commercially available as ferroalloys, and
the only explanation for this is that they are used
as alloying elements in NdPrFeB magnets. Alloy-
ing iron reduces the melting temperature, making
it easier to obtain Fe�Dy, Fe�Gd, and Fe�Ho rather
than the pure metals Dy, Ho, and Gd. Dysprosium
and terbium are essential for increasing the oper-
ation temperature in NdPrFeB magnets. Holmium
is a cheap alternative to dysprosium. Gd increases
the Curie temperature, as can be seen in Table II,
but it signi�cantly reduces the anisotropy �eld, and
thus, the Gd addition is used in the cheaper grades.
The addition of cerium has some signi�cant prob-
lems as it reduces both TC and HA, i.e., Ce reduces
the operation temperature and coercivity. Also, be-
cause Ce has a lower magnetization of saturation,
it �dilutes� the magnetic moment, and this im-
plies a larger volume of the magnet. In conclusion,
cerium-based magnets cannot compete with barium
or strontium magnets because they would be very
expensive given the similar properties of ferrites at
room temperature.

TABLE IV

Magnet mass per motor of electric vehicle.

Vehicle Magnet mass [kg]

Honda Accord M 0.755

Honda Accord G 1.24

Nissan Leaf 1.895

Toyota Prius 2010 0.768

Toyota Prius 2004 1.232

Lexus LS 600h 1.349

Toyota Camry 0.928

Toyota Prius 2017 0.544

BMW i3 2016 2

Tesla Model 3 1.783

Jaguar I-PACE 1.85

Volkswagen ID.3 2.5

Chevrolet Volt 1.57

The non-written rule is that the anisotropy �eld
should be well above saturation to avoid a chain ef-
fect. For example, the ratio µ0HA/Js for Nd2Fe14B
is 4.8 (see Table II). It is very di�cult to �nd
phases with such high ratios. One of them are the
BaFe12O19 ferrites, with HA = 16 kOe [31] and
Ms = 4.8 kG [32], where such ratio is 3.3 and also
TC = 450◦C. In addition to the chain e�ect [33]
exempli�ed in Fig. 2, grain size is another very rel-
evant variable. The grain should be the size of a
single domain. Thus, melt-spinning is a common
practice used for hard magnetic materials to ob-
tain nanocrystalline magnets. Another possibility is
shape anisotropy [34], which allows the use of even
very soft phases as hard magnetic materials.
Munro [35] mentioned the chemical composition

of magnets used in electric vehicles. It is observed
in Table III that such a magnet has a 1:3 Pr/Nd
proportion and contains some dysprosium (and not
Ho, Gd, or Ce). Table IV is an update of the ta-
ble of a previously presented study [36]. Table IV
shows that the electric vehicle industry has a clear
preference for motors with magnets in the rotor.
This saves energy and increases motor e�ciency,
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resulting in increased autonomy of the electric car.
However, high-e�ciency motors without magnets
are possible, as in the old Tesla Model S and
Audi e-tron [37]. General Motors Company (GM)
tried a motor with ferrite in the 2015 Chevro-
let Volt [38], but gave preference for NdFeB-type
in later versions†1. Motors with ferrite-based ro-
tors are less e�cient than those with NdFeB-based
rotors [39, 40].
In many designs, the magnets are inserted in the

rotor following a �double V� topology [41], which
allows for a reduction of the cogging torque [42], a
typical problem at low speeds. Tesla made a signi�-
cant innovation with the carbon-wrapped rotor [43],
enabling the elimination of the radial and tangen-
tial iron ribs of the rotor, thus avoiding problems of
magnetic �ux leakage [44, 45]. These high-e�ciency
designs in general request NdFeB-type magnets, us-
ing 0.5�2.5 kg of magnets per motor, as can be seen
in Table IV.
Also, wind turbines request NdFeB-type mag-

nets, especially for giant o�-shore turbines [46, 47].
Thus, the question is about the possibility of replac-
ing rare-earth magnets with other types of magnets.
Although some elements are truly scarce, such as
terbium and dysprosium, light rare-earth elements
such as Nd and Pr are very common, and monazite,
for example, is a very common ore, found in almost
the entire world. Thus, research should be directed
towards cheaper production methods for Nd and
Pr, as well as avoiding Tb and Dy, and this can be
obtained with better designs that allow lower oper-
ation temperatures.

3. Alternatives for rare-earth

permanent magnets

Before discussing possible phases, it is worth
adding that a relevant hint can be given by the
Stoner�Wohlfarth (SW) model [48]. The energy E
is here

E = −HMs cos(θ−α) +K1 sin
2(θ), (1)

where K1 is the magnetocrystalline anisotropy. The
angle between the external �eld H and the crystal
easy axis is α. The angle between Ms and the easy
axis is θ. By making dE/dθ = 0 and d2E/dθ2 = 0,
the critical �eld hc for irreversible rotation is ob-
tained as

hc =
(1− t2 + t4)1/2

1 + t2
, (2)

and it is a function of t, where t relates to α by [49]

t = (tan(α))1/3. (3)

�1Chevrolet gave similar names for di�erent vehicles;
Chevrolet Volt is a hybrid, whereas Bolt is a full battery
car.

Fig. 3. Reduced �eld hc as a function of angle α.
According to the Stoner�Wohlfarth (SW) model,
there are regions of reversible and irreversible rota-
tion. For −0.5 ≤ hc ≤ 0.5, there is always reversible
rotation.

TABLE V

Polarization of saturation and anisotropy �eld for
hard ferrites, Mn-based compounds, and nitrogen-
related compounds.

Reference Js [T] µ0HA [T]
Ratio

µ0HA/Js

MnAl [50] 0.62 4.0 6.4

MnBi [50] 0.78 3.7 4.7

BaFe12O19 [50, 51] 0.48 1.6 3.4

SrFe12O19 [50, 51] 0.46 1.95 4.3

α′′-Fe16N2 [52] 2.68 1.7 0.6

Sm2Fe17N3 [53] 1.54 14 9.1

According to Fig. 3, a useful criterion is that
the suitable phases for permanent magnets should
ful�ll µ0HA/Js > 2 to avoid the chain e�ect.
This limits considerably the possible candidate
phases.
Table V was constructed mainly based on

data from Luborsky [50], and the anisotropy val-
ues for Ba and Sr ferrites were recently deter-
mined [51] to be very close to the values reported by
Luborsky [50]. Also, data for nitrogen compounds
α′′-Fe16N2 [52] and Sm2Fe17N3 [53] are also in-
cluded in Table V. It is observed in Table V that
the manganese compounds MnAl and MnBi are ap-
pearing as possibilities for replacing hard ferrites.
Thus, among other possible candidates to replace
NdFeB and ferrites, the main other families are [54]
Fe16N2, MnAl and MnBi, and Sm2Fe17Nx mag-
nets, because a high anisotropy �eld is an essen-
tial condition. Again, it is worth recalling the cri-
terion µ0HA/Js > 2, and this criterion is satis�ed
by Sm2Fe17Nx, MnBi, and MnAl. The permanent
magnet market in 2022 [55] shown in Table VI, in
addition to ferrites and NdFeB, only mentions Al-
nico and SmCo.
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Fig. 4. The Bethe�Slater curve. Scheme based on
Hosford [58].

TABLE VI

Percentage of the 23 US$ billion world permanent
magnet market in 2022 [55].

Type of magnet % of the market

sintered NdFeB 58%

bonded NdFeB 6%

sintered ferrite 26%

�exible ferrite 4%

injection molded ferrite 3%

SmCo 1%

Alnico 1%

others 1%

According to data in Table VI, only NdFeB and
ferrites are disputing the market. The reason is sim-
ple, namely ferrite is very cheap, and other ma-
terials can not compete in terms of cost. Alnico
has some niche applications, essentially sensors, and
SmCo 2:17 has some high-temperature applications.
SmCo5 has been almost completely replaced by
SmCo 2:17, i.e., SmCoFeCuZr. The �uctuation of
cobalt price also precludes a larger usage of Co-
based magnets such as SmCo 2:17, SmCo5, and Al-
nico. In SmCo5 magnets, 2/3 of the weight is cobalt.
As can be seen in Table VI, Alnico is the only com-
mercial magnet with a coercivity mechanism due to
shape anisotropy [56, 57].
Figure 4 is based on the Hosford version [58] of

the Bethe�Slater curve. It is semi-empirical, but it is
still used for the interpretation of experimental re-
sults [59]. The Bethe�Slater curve is considered to
be able to explain why stainless steels are not fer-
romagnetic. For example, the interatomic distance
in FCC iron is smaller: for BCC iron � PF = 0.68,
for FCC iron � PF = 0.74, where PF = packing
factor. It follows that stainless steel 304 with 18%
Cr and 8% Ni is not ferromagnetic.
Essentially, it is suggested in Fig. 4 that in-

creasing the separation between Fe atoms and be-
tween Mn atoms can make them ferromagnetic. In

manganese-based alloys, this is achieved by alloy-
ing Mn with large atoms: Bi, Al, and Ga. For iron-
based alloys, this is achieved by using interstitial
elements, such as boron or nitrogen. Thus, all sug-
gestions by the Bether-Slater curve were already ex-
ploited experimentally. Heusler alloys are ferromag-
netic, but their alloying elements were diamagnetic
or paramagnetic, as can be seen in the classi-
cal Cu2MnAl composition [60]. The Bether�Slater
curve also suggests rare-earth compounds, as can be
noted from the presence of gadolinium in Fig. 4.
However, to be permanent magnet, the candi-

date phase needs to have high magnetocrystalline
anisotropy in addition to ferromagnetism itself.
Besides, the phase diagram is decisive, and so
metastable phases are usually not suitable for com-
mercial application due to lack of reproducibility.
The commercial production of Mn-based alloys

has several problems: corrosion [61], metastable
phases [62], and di�cult processing. In 1980,
MnAlC was commercially available from Mat-
sushita, but its properties were hardly comparable
with Alnico magnets and had the drawback of ex-
pensive processing [63]. The recoil curves presented
by Abdelnour et al. [63] are similar to others found
in SmCo 2:17 magnets [64], SmCoCu [65], and bar-
ium ferrites [31] � and this implies that all of
them are the single domain size. This characteris-
tic is essential and explains why many studies em-
ploy melt-spinning. The reason is obtaining single-
domain particle size because this is a condition that
allows to maximize the coercivity.
Approximately 60 years ago, the Phillips Com-

pany did intense research to develop commercial
MnAl and MnBi magnets [62], reporting for MnAl
coercivity up to 6 kOe. However, in MnAl alloys,
the magnetic phase is metastable, and manganese
alloys oxidize easily, making the production of mag-
nets very di�cult.
Lodex was a material that used the principle of

shape anisotropy [32]. It was commercially available
but had a coercivity of only ∼ 1 kOe [66]. Daido
Steel has a bonded magnet made with melt-spun
Sm2Fe17Nx alloy in the catalog. A typical problem
in nitrogen-based alloys is the lack of reproducibil-
ity. The nitrogen expands the lattice. To reduce
internal stresses, the nitrogen atoms are expelled.
Thus, phase instability is a signi�cant issue in ni-
trogen magnetic alloys.
As almost all the possibilities given by the Bethe�

Slater curve [67�69] were already tested, replacing
NdFeB or barium and strontium ferrites is indeed a
very di�cult task.

4. Conclusions

It is di�cult to �nd permanent magnetic mate-
rials that can compete with ferrites (cost) or Nd-
FeB (performance). SmCo and Alnico still have

30



Are There Any Alternatives for Rare-Earth. . .

some niche applications. These are the principal
4 families of commercial permanent magnets. The
other main candidates are or were commercially
available.

Lodex and MnAlC were manufactured commer-
cially. SmFeN is also manufactured commercially.
However, these alternatives have problems com-
peting with traditional materials: Alnico, SmCo,
and especially ferrites and NdFeB. For a rare-earth
free phase to be able to compete with ferrites,
it is necessary that it has at least 50% higher
HA and 50% Ms than Sr and Ba ferrites. Ex-
cept for MnBi and MnAl, such materials do not
exist.

The Bether�Slater curve provides suggestions for
phases that can be used as permanent magnets. But
these suggestions were also exhausted.

Instead of researching new materials to replace
NdPrFeB magnets, research should focus on cheap
production of Nd and Pr. There are immense de-
posits of monazite in the world, containing signi�-
cant amounts of Nd and Pr. Terbium and dyspro-
sium, on the other hand, will always be scarce and
expensive.

The ratio µ0HA/Js is suggested as a tool to
evaluate the possibility of a given phase to be a
candidate for a permanent magnet. The criterion
is µ0HA/Js > 2 to avoid the chain or cascade
e�ect.
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The origin of iron losses in ferromagnetic materials is commented on, starting with the de�nition of heat.
The di�erent possible dissipative mechanisms inside a hysteresis curve, which originate heat, as well as
its relationship to the magnetic Barkhausen noise, are discussed in detail. The loss separation model is
better explained by using the concept of heat, especially to understand losses when eddy currents are
small (at very low frequencies).
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1. Introduction

Since the time of Fourier [1], heat has been dis-
cussed mathematically. The laws derived by Kirch-
ho� and Fick are analogous to Fourier's law of heat
transmission. Nowadays, heat is described essen-
tially as �jumping atoms.� In other words, heat is
explained as kinetic energy. Increasing temperature
manifests itself in an increasing �jumping frequency�
of atoms.

Atoms were a controversial subject in the XIX
century. It was only in the XX century, after
the study of the Brownian movement by Einstein,
Smoluchowski, and Perrin, that the concept of
atoms was widely accepted. This also in�uenced the
way heat was de�ned. As the de�nitions of heat in
the XIX century avoided mentioning the controver-
sial atoms, the concept of heat in the XIX century
was not very well formulated.

Here, the evolution of loss models over time is
discussed, starting with the earlier XIX-century
models of Heaviside [2] and J.J. Thomson [3]. As
the area of the hysteresis loop is heat, the con-
cept of atoms is important to understand the dif-
ferent dissipative processes that may happen in-
side the hysteresis cycle, as well as the loss sep-
aration. Epstein � the inventor of the Epstein
frame � used loss separation as early as 1907 [4].
Anomalous losses were discussed already in the
1930s by Legg, under the name �residual� instead
of �anomalous� [5]. The name �residual losses� per-
sists to this day for soft ferrites. Another rele-
vant development is Prigogine's principle of mini-
mum energy production. Thus, domain walls can

be understood as �dissipative structures� according
to Prigogine's theory [6]. As de�ned by Prigogine,
self-organization is possible without violating the
2nd law of thermodynamics. Domain walls are thus
interpreted as structures with self-organization.
In the present study, the di�erent possible dis-

sipative mechanisms inside a hysteresis curve (i.e.,
heat) are discussed in detail, as well as its relation-
ship with the magnetic Barkhausen noise (MBN),
including the mathematical relationship between
MBN and hysteresis.

2. The concept of heat

The area of the hysteresis loop is heat. Therefore,
a good knowledge of what heat is is relevant for
understanding losses. Here, the concept of heat will
be brie�y reviewed, with special attention paid to
historic developments.
The discussion about heat has a long history. It

can be traced back to Empedocles of Agrigento,
who correctly concluded the existence of air and
vacuum [7]. However, the de�nitions of Empedocles
about water, �re, and earth were incorrect. Only
after Lavoisier [8], it becomes clear that water is
H2O [9], and that �re is the result of combustion, a
reaction involving oxygen. And about the earth? It
seems that everything else was described by Empe-
docles as �earth.�
Evidently, in the Empedocles theory, atoms are

missing. Atoms were a controversial subject even at
the start of the XX century. The concept of atoms
by Demokritos was essentially mathematical: When
solving an integral f(x) =

∫
dx, dx can not be
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zero. Thus, dx should be �non-divisible� or �a-tom.�
This was important for the Archimedes exhaustion
method, and the modern version of it is named a
Riemann sum [10].
One of the most di�cult concepts in science is en-

ergy [11]. Energy is never absolute, it always needs
a reference. Energy always is a variation,∆E. Thus,
energy is not positive or negative. Instead of writing
E = mg d (m is the mass, g is the gravity accelera-
tion, d is the height), it is more accurate to express
∆E = mg∆d.
The XX century started with two equations [12],

i.e.,

E = kBT, (1)

E = hf, (2)

where T is the temperature, kB is the Boltzmann
constant, f is the frequency, and h is the Planck
constant. The Boltzmann constant �rst appeared in
the paper by Planck [13, 14]. In two simple expres-
sions, i.e., (1) and (2), one makes use of the Planck
constant, and another makes use of the Boltzmann
constant.
In (1), what is implicit is the concept of atoms.

According to (1), the temperature corresponds to
the energy. Atoms, however, were a subject of in-
tense discussion in the early XX century [15], and
Mach used to ask �did you see one?� Much later,
Binnig saw atoms [16].
As aforementioned, atoms were a very controver-

sial subject throughout the XIX century. It was only
in the XX century, after the study of the Brownian
movement by Einstein, Smoluchowski, and Perrin,
that the concept of atoms was widely accepted. This
fact turned out to have an impact on the de�nition
of heat. As the de�nitions of heat in the XIX century
avoided mentioning controversial atoms, the con-
cept of heat was not perfectly formulated. For ex-
ample, Maxwell's 1872 de�nition of heat [17] is ob-
solete because Maxwell avoided controversial atoms
at that time [18]. On the other hand, (1) translates
heat into �jumping atoms� (or oscillating atoms).
Maxwell equations were used long before atom the-
ory was accepted, for example by Heaviside to un-
derstand losses and the skin e�ect [19, 20].
From chemistry, the idea of an isomer indirectly

suggests the existence of atoms [21]. Maybe the �rst
indirect evidence of atoms is in the Fourier equa-
tion for heat. Fourier is cited by Fick [22], which
also cites Ohm [23]. Fourier profoundly in�uenced
physicists of the XX century, including Maxwell [24]
and Lord Kelvin [25]. Therefore, Ohm applied the
Fourier heat equation [23] to the di�usion of elec-
tricity in a conductor.
The Fick 1st law is given by

J = −D
∂C

∂x
(3)

for the one-dimensional case. Here, J is the �ux,
D is the di�usion coe�cient, and C is the concen-
tration; (3) is for the steady state.

The 2nd Fick law given by

∂C

∂t
=

∂

∂x

(
D
∂C

∂x

)
(4)

is valid when there is a variation of the concentra-
tion C with time. If D is independent of concentra-
tion, (4) becomes

∂C

∂t
= D

∂2C

∂x2
. (5)

The di�usion coe�cient D is given by

D = D0 exp

(
− Q

RT

)
, (6)

where D0 is the pre-exponential factor [26], Q
is the enthalpy variation, Rgas is the gas con-
stant, and T is temperature. There is a relation-
ship between Rgas and kB, given by Rgas = kBNA

(where NA is Avogadro's number). Thus, the en-
ergy barrier given by (1) appears in (6). The
same mathematics for solving heat problems can be
used for solving the problems of atom di�usion in
solids [27].
One of the last anti-atomists, Ostwald, surren-

dered to atom theory in 1908 [28]. Ostwald is fa-
mous in materials science due to the �Ostwald
Ripening� � the phenomenon responsible for pre-
cipitation hardening in aluminum alloys [29], a
method still used today for strengthening the wings
of airplanes [30]. Ostwald was the 1909 Nobel Prize
laureate in chemistry for catalysis [31], even with a
lack of perception of the actual origin of this phe-
nomenon.
Possibly the most relevant fact here are the

dates on which the papers were published: Ein-
stein, 1905 [32]; Smoluchowski, 1906 [33]; Perrin,
1910 [34]. This means that atoms were still debat-
able in 1908 [35]. Thus, other areas of science, such
as for example electrical engineering, neglected the
controversial atoms, especially until 1910.
Existence of atoms means the non-continuity of

matter. Matter can not be treated as a continuum if
atoms do exist. Besides, a complete revolution will
occur in 1914 [36], with the X-ray di�raction and
a series of implications. Then, the crystalline struc-
ture could be determined, and the atoms could be
approximated by a sphere (an ellipsoid, in fact) to
determine the crystalline structures. This is named
the �rigid sphere model� in which atoms are treated
as macroscopic spheres [37].
Then, after 1914, it becomes clear that �jump-

ing atoms� store energy or temperature in the crys-
talline structure, as given in (1). The higher the
jumping frequency, the higher the temperature.
Nevertheless, heating as the Joule e�ect P = RI2

was described much earlier, in 1840 (here P is
power, I is current, and R is resistance) [38].
Noise is sound. Sound is vibration. Thus, this dis-

cussion is also useful for understanding MBN �
the magnetic Barkhausen noise [39]. The noise indi-
cates dissipative processes, namely �jumping atoms�
(or oscillating atoms). In the analysis of MBN by
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Fig. 1. Ball-hill model for reversible and irre-
versible processes.

Stoner [40], there is no relationship between the
hysteresis curve and MBN [41]. Noise of transform-
ers [42] is an analogous phenomenon, indicating
that the loss of energy produces sound. As afore-
mentioned, noise is sound and sound is vibration.
As an example of the similarity between the

Fourier heat equation and electromagnetism, Lord
Kelvin's theory (1854) for the �telegraph equation�
was developed [25] in analogy with the Fourier heat
di�usion law. This is shown by

∂2V

∂x2
= RCp

∂V

∂t
. (7)

Here, V is the voltage, and Cp is the capacitance.
Heaviside introduced the electromagnetic induc-
tance term [43]; then (7) becomes

∂2V

∂x2
= RCp

∂V

∂t
+ LCp

∂2V

∂t2
, (8)

with L as the inductance. Materials scientists, in
contrast with electrical engineers, are typically in-
terested in concentration variation with time, as
in (5), which remains in modern use. Thus, equa-
tion (7), although very similar to (5), was written
di�erently. Nevertheless, the modern version of (7)
is (8), with the Heaviside inductance term.

3. Quasi-static losses

It is important to start by separating between ir-
reversible and reversible processes. There are both
types of domain wall movement: reversible and ir-
reversible. Also, there is domain rotation, both re-
versible and irreversible. Losses happen in irre-
versible processes.
Figure 1 uses the ball-hill analogy to illustrate the

reversible/irreversible process. If the ball goes to the
other side of the hill, then the process is irreversible.
Figure 2 illustrates reversibility/irreversibility us-
ing potential gravitational energy [44]. In Fig. 2,
if a block goes from (a) to (b) and then back to (a),
then the process is reversible. However, if the block
goes from (a) to (b) and then to (c), the process is
irreversible. Chen [45] also uses the ball-hill model
to describe the irreversible movement of the domain
wall.

Among the dissipative processes happening once
in each hysteresis cycle, resulting in the hystere-
sis losses component Ph, the following can be
listed [46]:

(i) Irreversible rotation of domains,

(ii) Irreversible domain wall displacement,

(iii) Creation and annihilation of domain walls,

(iv) Elimination of �90◦ closure domains� associ-
ated with magnetostrictive e�ects.

Microeddy currents surrounding domain walls
could generate losses when a domain wall moves
between di�erent pinning sites [47]. To avoid this
e�ect, Stewart [48] made the domain wall move very
slowly in a very low-frequency experiment. Even so,
losses did not become zero. The explanation was
given by Shockley in the discussion at the end of
the article [48]: �there will be certainly irreversible
energy losses due to the fracture of Néel spikes.�
Therefore, Shockley, in 1951, was already indicat-
ing another dissipative mechanism, not only heat-
ing by the Joule e�ect according to the basic for-
mula P = RI2 [49]. Therefore, the suggestion by
Becker [50], and especially by Graham [51], that
the only cause for losses are microeddys [51] has no
experimental basis. Besides, the noise is evidence
of the dissipative process. Sound means vibration.
Thus, �jumping atoms� (or oscillating atoms) are
behind the occurrence of transformer noise [52, 53].

4. History of loss separation

Every theory needs to be experimentally tested.
This was Lavoisier's way of ruling out the old theory
of phlogiston [54]. Also, calculations by Heaviside
appeared in order to explain experimental observa-
tions [55]. According to Russell (1904) [56], the eddy
current loss problem was �rst solved by Heaviside
(1884) for wires [2] and later by J.J. Thomson for
sheets (1892) [3]. In 1904, the classic loss expression

Pcl =
π2 f2 e2 B2

max

6ρ
(9)

could be found in textbooks such as that of Rus-
sell [56]. Here, B is the induction, f is the frequency,
e is the thickness, and ρ is the resistivity. Gra-
ham [51] could not �nd the original source of (9).
The separation between the eddy losses and the hys-
teresis losses Ph is mentioned not only in the 1904
book of Russell [56] but also by Morris (1906) [57]
and Epstein (1907) [4]. Thus, at the beginning of
the XX century, loss separation was commonplace.
The exact origin of the so-called �anomalous loss

component� (Pa) is less known. Instead of �anoma-
lous losses,� Legg in 1936 [5] uses the term �residual
losses� and �nds it by the di�erence Pt − Ph − Pcl,
identical to today's de�nition of anomalous losses.
Therefore,

Pa = Pt − Ph − Pcl. (10)
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Fig. 2. Illustration of a reversible and irreversible process. The points at the center of the blocks denote
the center of gravity. It should be noted that d1 > d2 > d3 and that all heights d are de�ned for the same
point of reference. (a) Metastable equilibrium, E = mg d2. (b) Unstable equilibrium, E = mg d1. (c) Stable
equilibrium, E = mg d3.

Fig. 3. Typical domain wall structure in GO
steels, displaying the 180◦ domain walls.

The name �residual losses� remains in use for MnZn
ferrites [58�62]. In (10), Pt is the total losses, and
Ph is the quasi-static losses, given by

Ph = f

∮
dH B. (11)

Actually, (9) neglects the skin e�ect, which can
be signi�cant at high frequencies or large thick-
nesses [63]. The �almost undecipherable papers� of
Heaviside [55] are among the �rst to address the
skin e�ect [43]. Equation (9) was deduced for con-
stant permeability, which is an assumption far from
reality.
Based on the Pry and Bean model [64], the

anomalous losses can be expressed by [65]

Pa =
k

n ρ

√
Gs f

3/2 e2 B2
max, (12)

and so Pa ∝ x/e, where x is the distance between
the domain walls; n is the number of domain walls,
n ∝ 1/x; and c = k/n (n is dimensionless) [65],
where k is experimental constant.
The dependence of anomalous losses as a func-

tion of frequency as f3/2 is explained by Haller�
Kramer [66, 67] and Sakaki [68], especially by ob-
serving the domain wall structures as a function
of frequency [69]. Thus, (12) is similar to (9) ex-
cept for frequency. The theoretical paper of Haller
and Kramer [67] does not mention loss separation

anywhere, but, in fact, makes use of loss separa-
tion by mixing energies due to eddy-current dissi-
pation and domain nucleation�annihilation dissipa-
tion. The dependence of Pa with the square of the
thickness has been observed experimentally [70, 71].
Equation (12) was con�rmed experimentally for a
series of alloys with di�erent resistivities by Hong
et al. [72].
In heavily deformed electrical steels, it was found

that the anomalous losses were near zero [73], but
the reported numbers were slightly negative, as
noted in [74]. After that, one of the authors of the
2012 study [73] � F.J.G. Landgraf � examined
those steel sheets with a micrometer and discovered
that the thickness values used in the calculations of
the 2012 paper [73] were slightly overestimated. Af-
ter this correction was done, the anomalous losses
were found to be zero! This result is in remark-
able agreement with (12): If Gs is small then Pa,
is near zero; or if n is high, then Pa is also near
zero.
Of fundamental relevance to the loss separation

model is the experimental observation that mag-
netic aging only a�ects the hysteresis losses (Ph)
but not the other part, related to Pa. Thus, Pt =
Pp+Pa+Ph, but the part Pp+Pa is a constant under
magnetic aging [49]. In 2006 [49], we were unaware
that this experimental observation was reported by
Epstein in 1907 [4] and by Beckley and Thompson in
1970 [75]. This result, namely that magnetic aging
only a�ects hysteresis losses Ph, has been con�rmed
in several other studies [76, 77].
Loss separation in grain-oriented electrical steels

has led to complex results [78], especially when
considering the transverse direction [79]. For typ-
ical non-oriented electrical steels, a slight im-
provement of texture decreases both the hys-
teresis losses Ph and the anomalous losses com-
ponents Pa. The complex results of Pluta [78]
can be understood by the analysis of the do-
main wall structure in the grain-oriented (GO)
electrical steels, see Fig. 3, which only displays
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TABLE IQuantitative e�ect of several variables on three loss components.

Variable Classical eddy Hysteresis Anomalous References

induction (B) B2
max B1.6−2.0

max B1.5−2.0
max still debatable

frequency (f) f2 f f3/2 [66], [67], [68]

resistivity (ρ) 1/ρ � 1/ρ [70]

thickness (e) e2 e2 [70], [71]

grain size (Gs) � 1/Gs

√
Gs [69]

TABLE IIQualitative e�ect of several factors on three loss components.

Increase or improvement Eddy current Hysteresis Anomalous References

Si or Al content [%] decreases decreases decreases [72]

better texture � decreases decreases [78], [79]

number of domain walls (n) � increases decreases [64]

plastic deformation (rolling) � increases decreases [73]

applied stress (compression) � increases increases [80], [82], [83], [84]

number of inclusions � increases (no e�ect) [4], [49],[75], [76], [77]

the 180◦ domain walls. Obviously, nucleation of do-
mains at 90◦ is required before any of the 90◦ do-
main wall movement, as discussed previously [79].
The domain wall displacement at 90◦ of the rolling
direction is very di�cult because, according to the
Kondorsky law, the H �eld change or the domain
wall displacement is given by H ∼ 1/ cos(θ), and
this gives an in�nite �eld for θ = 90◦. This entails
the need to form domains at 90◦ by rotation [79],
which results in a very strange �stepped� hysteresis
shape [80, 81].
The e�ect of stress � either compressive or ten-

sile � depends on the magnetostrictive character-
istics of the material. For grain-oriented electri-
cal steel, compressive stress in general increases
losses [80, 82], and this trend is also commonly
observed for non-oriented electrical steels [83, 84].
There is a relevant observation: If the number of
domain walls increases, then the pinning e�ect of
domain walls at the surface can increase hysteresis
losses [85], especially for very thin sheets.
Tables I and II summarize the predictions of the

loss separation model given by (9)�(12). Since the
model was presented in 2006 [69], it has resisted
many experimental tests. However, the induction
dependence for each Ph or Pa term is still a subject
of debate and deserves to be investigated in future
studies.
Electric vehicles have provoked an increasing de-

mand for steels with better properties, high resistiv-
ity, and small thickness [86�89], and the loss separa-
tion model can be useful for improving these materi-
als. The steel sheet thickness of the Tesla Model 3 is
0.25 mm [90]. It is di�cult to improve the mechan-
ical properties of such thin sheets. Then, a possi-
ble option for increasing both resistivity and me-
chanical properties is solid solution strengthening,
and high manganese steels provide such a possibil-
ity [91].

5. Conclusions

Analogies between Fourier's heat law, Fick's dif-
fusion law, and Ohm's law are discussed, with em-
phasis on historical developments. The concept of
heat became clear after Boltzmann's ideas were ac-
cepted, but this only happened in the XX century.
This paper gives an overview of how the con-

cept of heat evolved with time and why it is rel-
evant for understanding the loss separation model.
As �jumping atoms� (or oscillating atoms) are as-
sociated with heat, it becomes easier to understand
the dependence of the hysteresis losses term Ph on
the frequency f . The loss separation model was dis-
cussed in detail, emphasizing the practical applica-
tions.
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In this paper, phenomenological modeling and experimental studies were conducted to predict the
magnetocaloric properties of the MnCoGe alloy. The temperature dependence of magnetization was
measured and calculated using a simple phenomenological model. A good correlation between simulated
and experimentally determined data was observed. The phenomenological model allowed us to reveal
theoretical values of the magnetic entropy change, full width at half maximum of ∆SM vs T curve, and
relative cooling power.

topics: magnetocaloric materials, magnetic entropy change, relative cooling power

1. Introduction

Since the early nineties of the twentieth century,
the issues of nature protection, in particular the
problems related to ozone layer depletion, have been
treated seriously. High pollution caused by freon
compounds destroyed a signi�cant part of this pro-
tective part of Earth's atmosphere. The Montreal
Protocol, established in 1993, forbade the use of the
aforementioned compounds in sprays and domestic
cooling devices. Freon was also used as an active el-
ement in refrigerators. The e�ciency of the cooling
process based on the compression/decompression of
freon gas is about 45%.
A more e�cient cooling technique is magnetic re-

frigeration based on the magnetocaloric e�ect [1].
The temperature change in magnetic material at
adiabatic conditions is realized by the variations of
the external magnetic �eld. An example of the mag-
netocaloric material with a Curie temperature close
to room temperature is pure Gd [2, 3]. Its disadvan-
tage is that it is relatively expensive.
A signi�cant increase in the number of papers

on the topic has been observed after the discovery
of a giant magnetocaloric e�ect in the Gd5Ge2Si2
alloy by Pecharsky and Gschneider [4]. For many
years, a lot of di�erent materials have been stud-
ied, such as the manganites [5], the La(Fe,Si)13-type
alloys [6�8], or Heusler alloys [9].

Another interesting group of magnetocaloric ma-
terials are equiatomic alloys of MM'X-type (where
M, M' are transition metals and X � met-
aloid) [10�13]. The good magnetocaloric proper-
ties of these alloys are due to the formation of
low-temperature orthorhombic TiNiSi-type (space
group Pnma) and high-temperature hexagonal
Ni2Ti (space group P63/mmc). Modi�cations of
chemical composition of the MnCoGe alloy induce
changes in structural and magnetocaloric proper-
ties. Hamad in [14] proposed a phenomenological
model to predict the thermomagnetic properties.
The experimental studies of the MnCoGe alloy were
carried out by one of the authors of the present pa-
per in [15].
The aim of the present work is to verify the use-

fulness of the Hamad model applied to experimental
data of MnCoGe alloy.

2. Experimental techniques

The MnCoGe alloy sample was prepared by
arc-melting of the high purity (min. 3 N) con-
stituent elements under low pressure of protec-
tive gas Ar. In order to ensure the homogene-
ity of the sample, the ingot was remelted several
times. Phase constitution was studied by Bruker
D8 Advance di�ractometer with Cu Kα radiation,
and the analysis results were shown previously
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in [15]. Thermomagnetic properties were studied
using Quantum Design PPMS (VSM option) in a
magnetic �eld of up to 5 T and a wide range of
temperatures and magnetic �elds. The accuracy of
measurements was 0.001 emu. The Maxwell rela-
tion was used to calculate the magnetic entropy
change [4]

∆SM (T,∆H) = µ0

H∫
0

dH

(
∂M(T,H)

∂T

)
H

, (1)

where µ0, H, M , and T are the magnetic perme-
ability of vacuum, strength of the magnetic �eld,
magnetization, and temperature, respectively.
The RCP values were calculated taking into ac-

count temperature dependences of magnetic en-
tropy change using the following equation [16]

RCP = −∆SmaxM δTFWHM, (2)

where RCP is relative cooling power, δTFWHM is
the full width at half maximum of magnetic entropy
change peak.

3. Phenomenological model by Hamad

The phenomenological model proposed by
Hamad in [15] allows one to predict magnetization
variations upon temperature in accordance with
the following equation

M =
(Mi +Mf )

2
tanh

(
A (TC−T )

)
+B T + C,

(3)

where TC, Mi, and Mf are the Curie temperature,
and the initial and �nal value of magnetization
at ferromagnetic�paramagnetic transition, respec-
tively. The values of parameters required by the
model were obtained from an experimental M vs T
curve, which is shown in Fig. 1 together with
marked selected points. These points were used for
modeling the coe�cients A, B, and C given with
the following formulas

A =
2 (B−SC)

Mi−Mf
, (4)

B =
dM

dT
, (5)

C =
Mi−Mf

2
−B TC, (6)

SC =
dM

dT
at T = TC. (7)

The theoretical formula that describes the varia-
tion of magnetic entropy upon temperature is based
on relationships (1) and (3) and is rewritten in the
following form

∆SM=

[
−A

(Mi−Mf )

2
sech2

(
A(TC−T )

)
+B

]
Hmax.

(8)

Fig. 1. Experimental and theoretical M vs T
curves revealed for the MnCoGe alloy (under the
change in magnetic �eld ∼ 5 T).

A careful analysis of equation (8) revealed that the
value of magnetic entropy change is strongly related
to magnetization sensitivity dM/dT at Curie tem-
perature. High magnetic entropy change is depen-
dent on high magnetic moment and the value of
the �rst derivative of magnetization with respect to
temperature at Curie point. The maximum value of
magnetic entropy change may be written as

∆SM =

(
−A

(Mi−Mf )

2
+B

)
Hmax. (9)

Prediction of the magnetic entropy change and its
maximum value is extremely important and de-
termines the usefulness of a given magnetocaloric
material. Apart from maximum magnetic entropy
change, the working temperature range is a sig-
ni�cant parameter for magnetocaloric materials. In
practice, the full width at half maximum (FWHM)
of the ∆SM (T ) curve is the �gure of merit. The full
width at half maximum of magnetic entropy change
is determined from the following equation

δTFWHM =
2

A
cosh−1

(√
2A (Mi−Mf )

A (Mi−Mf ) + 2B

)
.

(10)

Taking into account relationships (2), (9), and (10),
the relative cooling power can be written in the fol-
lowing form:

RCP =

(
Mi−Mf−2

B

A

)
Hmax

× cosh−1

(√
2A (Mi−Mf )

A (Mi−Mf )+2B

)
. (11)

Relationships (9), (10), and (11) allowed us to cal-
culate magnetocaloric properties and compare them
with experimental values. All of them are collected
in Table I.
As it is shown in Fig. 1, the modeled tem-

perature dependence of magnetization corresponds
very well to the measured curve. The temperature
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Fig. 2. Experimental and modeled magnetic en-
tropy change for the as-cast MnCoGe alloy.

TABLE I

Experimental and theoretically modeled magne-
tocaloric properties of the MnCoGe alloy under the
change in external magnetic �eld ∼ 5 T.

∆SM

[J/(kg K)]

δTFWHM

[K]

RCP

[J/kg]

Exp. value 6.17 36 222

Theor. value 6.09 43 262

dependence of magnetic entropy change obtained
from experimental data and simulated using the
phenomenological model were plotted in Fig. 2.
Practically, both dependences overlap. The mea-
sured and the modeled values are comparable
over the whole studied range. The phenomenolog-
ical model delivered signi�cantly higher values of
δTFWHM and, hence, relative cooling power. Mod-
eled maximum entropy change decreased by 1%,
while RCP and δTFWHM increased by 18 and 19%,
respectively.
Hamad's phenomenological model is a simple

technique for the prediction of temperature de-
pendences of magnetization or magnetic entropy
change. The modeled values are reliable and com-
parable with measured results.

4. Conclusions

The evolution of magnetization due to the tem-
perature changes for the MnCoGe alloy under the
change in external magnetic �eld ∼ 5 T was
modeled. The phenomenological model allowed us
to predict the magnetocaloric properties of the
MnCoGe alloy, such as magnetic entropy change,
relative cooling power, and full width at half max-
imum. The magnetocaloric e�ect (MCE) was ex-
perimentally predicted indirectly by a calculation
of magnetic entropy change based on magnetic

isotherms. The produced alloy revealed relatively
acceptable magnetocaloric properties and could be
applied as an active element in magnetic cooling de-
vices. Values of magnetic entropy change and rela-
tive cooling power delivered during modeling are
reliable and reasonable. Moreover, they correspond
well to their counterparts from experimental inves-
tigation.
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The paper focuses on an extension of the GRUCAD hysteresis model. The extension relies on the re-
placement of the Langevin function with a more general Brillouin function in an equation describing the
anhysteretic curve. The proposed approach allows one to obtain better �tting capabilities for anisotropic
soft magnetic materials, as demonstrated by the example of hysteresis curves of grain-oriented electrical
steel.
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1. Introduction

Taking into account that any magnetic hysteresis
model is merely an approximation of real-life phe-
nomena, it can be stated that an important stage in
hysteresis modeling is the analysis of the qualitative
behavior of models with di�erent improvements.
Improvements can be understood as modi�ca-

tions of model equations, extensions aimed at cor-
recting model behavior, or considerations of phys-
ical phenomena, such as the e�ect of excitation
frequency, mechanical stress anisotropy, or temper-
ature, which previously were not taken into account.
An exemplary modi�cation may rely on the use of

di�erent elementary functions appearing in model
equations. It is expected that model performance
would be improved for di�erent scenarios, and
moreover, new knowledge on underlying physical
principles would be gained. In the present paper, we
consider an extension to the GRUCAD model [1],
which uses a more general description of the anhys-
teretic curve in comparison to the original approach.
The GRUCAD model is a recent low-dimensional
description consistent with the laws of irreversible
thermodynamics.

2. Model description

The description advanced by Jiles and Ather-
ton [2] has attracted a lot of attention in the sci-
enti�c community in the last thirty years. This
formalism is still very attractive to scientists and
engineers alike. In the present paper, we focus on

the GRUCAD model, which is a modi�cation of
the Jiles�Atherton (JA) approach proposed by the
Brazilian GRUCAD [1, 3]. The most important ad-
vantage of GRUCAD model is that it addresses
a number of problems encountered in the original
description, as pointed out in [4, 5]. The crucial
di�erence between the original JA formalism and
the GRUCAD model is that the latter description
uses o�setting (shifting) from the anhysteretic curve
along theH axis, not along theM axis. This feature
allows one to obtain quasi-static minor hysteresis
loops without fragments with negative di�erential
susceptibility, and moreover, it is correct from the
perspective of energy balance relationships. As a re-
minder, the anhysteretic curve describes the state of
global equilibrium in the thermodynamic sense.
The GRUCAD description has yet another im-

portant feature, namely it is formulated as a
B-input model � this feature facilitates the inter-
pretation of results. Magnetic measurements car-
ried out in accordance with international standards
are carried out for a controlled polarization rate (in
practice, for soft magnetic materials, the di�erence
between polarization and �ux density may be ne-
glected). Thus, the model re�ects real-life measure-
ment conditions.
Previously, the behavior of the GRUCAD model

was analyzed in some papers co-authored by the au-
thors of the present contribution, mentioning, e.g.,
its application in describing hysteresis curves in a
permalloy core [6], soft magnetic composites [7, 8],
magnetocaloric LaFeCoSi alloys [9]. An extension
aimed at consideration of the e�ect of excitation fre-
quency was attempted for a nanocrystalline sample
in [10], whereas paper [11] focused on model behav-
ior in the case of DC-biased magnetization.
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The set of equations used so far was

Han =
B

µ0
−Ms

[
coth(λ)− 1

λ

]
, (1)

λ =
Han (1−α) +B( α

µ0
)

a
, (2)

dHh

dB
=

HHS

[
coth(λH)− 1/λH

]
−Hh

γδ
, (3)

λH =
Hh + δHHS

a
, (4)

H = Han +Hh, (5)

where α, a, γ, HHS, and Ms were model parame-
ters; δ = ±1 was used to distinguish the ascending
and descending loop branches; λ and λH were aux-
iliary variables; Han = Han(B) was the anhysteretic
�eld strength, and Hh = Hh(B) denoted the irre-
versible �eld strength, related to hysteresis; µ0 was
permeability of free space; and B was magnetic �ux
density, which was the input variable in the model.

3. Comparison of di�erent anhysteretic

equations

In the preceding section, expressions (1) and (2)
were used as a complete description of the an-
hysteretic curve. It can be easily noticed that
(1) availed of the Langevin function.
The aim of the present paper is to introduce in

that place a more general function, namely the Bril-
louin function

BJ (λ) =
2J+1

2J
coth

(
2J+1

2J
λ

)
− 1

2J
coth

(
1

2J
λ

)
,

(6)

in which an additional parameter J appears. In
solid-state physics, it is interpreted as an angular
momentum quantum number. It takes either posi-
tive integer or half-integer values. Two limiting val-
ues are 0.5 (then the Brillouin function reduces to
hyperbolic tangent) and ∞ (in practical computa-
tion J → 25, then the Brillouin function approaches
the Langevin function).
Exemplary shapes of curves reproduced with the

Brillouin function in reduced units for di�erent val-
ues of J parameter are depicted in Fig. 1. Addition-
ally, in this �gure, the dependence y = tanh(x/3)
is shown. This dependence may be used instead of
the Langevin function for smaller values of its ar-
gument, and the advantage of this function is that
it can be inverted analytically.
The extension considered in this paper bears

some resemblance to the approaches described
in [12, 13]. The aforementioned papers considered
that the proper choice of angular momentum quan-
tum number J in the formula for the anhysteretic

Fig. 1. The functions L (x), tanh(x/3), and BJ(x)
for J = 1.0 and J = 25.

curve in the modi�ed JA description might shed
some light on the anisotropy class of the analyzed
soft magnetic material. The present paper applied
the same concept to another model, which, in our
opinion, is a much better choice for people dealing
with hysteresis modeling.
Replacing the Langevin function with the Bril-

louin function in (1) is the only modi�cation applied
to model equations in this paper. The concept is to
vary the value of parameter J and to �nd such a set
of model parameters that yields the best match to
the measured hysteresis curve.

4. Modeling

In the present paper, we focus on modeling prop-
erties of samples made of two kinds of electrical
steel, di�ering in morphology and magnetic prop-
erties. The rationale for our choice is that electrical
steels are the most dominant group of soft magnetic
materials worldwide (around 80% are non-oriented
(NO) electrical steels, used as core materials for ro-
tating machines, and around 16% are grain-oriented
(GO) steels, whose application target are magnetic
circuits of power and distributions transformers).
We consider two representative samples from

each group, namely the grade M330-35A (NO steel,
0.35 mm thick) and the grade ET120-27 (GO steel,
0.27 mm thick).
Figures 2 and 3 depict modeling results for the

non-oriented steel. Two extreme cases of the J value
are considered for brevity. From the inspection of
these �gures, it is noticeable that the choice of
J = 25 in the Brillouin function allows us to re-
produce the shape of hysteresis slightly more ac-
curately, in particular in the so-called knee region.
Figures 4 and 5 refer to grain-oriented electri-

cal steel ET120-27, which exhibits a substantial
anisotropy. The measurements were carried out
along the rolling direction.
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Fig. 2. The measured and the modeled hysteresis
loop for the NO sample. The anhysteretic curve is
given as BJ(x), J = 0.5.

Fig. 3. The measured and the modeled hysteresis
loop for the NO sample. The anhysteretic curve is
given as BJ(x), J = 25.

TABLE I

Values and percentage errors in chosen characteristic
points for the non-oriented steel.

Hc [A/m] Br [T] |∆Hc| |∆Br| |∆E|
Meas. 43.9 1.36

B(x)

J = 0.5
45.8 1.15 4.3% 15.4% 7.5%

B(x)

J = 5
45.8 1.21 4.3% 10.9% 7.3%

B(x)

J = 10
43.1 1.11 1.9% 18.7% 27%

B(x)

J = 15
44.9 1.23 2.2% 9.7% 11%

B(x)

J = 25
44.3 1.23 2.8% 9.3% 10%

L(x) 45.3 1.25 3.1% 8.1% 8.4%

Fig. 4. The measured and the modeled hysteresis
loop for the GO sample. The anhysteretic curve is
given as BJ(x), J = 0.5.

Fig. 5. The measured and the modeled hysteresis
loop for the GO sample. The anhysteretic curve is
given as BJ(x), J = 25.

TABLE II

Values and percentage errors in chosen characteristic
points for the grain-oriented steel.

Hc [A/m] Br [T] |∆Hc| |∆Br| |∆E|
Meas. 10.00 1.30

B(x)

J = 0.5
10.25 1.29 2.5% 1% 0.6%

B(x)

J = 5
9.85 1.37 1.5% 5% 2.6%

B(x)

J = 10
10.14 1.31 1.4% 1% 5.3%

B(x)

J = 15
10.02 1.30 0.2% 0% 3.7%

B(x)

J = 25
9.96 1.31 0.4% 1% 0.2%

L(x) 10.50 1.32 5.0% 2% 1.1%
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Tables I and II contain information on measured
and modeled values of coercive �eld strength and
remanence induction for several selected values of
J parameter. The last column (∆E) refers to the
relative di�erence between measured and modeled
loop areas. Recalling that the hysteresis loop area is
directly related to re-magnetization loss (the latter
quantity may be computed from the loop area), the
value of this parameter is an indirect measure of the
modeling accuracy.
From the analysis of errors in the tables, it follows

that, particularly for the GO steel, the modeling er-
rors were dependent on the choice of J value. De-
spite the fact that the values in the table might sug-
gest that the choice J = 25 is superior to J = 0.5,
from a visual comparison of the modeled curves in
Figs. 4 and 5, it follows that, in fact, the modeled
curve for J = 0.5 describes the experimental data
more accurately. Therefore, the choice J = 0.5 (the
case of strong anisotropy) is preferred. Our model
extension has proven to be useful.

5. Conclusions

In the paper, an extension to the GRUCAD hys-
teresis model was proposed. The essential concept
was to modify one of the model equations. The
Brillouin function was introduced in place of the
Langevin function. This approach allowed us to
make the description more �exible, enabling the
consideration of di�erent anisotropy classes of soft
magnetic materials, which can be taken into account
in the analysis by a proper choice of J parameter.
The Langevin function is a limiting case of the Bril-
louin function obtained for J → ∞.
The usefulness of the proposed model extension

was veri�ed using data for a strongly anisotropic
material, namely grain-oriented electrical steel.
Future work will focus on additional veri�cation

of the proposed descriptions for other soft magnetic
materials.
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The paper presents the results of validating the model of anhysteretic magnetization curve of anisotropic
soft magnetic materials utilizing the Boltzmann distribution of magnetic domain directions. It was
con�rmed that the editorial mistake in the original paper presenting the concept of anisotropic an-
hysteretic magnetization curve was reproduced in subsequent publications. Validation presented in the
paper covers an anhysteretic magnetization curve model for magnetic materials with axial anisotropy
and anisotropic grain-oriented electrical steels. However, the proposed correction of the model of the
anisotropic anhysteretic magnetization curve can be extended to other types of anisotropy.

topics: magnetization curve, magnetic materials modeling, magnetic anisotropy, anhysteretic magneti-
zation

1. Introduction

The concept of an anhysteretic magnetization
curve [1] is very useful for modeling the magnetic
hysteresis loops of soft magnetic materials. It is
widely used in developing physical models of the
magnetization process [2] and for practical appli-
cations, e.g., in gyrator�capacitor models of in-
ductive components implemented with SPICE soft-
ware [3]. Moreover, the recently presented measur-
ing procedure enables accurate experimental deter-
mination of the anhysteretic magnetization curve of
cores made of soft magnetic materials [4]. For these
reasons, developing e�cient and accurate models
of the anhysteretic magnetization curve of both
isotropic and anisotropic soft magnetic materials
is crucial for theoretical analyses and practical
applications.

2. Model of the anhysteretic magnetization

curve of anisotropic materials

The commonly used model of the anhysteretic
magnetization curve of isotropic materials uti-
lizes the concept presented by D.C. Jiles and D.
Atherton [1] in 1984. In this model, atomic mag-
netic moments in the description of paramagnetic
materials were substituted by domain magnetic
moments to describe the magnetic behavior of

ferromagnetic material [2]. In this case, the Boltz-
mann distribution of domain magnetic moments
leads to the model of an anhysteretic magnetization
curve described by the Langevin function [2]

Mah (H) =Ms

[
coth

(
He

a

)
− a

He

]
, (1)

where Ms is saturation magnetization,
He = H + αM , H is a magnetizing �eld, α is
quantifying the interdomain coupling, M is the
total magnetization of the material, and a is given
as

a =
N kBT

µ0Ms
, (2)

where N is the number of domains in unit cubic
volume, kB is Boltzmann constant, T is tempera-
ture, and µ0 is magnetic constant.
In successive model development presented

by Ramesh et al. in 1997 [5], the anisotropy in
Maxwell�Boltzmann distribution was considered,
leading to the following equation

Mah (H) =Ms

∫ π

0
dθ eE(1)+E(2) sin(θ) cos(θ)∫ π

0
dθ eE(1)+E(2) sin(θ)

,
(3)

where energies E(1) and E(2) were determined for
axial anisotropy as [5]

E(1) =
He

a
cos(θ)− Kan

µ0Msa
sin2 (ψ−θ) , (4)

E(2) =
He

a
cos(θ)− Kan

µ0Msa
sin2 (ψ−θ) . (5)
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For anisotropic grain-oriented electrical steels, E(1)
and E(2) were determined as [6]

E (1) =
He

a
cos(θ)− Kan

µ0Msa

[
cos2(ψ−θ) sin2(ψ−θ)

+
sin4(ψ−θ)

4

]
, (6)

E (2) =
He

a
cos(θ)− Kan

µ0Msa

[
cos2(ψ+θ) sin2(ψ+θ)

+
sin4(ψ+θ)

4

]
, (7)

where Kan is the dominant part of anisotropy en-
ergy density. It should be highlighted that the edi-
torial mistake in the original publication presented
by Ramesh et al. [5] in 1997 was reproduced in
subsequent publications [6]. It can be easily deter-
mined that (3) can not be reduced to the Langevin
equation for average magnetic anisotropy density
equal to zero. Detailed analysis of the original
publication indicates that the proper form of (3)
should be [7]

Mah (H) =Ms

π∫
0

dθ e
E(1)+E(2)

2 sin(θ) cos(θ)

π∫
0

dθ e
(E(1)+E(2))

2 sin(θ)

.

(8)

After the above correction, (8) can be used to model
the anhysteretic magnetization of materials with ax-
ial and grain-oriented types of anisotropy.

3. Validation of the model

The results of experimental measurements, pre-
sented previously in the literature [8], were used
to validate the model. The in�uence of ax-
ial anisotropy, both parallel and perpendicular
to the magnetization axis, was presented by
G. Herzer [9]. The magnetic hysteresis loops of
FINEMET Fe73.5Cu1Nb3Si13.5B9 nanocrystalline
alloy were measured after annealing in the mag-
netic �eld. As a result, the soft magnetic alloy with
parallel anisotropy K|| and two alloys with perpen-
dicular anisotropy and values roughly estimated at
K1⊥ = 6 J/m3 and K2⊥ = 20 J/m3 respectively,
were produced [9]. Magnetic hysteresis of produced
ring-shaped samples with axial anisotropy was mea-
sured in quasistatic conditions with a hysteresi-
graph system at room temperature [9].

The in�uence of grain-oriented anisotropy on the
magnetic hysteresis loop of 0.30 mm-thick lamina-
tion of high-permeability grain-oriented electrical
steel (with 3% silicon content) was presented by
F. Fiorillo et al. [10]. Measurements were carried
out at the Epstein frame according to the techni-
cal standard [11]. The anisotropy of grain-oriented
electric steel was estimated at KGO = 100 J/m3.

TABLE I

The parameters of the anhysteretic magnetization
curve of soft magnetic material with parallel and per-
pendicular axial anisotropy.

Parameter Parallel Perpend. 1 Perpend. 2

Ms [A/m] 9.985× 105

α 10−6

Kan [J/m3] 380.7 6.147 9.952

a [A/m] 0.653 0.452 7.754

TABLE II

The parameters of the anhysteretic magnetization
curve of soft magnetic material with grain-oriented
anisotropy in rolling (RD) and transverse (TD)
direction.

Parameter RD TD

Ms [A/m] 1.435× 106 1.077× 106

α 6.179× 10−6

Kan [J/m3] 22.42

a [A/m] 22.415 24.056

The identi�cation of the parameters of the anhys-
teretic loop was carried out during the optimization
process. For the modeling, two assumptions were
taken:

1. the anhysteretic curve is located inside the
magnetic hysteresis loop B�H of electric steel;

2. magnetic hysteresis is relatively small in the
case of high-permeability grain-oriented elec-
trical steel (with 3% of silicon content) mea-
sured by F. Fiorillo et al. [10].

A target function F for the optimization was the
sum of squared di�erences between the model and
experimental results,

F =

n∑
i=1

[
Ban model(Hi)−Bmeas(Hi)

]2
, (9)

where Ban model(Hi) was the result of modeling
and Bmeas(Hi) was the result of measurements �
both for the value of magnetizing �eld equal to Hi.
The values of �ux density of the anhysteretic curve
Ban model(Hi) were calculated for given values of
magnetizing �eld Hi both during the increasing and
decreasing of the magnetizing �eld H.
The di�erential evolution optimization algo-

rithm [12] was used in the model parameters iden-
ti�cation process. The di�erential evolution algo-
rithm is robust on local minima and enables an
e�cient identi�cation process. Calculations were
performed with the Octave software [13]. For the
calculations of integrals in (8), the Gauss�Kronrod
quadrature method [14] was utilized.
The results of modeling of anhysteretic magneti-

zation curves for soft magnetic materials with both
axial and grain-oriented anisotropy are presented
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Fig. 1. Results of modeling of anhysteretic magne-
tization curves of soft magnetic materials: (a) with
axial anisotropy, perpendicular K⊥ and parallel K||
to the magnetizing �eld H, (b) with grain-oriented
anisotropy KGO in the rolling direction (RD) and
transverse (TD) direction. Results of modeling �
black line, results of B(H) loops measurements �
red line.

in Fig. 1, whereas the model parameters of the an-
hysteretic curves are presented in Tables I and II
for the above types of anisotropy, respectively.

The presented results clearly indicated that the
model proposed by (4)�(8) very well reproduces the
character of the anhysteretic magnetization curve
of soft magnetic materials for both axial and grain-
oriented anisotropy. This fact is especially impor-
tant for the grain-oriented electric steel magnetized
in the transverse direction, with its sophisticated
shape of anhysteretic magnetization curve.

It should also be highlighted that the presented
model enables accurate calculation of axial average
anisotropy energy densityKan for perpendicular ax-
ial anisotropy. This good agreement is con�rmed by
the equation presented by G. Buttino [15]

Kan =
B2

s

2µ0µr
. (10)

On the other hand, it was observed that the calcu-
lated saturation magnetization Ms for electric steel
is di�erent in the rolling direction (RD) than in the
transverse direction (TD). This phenomenon can
be explained by the fact that in an anhysteretic
curve model, saturation magnetizationMsshould be
considered technical saturation, not physical satu-
ration [16].

4. Conclusions

The modeling results con�rm that the corrected
Maxwell�Boltzmann distribution-based model very
well reproduces the character of a hysteretic curve
for magnetic materials with axial and grain-oriented
anisotropies. This good agreement was con�rmed
on the basis of experimental results presented pre-
viously in the literature.
However, a detailed analysis of achieved model

parameters indicates that the physical background
of the proposed model of the anhysteretic mag-
netization curve of anisotropic soft magnetic ma-
terials needs development and explanation. This
explanation is especially necessary in the area of
saturation magnetization of grain-oriented electrical
steels with rolling direction and transverse direction
anisotropy, as well as in the case of materials with
axial anisotropy parallel to the magnetizing �eld di-
rection.
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The article discusses a novel procedure for measuring the anhysteretic curve in soft magnetic materials.
This curve frequently �nds use in diverse applications, such as the Jiles�Atherton hysteresis model.
The actual method is characterized in detail, including sample calculations for materials exhibiting
various hysteresis loop shapes (ferrites, grain-oriented steel, and nanocrystalline material). To illustrate
the bene�ts of the proposed approach, the authors compare the measurement-based and the simulated
curves, the latter being obtained through an optimal interleaving of the model.

topics: anhysteretic curve, Jiles�Atherton hysteresis model, magnetic measurement.

1. Introduction

Hysteresis loop modeling embodies an important
task in the analysis of various electrical circuits con-
taining ferromagnetic cores. The applications in-
clude, for example, the transient behavior of classic
power transformers and the research of switching
power supplies. Several descriptions of hysteresis
loops are available, including the Preisach math-
ematical model [1, 2] or the Jiles�Atherton (J-A)
formalism [3], often implemented in SPICE-like sim-
ulation software. The parameter determination pro-
cedure of the Jiles�Atherton model presented in [3]
may diverge in some cases. Thus, in a previously
published experimental project [4], some modi�ca-
tions of the classic Jiles�Atherton model were an-
alyzed using the least squares method in order to
yield an improved hysteresis loop of the nanocrys-
talline material VITROPERM 500F. Here, the an-
hysteretic magnetization curve was obtained as an
average of the upper and lower parts of the limiting
hysteresis loop and was therefore not measured. The
di�erences between the measured loop and that sim-
ulated via the Jiles�Atherton model were compared.
The problem with the Jiles�Atherton model in ap-
proximating the VITROPERM 500F material rests
in the rapid transition to saturation, dissimilar from
the gradual transition of the Langevin equation [4].
Other sources use di�erent initial approximations
of the Jiles�Atherton model's parameters [5�9]. An
overview of the state of the art is proposed in [10].

2. Tools for the magnetic curve
measurements

The setup shown in Fig. 1 allowed us to charac-
terize the primary magnetization curve, the quasi-
static and dynamic hysteresis loop group, and
the anhysteretic curve. The original set of instru-
ments [11] was modi�ed by using a more e�ec-
tive analog-to-digital (A/D) sampling device and a
voltage-to-current (V/I) converter to deliver high-
quality demagnetization of the sample and to
measure the anhysteretic curve reliably; in small
thorium samples, an automatically zeroed bu�er
ampli�er is applicable [12]. A Siglent SDG2042X
DDS generator with the true form technology was
utilized to generate the required waveform, provid-
ing a su�cient resolution (14-bit) to expose the
demagnetization waveform. The generator then ex-
cited a V/I converter, developed previously at the
Department of Theoretical and Experimental Elec-
trical Engineering (DTEEE) to facilitate magnetic
measurements. In the converter, an OPA541 op-
erational ampli�er (OA) with a precision-sensing
resistor in a Howland circuit is integrated. The re-
quirements comprised a grounded output, stability
of the zero converter (a prerequisite for compensa-
tion), and high output resistance. The stability at
inductive loads was ensured. Generally, the sample
can be a toroid or an Epstein frame. The current ex-
cites the magnetizing winding N1 and is sensed at
the shunt RB . An electronic �uxmeter is connected
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Fig. 1. The measuring setup.

Fig. 2. The conventional and the improved algorithms.

to the secondary measuring windingN2. The signals
are converted into digital form using a 12-bit Pico-
Scope 5242A oscilloscope. In quasi-hysteresis loop
measurements, a 30 Hz low-pass �lter is set to sup-
press the 50 Hz mains interference and other spuri-
ous e�ects from, for example, the switching power
supply. The data are transferred via a USB†1 inter-
face to a PC†2, where the processing is performed
in MATLAB.
The measuring con�guration is applicable up to

a frequency of 5 kHz. At higher frequencies, a volt-
age ampli�er appears to be more advantageous than
a V/I converter, providing a harmonic excitation
waveform of the magnetic �ux density B. Then,
measurements up to 100 kHz are feasible with a
passive integrator.

3. Improving the algorithm to measure
the anhysteretic curve

The various algorithms to measure the anhys-
teretic curve described in [13] are very demand-
ing in terms of the stability of the zero of the
electronic �uxmeter. Multiple measurement vari-
ants are possible, assuming three or two wind-
ings. When a quasi-static hysteresis loop requiring
a processing time of 40 s is measured, we can exe-
cute a program-based correction of the measured

�1USB � Universal Serial Bus
�2PC � personal computer

data if the curve is closed [11]. The stored zero
correction is also usable in measuring the initial
magnetization curve. This option cannot be em-
ployed in an anhysteretic curve or, for example,
where the total measurement time corresponds to
30 min and/or the samples are very small (an elec-
tronic �uxmeter range of less than 3 mWb) �
such a procedure would render the results generally
inapplicable.
Thus, in contrast to the original version of the

point-by-point sequential measurement, demagne-
tizing the measured sample and zeroing the elec-
tronic �uxmeter took place between each measure-
ment point (Fig. 2). As a result, the requirements
for the stability of the electronic �uxmeter zero re-
semble those that relate to measuring the initial
magnetization curve. The signal waveform to en-
able a single point measurement of the anhysteresis
curve is described within

i1 (t) = Imax e−tA sin (2πft) + IDC

(
1−e−

t
τ

)
,

(1)

where Imax is the maximum amplitude of the de-
magnetization signal, A denotes the amplitude de-
cay constant, f refers to the frequency, IDC rep-
resents the setpoint of the anhysteretic curve, and
τ is the time constant of the setpoint. Regarding
the experimentally preset values to ensure an opti-
mum demagnetization of the sample, the waveform
is shown in Fig. 3.
In the selected samples (including the oriented

steel Sonaperm, Trafoker S, NiZn ferrite Ami-
don 43, and nanocrystalline material VITROP-
ERM 500F), the measuring signal parameters read
Imax = 0.6 A, A = 0.06, f = 1 Hz, τ = 1 s.
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Fig. 3. The measured magnetization signal.

Further, IDC equals zero at demagnetization but
then gradually increases until the material is sat-
urated.
In addition to the �uxmeter zero stability issues,

we encountered problems with the V/I converter
o�set in materials having a nearly orthogonal hys-
teresis loop (Trafoker S). The favorable design, how-
ever, allowed the o�set converter V/I to exhibit an
o�set below 20 µA.
The setup also includes a thermocouple to mea-

sure the temperature of the sample, similar to the
scenario described in [14].

4. The Jiles�Atherton (J-A) hysteresis
loop model

The initial equation to characterize this model
is one that exposes the behavior in the magnetic
material at the domain level. More concretely, the
equation embodies a di�erential description that
changes the output according to the varying direc-
tion of the input variable, namely the magnetic �eld
strength. The total magnetization M is then given
by
M = Mirr +Mrev, (2)

where Mirr is the irreversible and Mrev the re-
versible magnetization. When the magnetization
changes, irreversible shifts occur; these are de�ned
by
dMirr

dH
=

Man −Mirr

kδ − α (Man−Mirr)
. (3)

In (3), Man and Mirr denote the lossless (an-
hysteretic) and the irreversible magnetization, re-
spectively; k is the parameter determining the
curve broadening (i.e., the hysteresis losses); δ
represents the sign parameter; and α represents
the molecular �eld parameter [3]. The sign func-
tion δ follows the change in the direction of
the magnetic �eld strength and is thus speci�ed
via

δ =

{
+1, for dH

dt > 0,

−1, for dH
dt < 0.

(4)

Lossless magnetization is an ideal process where
no disturbances in the crystal lattice (causing the
losses) occur during the magnetization; its actual
progress is thus determined by the displacement of
the domain walls and the rotation of the sponta-
neous magnetization of the domains in the direction
of the external �eld. This dependence is most often
given by the Langevin function

Man = Msat

[
coth

(
Hef

a

)
− a

Hef

]
=

Msat

[
coth

(
H+αM

a

)
− a

H+αM

]
, (5)

whereMs is the saturation magnetization (a charac-
teristic of each material, temperature-dependent),
a [A/m] denotes the temperature-dependent shape
parameter, and Hef stands for the total magnetic
�eld strength; this strength is obtained from the
sum of the external �eld H and the internal (Weiss)
�eld, which is −α times the magnetization M . The
parameter α takes on values of the order of approxi-
mately 10−3 to 10−7. As proposed in [5], (5) was de-
rived for paramagnetic materials and thus does not
always approximate the waveform exactly. Then, in
some cases, other dependencies are used, such as
the Brillouin function given by

Man = Msat ·
[
2J+1

2J
cosh

(
2J+1

2J

Hef

a

)
− 1

2J
cosh

(
1

2J

Hef

a

)]
, (6)

where J [-] is the quantum number, a quantity
that takes discrete values from 0.5 to ∞ [15], and
α [A/m] has a meaning di�erent from that in (5).
In general, such a function can be any monotonic
increasing function passing through zero and limit-
ing to ∓Ms for Hef going to ∓∞. If the waveform
is measured, the obtained values can be applied.

The last part of (2) is reversible magnetization,
expressed in the model as the di�erence between the
lossless and the irreversible magnetization, which is
attenuated [2], i.e.,
Mrev = c (Man −Mirr) , (7)

where the parameter c belongs to the interval
0 < c < 1. The resulting formula, which shows
the magnetization change with the magnetic �eld
strength variation, is formed by a derivative of (1),
an addition to (2), and a derivative of (3); therefore,
dM

dH
=

dMirr

dH
+

dMrev

dH
=

dMirr

dH
+ c

( dMan

dH
− dMirr

dH

)
=

(1−c)
Man−Mirr

kδ − α (Man−Mirr)
+ c

dMan

dH
. (8)

The magnetization waveform M corresponding to
the input waveform of the magnetic �eld strength
H is then computed similarly to the procedure
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Fig. 4. The measuring hysteresis loop group, ini-
tial magnetization curve (a), and anhysteretic curve
for the Sonaperm material (b).

Fig. 5. The simulation hysteresis loop, initial mag-
netization curve (a), and anhysteretic curve for the
Sonaperm material (b).

Fig. 6. Comparison of measured and simulated limiting hysteresis loop for the Sonaperm material. The error
is calculated for the upper part of the hysteresis loop.

described in [4]: First, the lossless magnetization
value is determined, according to options such
as that from (5). Next, the change of the irre-
versible magnetization is established (3). Now, the
reversible magnetization (7) is calculated, allowing
us to express the resulting magnetization change
according to (8). However, the previous values
have already been entered, which means that the
calculation can be carried out directly. The dis-
advantage is that an iterative method needs to
be employed in the calculation, because the calcu-
lated value determined from the derivative of the
magnetization and its preceding values appears in

the result. During the procedure, we have to check
whether the reversible magnetization (2) is smaller
than the lossless magnetization in the �rst quadrant
and, similarly, in the third quadrant when the mag-
netization �eld strength decreases from the top of
the curve.
If the condition is not applied, the magnetiza-

tion increases where the magnetic �eld intensity is
reduced from the top of the loop, a process that
does not correspond to the actual behavior of the
magnetic material. In view of the above details, it
can be concluded that obtaining the model param-
eters is not a simple task. It is possible to use the
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Fig. 7. The measuring hysteresis loop group, ini-
tial magnetization curve (a), and anhysteretic curve
for the Trafoker S material (b).

Fig. 8. The simulation hysteresis loop, initial mag-
netization curve (a), and anhysteretic curve for the
Trafoker S material (b).

Fig. 9. Comparison of measured and simulated limiting hysteresis loop for the Trafoker S material. The error
is calculated for the upper part of the hysteresis loop.

estimation of initial model values from [3] and [6]
and then perform their parametric tuning using the
least squares method for the best curve �tting.

5. The measured anhysteretic curve as
compared with the model

All of the quasi-static hysteresis loops were mea-
sured for a period of 40 s, when the in�uence
of eddy currents can be ignored. The excitation

signal H was harmonic. A sample of an older ori-
ented Sonaperm tail was used to verify the agree-
ment of the anhysteretic curve measured via a mod-
i�ed algorithm and optimized for the best �t of the
hysteresis loop group and the primary magnetiza-
tion curve (Fig. 4). Such a scenario was employed
due to the transition to saturation being more grad-
ual than that of the modern oriented sheets. The
toroidal sample had an outer diameter of 110 mm,
an inner diameter of 70 mm, and a height of 20 mm.
The magnetizing and the measuring winding, N1

and N2, had 100 and 50 turns, respectively.
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Fig. 10. The hysteresis loop group, initial magne-
tization curve (a), and anhysteretic curve for the
MnZn ferrite material Amidon 43 (b).

Fig. 11. The simulation hysteresis loop, initial
magnetization curve (a), and anhysteretic curve for
the ferrite material Amidon 43 (b).

Fig. 12. Comparison of measured and simulated limiting hysteresis loop for the ferrite material Amidon 43.

The optimal parameters of the Jiles�Atherton
model were determined in MATLAB by means of
the least squares method (Fig. 5). The procedure in-
dicated good agreement with the Langevin function
and satisfactory progression of the optimized anhys-
teretic curve; the largest di�erences were found in
low values of Hmax (Fig. 6).
Subsequently, a calculation was performed for

the more modern HI-B oriented silicon steel
Trafoker S, showing that the J-A model with
the Langevin function is practically unable to
express the shape of the rectangular hysteresis
loop (Figs. 7�9). Using a measured anhysteretic

loop did not yield a better approximation. The
toroidal sample had an outer diameter of 150 mm,
an inner diameter of 110 mm, and a height
of 30 mm. The magnetizing winding N1 and the
measuring winding N2 had 150 and 100 turns,
respectively.
The NiZn ferrite Amidon 43 possesses a hysteresis

loop with a speci�c shape (Fig. 10). The initial per-
meability region is well characterized, but the sharp
sides of the hysteresis loop are not visualized at all
in the result (Figs. 11 and 12). Again, the measured
anhysteretic loop appears to be steeper at the lower
values of H.
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TABLE IThe Jiles�Atherton model's parameters related to the individual materials.

Material Ms [A/m] a [A/m] α (×10−6) k [A/m] c [−]

Sonamperm 1034500 10.3 37.276 23.75 0.23

Trafoker S 1909800 3.5 8.8587 14.0 0.10

Amidon 45 238732 16.5 100 24.5 0.01

Vitroperm 500F � � 1 0.75 0.01

Fig. 13. The measuring hysteresis loop group for
Vitroperm 500F (a) and the simulation relating to
the measuring anhysteretic curve (b).

The toroidal sample had an outer diameter
of 73.7 mm, an inner diameter of 38.9 mm, and a
height of 12.7 mm. The magnetizing winding N1

and the measuring winding N2 had 135 and 44
turns, respectively.
The Vitroperm 500F nanocrystalline material ex-

hibits a speci�c shape of the hysteresis loop, is very
narrow, and saturates quickly (Fig. 13). Here, the
measured anhysteretic loop should be ideally em-
ployed in the model to deliver a very small devia-
tion between the measured and the simulated hys-
teresis loops. The toroidal sample showed an outer
diameter of 30 mm, an inner diameter of 20 mm,
and a height of 10 mm. The magnetizing winding
N1 had 8 turns, and the measuring winding N2 had
200 turns.

6. Conclusions

The article presents an algorithm to measure an
anhysteretic loop, outlining the typical hysteresis
loop shapes (a smooth transition to saturation in

the Sonaperm material, sharp transition and right-
angled hysteresis loop in Trafoker S, spherical shape
in Amidon 43, and a narrow hysteresis loop and
sharp transition to saturation in Vitroperm 500F).
The characteristics of the materials involved in the
project are compared in terms of their characteris-
tics and capabilities (Table I). By extension, the au-
thors discuss the possible limits of the J-A hysteresis
loop model. Generally, in strongly anisotropic ma-
terials such as Vitroperm 500F, the Langevin func-
tion is unsuitable, as it was derived for isotropic
materials. Future research is planned to verify our
description, modifying the characterization of the
anhysteretic curve in accordance with the guidelines
proposed in [16]. The procedures exposed herein in-
volved an anhysteretic curve in the form of a table,
ensuring the best approximation for the Vitroperm
500F material. The approximation error for the lim-
iting hysteresis loop was below 0.8%.
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In this paper, the method for calculating losses in magnetic cores operating in a DC/DC power con-
verter is experimentally veri�ed for selected samples. The chosen method of calculating magnetic losses
based on loss measurements under sinusoidal excitation is described, and the measurement process is
discussed. The results of power loss measurements with a direct current bias for three di�erent magnetic
core materials, e.g., ferrite, nickel�iron�molybdenum alloy powder, and nanocrystalline, are presented.
A quantitative determination of the deviations for the tested method is proposed, including the fre-
quency dependence of the deviation distribution.

topics: magnetic core losses, power electronics, DC/DC converter, Steinmetz equations

1. Introduction

The key components of power electronic con-
verters are magnetic cores. Their miniaturization
is achieved by increasing the switching frequency,
which results in higher losses in the magnetic
core [1]. The value of these losses depends primar-
ily on the type of core material [2]. The operation
of the DC/DC power electronic converter causes
the magnetic core of the inductor to operate under
non-sinusoidal excitation conditions. In the ana-
lyzed case, the magnetic �ux density has a triangu-
lar waveform, which, in addition to the frequency
and amplitude, is characterized by the presence of
a direct current (DC) component BDC. The oc-
currence of the DC part of magnetic �ux density
B is related to the �ow of unidirectional current
through the inductor's windings, which causes the
core to be magnetized with the DC component of
the magnetic �eld strengthHDC. In the case of some
magnetic materials, DC pre-magnetization has a
signi�cant impact on the loss level and cannot be ne-
glected [3, 4]. The commonly used Steinmetz equa-
tion, as well as its modi�cations, e.g., those de-
scribed in [5], do not allow one to take into account
the in�uence of the constant component of the mag-
netic �eld strength on losses. The method based on
the Steinmetz pre-magnetization graph (SPG) pro-
posed in [3] requires many measurements in the con-
verter operating conditions and adjustment of the
coe�cients for the improved generalized Steinmetz

equation (IGSE) to the results obtained for sub-
sequent HDC values. Therefore, there is a need to
develop, verify, and improve methods for estimat-
ing power losses of magnetic cores operating under
such conditions. The article presents the results of
experimental veri�cation of the method for calculat-
ing losses in magnetic cores operating in a DC/DC
converter based on sinusoidal losses for magnetic
cores other than those in the original studies [6, 7].

2. Method description

The approach analyzed in this article was pre-
sented in [6] and [7]. This method uses sinusoidal
losses with equivalent frequency to model losses
with non-sinusoidal excitations. The equation for
the energy density lost during one complete mag-
netization cycle with sinusoidal excitation was also
analyzed [6]

QV =
PV (τ)

f
= Cmfx(f)−1By(f)(ct2τ

2−ct1τ+ct),

(1)

where Cm, x, y are parameters characterizing the
magnetic material; τ � core operating tempera-
ture, f � core magnetization frequency; PV �
power losses related to the core volume; ct2 , ct1 ,
ct � coe�cients of the polynomial taking into ac-
count the in�uence of temperature. This formula
is based on the Steinmetz equation, however, it
is expressed for energy losses and supplemented
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with a polynomial taking into account the in�uence
of temperature. The energy losses depend on the
derivative of the magnetic �ux density dB/dt. As-

suming that Ḃ = dB/dt, the arbitrary shape of the
magnetic �ux density can be represented using a
linear-segmental description containing a weighting
factor. This approach may also be useful in cases
other than a DC/DC converter. The formula for
the equivalent frequency of a sinusoidal signal in [7]
takes the form

feq(sin) =
2

π2

K∑
k=1

(
Bk−Bk−1

Bmax−Bmin

)2
1

tk−tk−1
, (2)

where K � the number of consecutive k-th seg-
ments of the linear-segmental magnetic �ux density
course. For a rectangular voltage waveform mag-
netizing the inductor core operating in a DC/DC
converter, the magnetic �ux density waveform in
the core is triangular. If this waveform is symmetri-
cal, then the frequency of the equivalent sinusoidal
waveform can be expressed as [6]

feq(sin) =
8

π2
frect, (3)

where frect is the frequency of the magnetic �ux
density waveform (excited by a rectangular volt-
age waveform) in the inductor core operating in a
DC/DC converter. In [7], the authors proposed to
include the equivalent frequency into the IGSE [8],
obtaining a formula expressing the energy loss.
Thereby, when the converter operates with a duty
cycle of D = 0.5, which corresponds to a symmet-
rical triangular course of magnetic �ux density, the
equation for the energy lost in the core is simpli�ed
to the following form [7]

Qrect = Qeq(sin)

(
∆Brect, HDC, feq(sin)

)
, (4)

where ∆B is peak-to-peak magnetic �ux density in
the core; Qrect and Qeq(sin) � energy lost in the
magnetic core under rectangular and sinusoidal ex-
citation, respectively. As follows from (4), the en-
ergy lost in the core of the inductor operating in a
DC/DC converter can be determined on the basis of
sinusoidal losses for the equivalent frequency while
maintaining the same value of the constant com-
ponent of the magnetic �eld strength HDC and the
peak-to-peak magnetic �ux density in the core,∆B.
Hence, to determine the losses corresponding to the
operating conditions of the DC/DC converter, nec-
essary measurements must be carried out.

3. Measurement process

The measurements results presented in [6, 7] con-
�rmed the usefulness of the equivalent frequency
method in loss modeling, however, the results ob-
tained only concerned cores made of ferrite mate-
rial 3C85 (Philips) [7] and iron powder material SK-
08KSTB (TOHO ZINC) [6]. For this reason, the aim
of this research is to verify the applicability of (4)

TABLE I

Magnetic cores selected for measurements (AL � in-
ductance coe�cient value for the number of turns
N = 1) [9�11].

Core material
Core model

name

AL

[nH]

N87 (ferrite core) B64290L0038X087 900

MP (nickel, iron,

molybdenum alloy

powder material)

MP-065205-2 123

VITROPERM 500F

(nanocrystalline core)
T60004-L2063-W627-52 18000

in the loss calculation for magnetic cores made of
other materials. It was assumed that the method
veri�cation would be carried out for the duty cy-
cle D = 0.5, which corresponds to the symmetrical,
triangular shape of the magnetic �ux density wave-
form in a core. Three magnetic cores made of di�er-
ent materials were selected for testing, as presented
in Table I (see also [9�11]).

Inductors with powder or ferrite cores are often
found in DC/DC converters. If a ferrite core is used,
a core with a discrete air gap should be used to en-
able the inductor to operate at a higher DC. In
the case of powder material, the material struc-
ture ensures the so-called distributed air gap in the
core. In this research, all tested samples were with-
out discrete air gaps to avoid the additional fring-
ing e�ect associated with these core types [12, 13].
This phenomenon introduces unnecessary compli-
cations related to the loss measurements [14, 15],
which is not desirable for the veri�cation of the an-
alyzed method. The nanocrystalline material VIT-
ROPERM 500F is generally used in the area of
electromagnetic compatibility (EMC) applications
(e.g., common mode chokes [11]). However, it was
included in the research due to its di�erent internal
structure compared to the other samples. In order
to verify the correctness of the analyzed method,
measurements were carried out �rst in the operat-
ing conditions of a DC/DC converter and then with
sinusoidal excitation at the equivalent frequency
feq(sin) in accordance with the assumptions result-
ing from (4), i.e., with the same HDC and ∆B val-
ues. The Brockhaus MPG 200 measurement system
was used to measure the magnetic losses of selected
cores. The system accuracy is ≤ 0.2% and concerns
the measurement of power losses under sinusoidal
excitation conditions. In order to obtain core op-
erating conditions corresponding to operation in a
DC/DC converter, the �Free Curves� option was
used to generate a custom waveform shape of the
magnetic �ux density by the measuring device. The
accuracy of the measurement system for this op-
tion is ≤ 1.5%. The base clock accuracy of the
data acquisition card in the measurement system
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Fig. 1. Energy core losses versus frequency at
∆B = 0.1 T.

is ±0.01%. An additional limitation during mea-
surements is the maximum number of points from
which the measurement system can generate a cus-
tom waveform. For the maximum frequency of the
triangular signal during measurements (rectangular
voltage waveform), the frect frequency is 125 kHz,
and this waveform is generated from only 20 points.
At the lowest excitation frequency, frect = 10 kHz,
the waveform is generated from 100 points. The re-
sults are presented in the form of energy losses Q
(per one complete sinewave cycle) related to the
core volume, as presented in [6]. Since the accuracy
of the measurement system is better with sinusoidal
excitations, the energy loss measured for such exci-
tations was taken as a reference point. Due to the
fact that formula (3) can be transformed to deter-
mine the frequency in the conditions of a DC/DC
converter based on the frequency of sinusoidal exci-
tation, the following formula was proposed to assess
the accuracy of the analyzed method

δ% =

∣∣Qrect −Qeq(sin)

∣∣
Qeq(sin)

· 100%. (5)

4. Results and discussion

Energy losses measured in core operating under
conditions corresponding to a DC/DC converter
(values indicated by the square marker) and under
sinusoidal excitation conditions (at the equivalent
frequency and maintaining the same HDC and ∆B
values � indicated by the round marker) are pre-
sented in the �gures below. The curves (solid or
dashed) presented in the �gures approximate the
results based on a power function. Measurements
were carried out for two di�erent values of the DC
component of the magnetic �eld strength. In the
�gures, the lower horizontal axis indicates the fre-
quency of the rectangular voltage excitation, while

Fig. 2. Method deviation for N87 ferrite core at
∆B = 0.1 T.

Fig. 3. Energy core losses versus frequency at
∆B = 0.2 T (MP-065205-2 powder core).

the upper horizontal axis indicates the correspond-
ing value of the equivalent frequency of the sinu-
soidal excitation. The vertical axis indicates the
energy lost according to the approach presented
in [7].
Figures 1 and 2 present the energy loss mea-

surements and the method deviation for ferrite
core N87.
As expected, the measured energy losses in-

creased with magnetization frequency. Moreover,
the energy loss level was also noticeably dependent
on the value of the DC component of magnetic
�eld strength. In the case of the N87 ferrite core,
the method provided an acceptable convergence of
the measured and calculated values of core losses
(Fig. 2). It should also be noted that in the case of
the ferrite core, the approximation deviations were
about two times higher for the larger DC compo-
nent of HDC = 20 A/m.
The results obtained for the MP powder core

are depicted in Figs. 3 and 4. Generally, the in-
crease in energy losses in the function of frequency
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Fig. 4. Method deviation for MP-065205-2 powder
core at ∆B = 0.2 T.

Fig. 5. Energy core losses versus frequency at
∆B = 0.2 T (VITROPERM 500F nanocrystalline
core).

Fig. 6. Method deviation for VITROPERM 500F
nanocrystalline core at ∆B = 0.2 T.

is more dynamic than in the case of the N87 fer-
rite core. On the contrary to the ferrite core, only a
very small increase in energy loss depending on the
HDC value was observed. This is a favorable fea-
ture of the MP powder core, especially for applica-
tions in DC/DC converters, because the losses are
almost independent of the converter load current
for a speci�c operating frequency. Due to the lim-
itations of our measurement system, this core was
measured in a lower frequency range (up to 50 kHz).
As shown in Fig. 4, the method deviation does not
exceed 12%.
Finally, Figs. 5 and 6 present the results for the

last core made of VITROPERM 500F nanocrys-
talline material. Similarly to the other measured
cores, energy losses strongly depended on the
core magnetization frequency. For the nanocrys-
talline core, energy losses determined by the ver-
i�ed method provided small deviations in almost
the entire frequency range, and the obtained devi-
ation values indicated a weak dependence on the
HDC values.

5. Conclusions

In this paper, the method of estimating losses
of inductor cores operating in the conditions of
a DC/DC converter was presented. The analyzed
method, based on losses measured at sinusoidal ex-
citations, was veri�ed for three di�erent types of
core material. Energy loss values provided by mag-
netic core manufacturers are usually determined
for sinusoidal excitation conditions. Additionally,
these losses are not obtained from measurements
under DC bias conditions. For this reason, core
losses cannot be easily estimated based directly
on (3)�(4) without additional measurements. The
veri�ed method for loss estimation provided satis-
factory results for the core made of nanocrystalline
alloy. The maximum deviation of the loss estimation
did not exceed 8%, and in a wide frequency range
up to 110 kHz, the deviation was lower than 3.2%.
For the constant component HDC = 10 A/m, the
method gave similar deviation values for both the
nanocrystalline and ferrite cores. Slightly larger de-
viations (for HDC = 10 A/m) occur for the pow-
der core. However, for a higher value of the HDC

component, the method deviation in the case of the
ferrite core increased noticeably in contrast to the
nanocrystalline core. Due to the limitations of the
measurement system, the frequency range for the
MP powder core was limited (from 10 to 50 kHz).
It is worth noting that in the original paper [7], the
method for loss calculation was veri�ed for another
powder core (SK-08KSTB) for a frequency range
limited to approximately 20 to 50 kHz. The results
presented in this paper for the MP powder core are
within acceptable limits appropriate for practical
application.
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Concluding, the analyzed method provided sat-
isfactory results for calculating losses in the case
of a symmetric triangular waveform of mag-
netic �ux density in nanocrystalline (VITROP-
ERM 500F) and ferrite (N87) inductor cores oper-
ating in DC/DC converters and acceptable results
for nickel�iron�molybdenum alloy powder material
(MP) in limited frequency range. Veri�cation of the
correctness of the analyzed method for other mag-
netic materials in extended frequency ranges, mag-
netic �ux density, and duty cycle will be the subject
of further research that would allow us to determine
the limits of its applicability.
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The purpose of the following paper is to compare the applicability of Rayleigh hysteresis model and
Steinmetz law in the evaluation of power losses of selected soft magnetic materials under the in�uence of
low magnetizing �elds. Both approximations are relatively simple in terms of computational complexity,
thus they seem to be appropriate for technical applications that do not require extensive knowledge of
the physical properties of the material. The selected soft magnetic materials, i.e., steels and ferrites,
in the form of toroidal cores, were investigated in low magnetizing �elds with a computer-controlled
hysteresisgraph system. Both considered models were applied to the obtained power loss characteristics.
The quality of the description provided by each model was compared in terms of root-mean-square
deviation and determination coe�cient R2, which allowed us to choose the more suitable approximation.

topics: root-mean-square deviation, power loss, Rayleigh model, Steinmetz law

1. Introduction

Measurement and evaluation of power losses of
inductive components seem to be crucial in terms
of energy saving and reducing CO2 emission in mod-
ern industry. About 285 TWh is lost annually in dis-
tribution transformers of power grids only [1], not
taking into account losses of inductive components
massively widespread in electronic devices.
Modeling of power losses in medium and high

magnetizing �elds is relatively complex. It can be
performed utilizing elaborated physical models of
magnetic hysteresis, like the Preisach model or the
Jiles�Atherton model [2], by numerical integration
of the computed hysteresis loop. However, it seems
ine�ective in engineering practice where simplicity
of calculation is an important factor. Also, physical
models dedicated to hysteresis losses, like the Pry
and Bean model [3�5] or the Bertotti model [6�9],
are not easily applicable, as they require knowledge
of multiple microstructural parameters of the ma-
terial. Moreover, these models are based either on
special functions, like the modi�ed Bessel function
of the �rst kind in the Pry and Bean model, or
on the time derivative of the magnetic �ux density,
which is computable only for basic waveform shapes
(sinusoidal, triangular). For technical applications,
models based on elementary functions and not nec-
essarily involving microstructural parameters seem
to be more suitable. Fortunately, in the case of low

magnetizing �elds of the so-called Rayleigh region,
there is a possibility of utilizing such a model, as
power losses can be approximated with the Rayleigh
hysteresis model or Steinmetz law. Both are rela-
tively simple mathematical approximations, based
on second-order polynomial and power function, re-
spectively, so they meet the established requirement
of low computational complexity.
In the paper, the e�ectiveness of both approxima-

tions is compared on the set of measurement data
including low-�eld power losses of four soft magnetic
materials, i.e., two Ni�Zn ferrites and two struc-
tural steels. The quality of the approximation is ex-
pressed by means of normalized root-mean-square
deviation (NRMSD) between the model and mea-
surement data and determination coe�cient R2.

2. Investigated power loss models

The subject of investigation are two power loss
models applicable for low magnetizing �eld regions.
Both are simple mathematical approximations, con-
venient for technical applications.
The low magnetizing �eld region (Rayleigh re-

gion) is an initial part of the magnetization
curve, where the macroscopic magnetization pro-
cess is mostly governed by elastic de�ections and
translations of the domain walls, which give rise
to the reversible and irreversible components of

64

http://doi.org/10.12693/APhysPolA.146.64
mailto:maciej.kachniarz@pw.edu.pl


Comparison of Rayleigh Model and Steinmetz Law in. . .

magnetization, respectively [10]. Therefore, mag-
netic hysteresis occurs in this region, however, the
hysteresis loop exhibits a peculiar shape, sometimes
referred to as a lenticular loop [11, 12] or Rayleigh
loop [13, 14]. The shape results from both branches
of the loop being symmetrical second-order curves,
whose intersection points are vertices of the loop.
The commutation curve, composed of these ver-
tices, follows the second-order equation known as
Rayleigh law of magnetization [10, 13�15], i.e.,

B(H) = µ0

(
µiH + νRH

2
)
, (1)

where B is magnetic �ux density, H � magne-
tizing �eld, µi � initial relative magnetic perme-
ability, νR � so-called Rayleigh coe�cient, and
µ0 = 4π × 10−7 H/m � magnetic permeability of
free space. The linear term refers to a reversible
component of magnetization, while the quadratic
term describes an irreversible component giving rise
to the magnetic hysteresis.
The Rayleigh hysteresis model was �rst intro-

duced by Lord Rayleigh in 1887 [16]. The basis of
the model is the assumption of linear dependence
of relative magnetic permeability µ on the magne-
tizing �eld H [10, 13]

µ(H) = µi + νRH, (2)

which underlies the law of magnetization (1). More-
over, Rayleigh came to the realization that the
lenticular hysteresis loop observed in the weak mag-
netizing �eld could be also described with the
second-order equation, which for descending (up-
per) branch takes the form [10, 13, 14]

B↘(H) = µ0

[
(µi+νRHm)H +

νR
2

(
H2

m−H2
)]

,

(3)

and for ascending (lower) branch

B↗(H) = µ0

[
(µi+νRHm)H − νR

2

(
H2

m−H2
)]

,

(4)

where Hm is the amplitude of the magnetizing �eld.
Later, on the basis of (3) and (4), equations describ-
ing speci�c parameters of the hysteresis loop were
formulated, including coercive �eld, magnetic rema-
nence, and energy loss density in the magnetization
cycle. Due to the hysteresis loop being described by
continuous functions that can be integrated, it is
possible to provide an analytical formula for power
loss. Total energy loss density corresponds to the
surface area of the hysteresis loop [7, 10]

wH =

Bm∫
−Bm

dB H(B), (5)

with Bm being the maximum value of magnetic �ux
density. Note that (5) originates from the calcula-
tion of loop area AH , so geometrically it is a prod-
uct of the double integral over the surface limited
by the B↘(H) and B↗(H) functions. The form of
total energy loss given by (5), most often provided
in the literature, is obtained by changing the order

of integration. However, in the Rayleigh region, the
straight dependence between magnetic �ux den-
sity and magnetizing �eld is known, as B↘(H)
and B↗(H) are given by (3) and (4), respectively.
Therefore, the natural order of integration is more
suitable. As the domain of integration can be con-
sidered as area AH limited by magnetizing �eld ex-
trema Hm and −Hm and branches of the hysteresis
loop B↘(H) and B↗(H), (5) can be expressed by
means of the double integral over the area AH en-
closed by hysteresis loop

wH =

∫∫
AH

dH dB =

Hm∫
−Hm

dH

B↘(H)∫
B↗(H)

dB =

Hm∫
−Hm

dH
(
B↘ (H)−B↗(H)

)
. (6)

After substitution, one can obtain

wH =

Hm∫
−Hm

dH µ0

(
µiH + νRHmH +

νR
2
H2

m

−νR
2
H2 − µiH − νRHmH +

νR
2
H2

m − νR
2
H2

)
,

(7)

which leads to

wH = µ0αR

Hm∫
−Hm

dH
(
H2

m−H2
)
=

µ0νR

(
H2

m 2Hm−2H3
m

3

)
=µ0νR

(
2H3

m−2

3
H3

m

)
.

(8)

This �nally results in the expression of dependence
between energy loss density wH and magnetizing
�eld amplitude Hm in the Rayleigh region [7, 13]

wH (Hm) =
4

3
µ0νR H3

m. (9)

Therefore, the expression for power loss during dy-
namic magnetization in a low magnetizing �eld re-
gion takes the form

PH (Hm) = fVe
4

3
µ0νR H3

m, (10)

where f is the magnetizing �eld frequency, and Ve

� e�ective volume of the magnetic material.

The Steinmetz law, in its basic form, was orig-
inally introduced in 1890 [17]. The dependence of
the energy loss density on the maximum magnetic
�ux density takes the form of a simple power func-
tion [17, 18]

wH(Bm) = αBη
m. (11)

Exponent η is called the Steinmetz exponent (origi-
nally reported to be 1.6 [17]), and α is a proportion-
ality factor. Thus, the power loss can be expressed
as

PH(Bm) = fVeαB
η
m. (12)
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TABLE I

Main magnetic properties of the investigated
soft magnetic materials: Ni0.36Zn0.64Fe2O4 (A),
Ni0.36Zn0.67Fe1.97O4 (B), X30Cr13 (C), and
13CrMo4-5 (D).

Material A B C D

Bm [T] 0.325 0.260 1.280 1.590

Hc [A/m] 45 95 785 670

Br [T] 0.120 0.087 0.940 1.245

µi [−] 600 250 100 80

Ve [cm3] 21.04 22.44 2.52 2.52

On the basis of the original Steinmetz law, numer-
ous modi�cations were developed to better adapt
it to the nonlinear character of the magnetiza-
tion process [19]. A further extension of the power-
function-based approximation are models based on
the Widom scaling procedure [20, 21]. However, in
the case of a low magnetizing �eld, the magnetic
�ux density waveform is relatively less distorted
from the shape of the magnetizing waveform. There-
fore, the nonlinearity of the magnetization process
is less meaningful, and expression (12), based on
the original Steinmetz equation, might be utilized
for power loss approximation.

3. Investigated materials and measurement

methodology

Four soft magnetic materials were selected for
the experiment. Two of them were ferromagnetic
ceramic materials (ferrites) of chemical composi-
tion Ni0.36Zn0.64Fe2O4 and Ni0.36Zn0.67Fe1.97O4,
utilized for magnetic cores of wideband transform-
ers and inductive coils. The other two were struc-
tural alloy steels X30Cr13 and 13CrMo4-5, used in
the power industry. The main magnetic properties
of the materials are summarized in Table I. In the
case of ferrites, the presented data are provided ac-
cording to the speci�cation of the manufacturer �
POLFER S.A. Maximummagnetic �ux density Bm,
coercive �eld Hc, and magnetic remanence Br pro-
vided for steels were previously measured in the sat-
uration region (Hm = 5 kA/m). Initial magnetic
permeability µi of steels was previously determined
for the frame-shaped samples used in magnetoelas-
tic investigation [22, 23].
Investigated materials were formed into toroidal

cores, providing a closed magnetic circuit within
the sample in order to reduce the demagnetizing
�eld [7]. Each sample was characterized by the ef-
fective volume Ve, calculated on the basis of geo-
metrical dimensions of the sample.
The measurements were performed with a dig-

itally controlled hysteresisgraph system. Dynamic
magnetic characteristics of all four materials were

investigated with the linearly changing magnetiz-
ing �eld (triangle waveform). The magnetizing �eld
frequency for ferrites was 1.0 Hz, while for steels, it
was 0.1 Hz. Such low frequencies allowed to signi�-
cantly reduce the eddy current losses [24], especially
in the case of steels. Thus, equation (5), in this case,
describes the pure magnetic hysteresis losses.

For each material, a family of several hysteresis
loops was measured with increasing values of the
magnetizing �eld amplitude Hm. The limits of Hm

corresponding to the Rayleigh region for investi-
gated materials were established according to the
values previously presented in paper [25]. Among
other parameters, measured loops were character-
ized by the power loss PH , which allowed us to ob-
tain the characteristics of PH as a function of max-
imum magnetic �ux density Bm. All measurements
were performed in standard laboratory conditions.

4. Results and discussion

On the basis of experimental results, the charac-
teristics of power loss PH were determined for the
investigated materials. In order to provide a clear
reference for both models, the dependence of PH on
maximum magnetic �ux density Bm is presented.

The Rayleigh model coe�cients of investigated
materials were already determined in the previ-
ous research [25]. As can be seen in (12), only the
Rayleigh coe�cient νR a�ects the modeled value
of power loss PH . Coe�cients of the Steinmetz
law (10) were determined by means of linear re-
gression. Applying natural logarithm to both sides
of (12) leads to the expression

ln(PH) = ln (fVeα) + η ln (Bm) , (13)

thus reducing the problem to linear dependence
y = b + ax. Linear regression provides directly the
value of η = a, while α is given as

α =
eb

fVe
. (14)

The determined values of coe�cients are pre-
sented in Table II. The values of Steinmetz expo-
nent η signi�cantly exceed the original value of 1.6.
However, it has to be noted that the presented re-
sults were obtained with a non-sinusoidal magnetic
�ux density waveform. This may lead to the in-
creased exponent η, as well as to a more rapid failure
of the model in approximation of power losses with
Bm increasing further outside the Rayleigh region,
where the nonlinearity of the magnetization process
is getting more signi�cant.

Model curves calculated with designated coe�-
cients were applied to the experimental results and
are presented in Figs. 1�4. The lower values of power
loss for steels result from a much lower e�ective vol-
ume Ve of the steel cores used in the experiment
(Table I).
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Fig. 1. Results of measurement and modeling of
power loss PH with Rayleigh model and Steinmetz
law for Ni0.36Zn0.64Fe2O4 ferrite.

Fig. 2. Results of measurement and modeling of
power loss PH with Rayleigh model and Steinmetz
law for Ni0.36Zn0.67Fe1.97O4 ferrite.

TABLE II

Determined values of coe�cients of Rayleigh
model [25] and Steinmetz law for investigated materi-
als: Ni0.36Zn0.64Fe2O4 (A), Ni0.36Zn0.67Fe1.97O4 (B),
X30Cr13 (C), and 13CrMo4-5 (D).

Material

Rayleigh model Steinmetz law

µi

[−]
νR

[m/A]

α

[−]
η

[−]
A 644 10.45 881.63 2.35

B 285 1.90 2634.63 2.34

C 69 0.16 23456.43 2.69

D 64 0.79 5336.49 2.41

Fig. 3. Results of measurement and modeling of
power loss PH with Rayleigh model and Steinmetz
law for X30Cr13 steel.

Fig. 4. Results of measurement and modeling of
power loss PH with Rayleigh model and Steinmetz
law for 13CrMo4-5 steel.

In the case of Ni�Zn ferrites (Figs. 1 and 2),
both models seem to approximate measured power
losses relatively well. The Steinmetz law is slightly
more consistent with experimental data. For steels
(Figs. 3 and 4), the situation is more diversi�ed.
The Rayleigh model provides a signi�cantly worse
approximation, especially for points near the end
of the measurement range. However, as it was pre-
viously presented in [25], the transition from the
lenticular loop to the sigmoidal loop of investigated
steels is much more rapid than in the case of ferrites
and takes place in the �elds much below the coercive
�eld of the material. This results in a less accurate
approximation of magnetic parameters, including
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TABLE III

Statistical metrics of Rayleigh model and Steinmetz
law for investigated materials: Ni0.36Zn0.64Fe2O4

(A), Ni0.36Zn0.67Fe1.97O4 (B), X30Cr13 (C), and
13CrMo4-5 (D).

Material

Rayleigh model Steinmetz law

R2

[−]
NRMSD

[%]

R2

[−]
NRMSD

[%]

A 0.972 5.48 0.995 2.34

B 0.972 5.45 0.995 2.30

C 0.876 11.97 0.998 1.50

D 0.918 9.66 0.997 1.99

power loss, for the �elds near the Rayleigh region
limit. On the other hand, the Steinmetz law was
proven to be valid also for the �elds beyond the
Rayleigh region, so the decrease in approximation
quality near the region limit does not occur.

The quality of approximation for both models was
evaluated with two statistical metrics. The deter-
mination coe�cient R2 was calculated according to
the following formula [26]

R2 = 1−

n∑
i=1

(
PHi−P̂Hi

)2

n∑
i=1

(
PHi− 1

n

n∑
i=1

PHi

)2 , (15)

where PHi is the experimental value, P̂Hi � value
estimated by the model, and n � number of
measurement points. Root-mean-square deviation
(RMSD) normalized by the range of measured val-
ues � NRMSD � is expressed as [26]

NRMSD =
1

∆PHi

√√√√ 1

n

n∑
i=1

(
PHi−P̂Hi

)2

, (16)

where ∆PHi is the range of measured values of PHi.
The metrics characterizing both models were calcu-
lated for each investigated material. The resulting
values are summarized in Table III.

The presented results indicate that for all investi-
gated materials, the Steinmetz law provides better
approximation in terms of both R2 and NRMSD.
Again, the di�erence is especially signi�cant for
steels. Values of NRMSD for Steinmetz law are
in this case �ve to eight times lower than for the
Rayleigh model. However, both models allow us to
relatively well estimate the power loss PH with R2

over 0.9 (except for the Rayleigh model for X30Cr13
steel). The advantage of Steinmetz law results par-
tially from the direct �tting of the model curve
to the experimental data, while coe�cients of the
Rayleigh model are determined on the basis of �t-
ting the Rayleigh law of magnetization (1) to the
commutation curve. Such indirect determination of
model coe�cients might negatively in�uence the
quality of approximation.

5. Conclusions

The experimental data presented in the paper al-
lowed us to compare the power loss approximation
capability in low magnetizing �elds of two simple
mathematical models: the Rayleigh model of hys-
teresis and Steinmetz law. Both models were ap-
plied to the set of experimental data obtained for
two di�erent kinds of soft magnetic materials: fer-
rimagnetic Ni�Zn ferrites and ferromagnetic struc-
tural steels.
The modeling results indicate that both models

approximate the power loss in the Rayleigh region
with satisfying quality. For ferrites, the determina-
tion coe�cient R2 is relatively high, slightly prefer-
ring Steinmetz law. In the case of steels, the di�er-
ence in the quality of description is more prominent,
and the statistical metrics of the Rayleigh model
are signi�cantly worse than those of Steinmetz law.
The reason is probably a more rapid transformation
of the hysteresis loop shape with increasing �eld
amplitude, which does not follow the Rayleigh de-
scription well, but is in good agreement with the
Steinmetz equation developed for a wider range of
magnetizing �elds, including high permeability re-
gion.
Despite the fact that both investigated models

can be considered satisfyingly accurate in the esti-
mation of power losses of soft magnetic materials in
low magnetizing �elds, further investigation is still
required to validate the models for a higher range of
magnetizing �eld frequency. Also, the investigation
of modi�ed versions of Steinmetz law seems to be
interesting and may lead to further improvement of
the approximation quality.
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The investigation of the nonmagnetic W-substitution e�ect on the structure and magnetocaloric prop-
erties of the MnCoGe alloy was conducted. The analysis of phase composition revealed the coexistence
of a hexagonal Ni2In-type phase and an orthorhombic TiNiSi-type phase. A detailed analysis of XRD
patterns supported by Rietveld analysis showed changes in the lattice constants and the content of
recognized phases, which depended on the W content in the alloy. A monotonic decrease in the Curie
temperature with an increase in W content in the alloy composition was noticed. The values of ∆SM

measured for the variation of the external magnetic �eld ∼ 5 T were equal to 5.30, 4.16, 2.32, and 3.01
for Mn0.97W0.03CoGe, Mn0.95W0.05CoGe, Mn0.93W0.07CoGe, and Mn0.9W0.1CoGe alloy, respectively.
The analysis of n vs T curves recovered for the tested alloys was characteristic of second-order phase
transition.

topics: magnetocaloric e�ect, MM'X alloys, X-ray di�raction (XRD)

1. Introduction

Magnetic cooling is a phenomenon based on the
magnetocaloric e�ect (MCE) and is a more envi-
ronmentally friendly method of lowering temper-
ature than conventional cooling techniques. This
phenomenon has been known to mankind for over
a hundred years, but we are still looking for ideal
magnetocaloric materials that can be used commer-
cially. The magnetocaloric e�ect is described as an
adiabatic temperature change (∆Tad) or an isother-
mal change in magnetic entropy (∆SM ). This phe-
nomenon was discovered in 1881 by Warburg [1] and
described in more detail independently by Debye in
1926 [2] and Giaugue in 1927 [3], but only thanks to
research conducted by Pecharsky and Gschneidner
Jr. in 1997 [4], the number of publications related
to the topic of magnetocaloric materials increased
exponentially. Currently, alloys are sought that are
relatively cheap but also have the desired proper-
ties (large change in magnetic entropy ∆SM and
appropriate Curie temperature TC).
At present, many scientists are focusing on

MnCoGe alloys belonging to the group of MM'X
alloys (where M or M' is a transition metal and X
� a metalloid), which are characterized by excellent
magnetocaloric properties. MM'X alloys crystallize
in two phases: a high-temperature hexagonal phase
of the Ni2In-type (space group P63/mmc) and a
low-temperature orthorhombic phase of the TiNiSi-
type (Pnma) [5]. The magnetic moments of MM'X

alloys are strongly related to the crystal structure
because they cause magnetic transitions to be as-
sociated with discontinuous changes in the crystal
symmetry as well as lattice parameters. Thanks to
this feature, these alloys can exhibit gigantic MCE
around the occurring �rst-order magnetostructural
phase transitions [6].
Our previous articles based on MnCoGe alloys

were based on partial substitution of Zr [7] and
Pd [8] dopants. These changes improved the value
of the magnetic entropy change and also increased
the Curie temperature. Taking into account the re-
search results described in [9], we decided to investi-
gate the in�uence of the W dopant on the structure
and magnetocaloric properties of Mn1−xWxCoGe
(where x = 0.03, 0.05, 0.07, and 0.1).

2. Sample preparation and experimental

details

The ingot samples were prepared by arc-melting
of high-purity constituent elements under low
pressure of Ar. Compositions were established
as follows: Mn0.97W0.03CoGe, Mn0.95W0.05CoGe,
Mn0.93W0.07CoGe, and Mn0.9W0.1CoGe. Samples
were remelted ten times in order to ensure their ho-
mogeneity. The structural study was based on X-ray
di�raction and was carried out using a Bruker D8
ADVANCE di�ractometer with Cu Kα radiation.
Qualitative and quantity analysis was supported by
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Fig. 1. The X-ray di�raction patterns collected at
room temperature for samples of produced alloys.

Bruker EVA 4.0 software and PowderCell 2.4 pack-
age for the Rietveld re�nement [10]. The magnetic
properties (i.e., the Curie temperature and mag-
netic isotherms) were investigated using the Quan-
tum Design Physical Properties Measuring Sys-
tem (PPMS) Model 6000, working over a wide
range of magnetic �elds and temperatures. In order
to check structural transformation, the di�erential
scanning calorimetry (DSC) curves were collected
using a di�erential scanning calorimeter NETZSCH
214 Polyma (Selb, Germany) with a heating and
cooling rate of 10 K/min. The microstructural ob-
servations were registered using scanning electron
microscopy (SEM) JEOL 6610LV equipped with en-
ergy dispersive X-ray spectrometer (EDS).

3. Results and discussion

Figure 1 shows the XRD patterns of all tested
Mn1−xWxCoGe samples (where x = 0.03, 0.05,
0.07, and 0.1). The analysis revealed two di�er-
ent phases in the studied series of samples: domi-
nant hexagonal Ni2In phase and minor orthorhom-
bic NiTiSi phase. During the analysis, re�exes cor-
responding to the orthorhombic NiTiSi-type phase
were clearly visible for samples with x = 0.03
and 0.1. In the case of samples with x = 0.05
and 0.07, traces of this phase were detected. More-
over, the highest content of volume fraction of the
NiTiSi-type phase with a minor Ni2In-type phase
for the Mn0.9W0.1CoGe alloy was detected.
The calculations of the lattice constant for the

recognized phases showed its monotonic rise with
an increase in W in each sample. Such an ef-
fect is related to the di�erent ionic radius of W
(rW = 1.41 Å) compared to a much lower Mn radius
(rMn = 1.18 Å). In the work of Ba»ela et al. [11], the
orthorhombic cell was treated as a distorted hexag-
onal cell, therefore in the case of the W atom, it

Fig. 2. The SEM micrograph (a) and correspond-
ing EDS maps of the Mn0.95W0.05CoGe alloy sam-
ple (b�e).

TABLE I

Data delivered by the Rietveld analysis for the inves-
tigated Mn1−xWxCoGe alloy samples.

Alloy
Recognized
phases

Lattice
constant
[Å] ±0.001

Volume
fraction [%]

Mn0.97W0.03CoGe

hex
Ni2In-type

a = 4.071
83

c = 5.284

ort
NiTiSi-type

a = 5.933

17b = 3.819

c = 7.049

Mn0.95W0.05CoGe

hex
Ni2In-type

a = 4.073
93

c = 5.287

ort
NiTiSi-type

a = 5.937

7b = 3.821

c = 7.051

Mn0.93W0.07CoGe

hex
Ni2In-type

a = 4.075
94

c = 5.286

ort
NiTiSi-type

a = 5.939

6b = 3.824

c = 7.053

Mn0.9W0.1CoGe

hex
Ni2In-type

a = 4.079
92

c = 5.292

ort
NiTiSi-type

a = 5.943

8b = 3.828

c = 7.061

a�ects the distortion of the cell and also favors the
crystallization of the hexagonal Ni2In-type phase,
which is not desirable, taking into account mag-
netocaloric properties. A detailed examination of
X-ray di�ractograms excluded contamination with
additional phases. The conclusions from the quan-
titative and qualitative analysis were supported by
the Rietveld improvements, and the results are pre-
sented in Table I.
The microstructure of the samples was observed

using the SEM technique. Fragment of the mi-
crostructure of the Mn0.95W0.05CoGe sample is
shown in Fig. 2a. The EDS maps collected for the
tested sample microstructure show a uniform distri-
bution of the components (Fig. 2b �e), which was
expected based on previous studies presented in [8].
The concentration of nominal composition, i.e.,
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Fig. 3. The DSC curves and temperature depen-
dences of magnetization (�eld cooling regime at
∆(µ0H) = 0.1 T).

Mn � 31.67 at.%, W � 0.02 at.%, Co � 33.33
at.%, and Ge � 33.33 at.%, corresponds well with
the values obtained by EDS measurement, i.e., Mn
� 31.52 ± 0.22 at.%, W � 0.95 ± 0.18 at.%, Co
� 33.2 ± 0.25 at.%, and Ge � 34.33 ± 0.36 at.%,
respectively.
The DSC measurements performed for W-doped

MnCoGe alloys are summarized in Fig. 3. DSC tests
were performed to con�rm the results of XRD anal-
ysis and to determine the temperatures of struc-
tural and magnetic transitions. Endothermic and
exothermic peaks are present in all tested samples.
The lambda-type peaks were detected for all stud-
ied samples in the vicinity of 282 K and 277 K for
Mn0.95W0.05CoGe and Mn0.93W0.07CoGe alloy, re-
spectively. The presence of lambda peaks in DSC
curves suggests an occurrence of second-order phase
transition in investigated specimens.
In order to reveal the Curie point of produced

samples, the temperature dependences of magneti-
zation were collected in a magnetic �eld of 0.1 T (in
�eld cooling regime for the whole series (Fig. 4)).
The Curie temperature was revealed by calcula-
tions of the �rst derivative of the M vs T de-
pendences measured for all samples. The estimated
values of the TC were 284 ± 1, 276 ± 1, 270 ± 1,
265±1 K for Mn0.97W0.03CoGe, Mn0.95W0.05CoGe,
Mn0.93W0.07CoGe, and Mn0.9W0.1CoGe, respec-
tively. A gradual decrease in TC was observed, which
may be due to the reduction of the magnetic mo-
ment Mn by the addition of W. As it was mentioned
above, the atomic radius of W is larger than Mn.
It causes an increase in interatomic distances be-
tween Mn�Mn, Mn�Co, and Co�Co, which induces
the weakening of exchange interactions and a de-
crease in the Curie temperature. Moreover, thermal
hysteresis was not observed in all studied samples,
which is also a con�rmation of the occurrence of
second-order phase transition in the produced ma-
terials [12].

Fig. 4. The temperature dependences of magneti-
zation collected under the external magnetic �eld
of 0.1 T for all studied samples.

The magnetocaloric e�ect is determined using in-
direct methods by calculating the change in mag-
netic entropy ∆SM . These studies are based on
magnetic isotherms measured over a wide range of
temperatures. Maxwell's relations were used to cal-
culate the change in magnetic entropy ∆SM [13]

∆SM (T,∆H) = µ0

H∫
0

dH

(
∂M (T,H)

∂T

)
H

, (1)

where µ0 is magnetic permeability, H is the mag-
netic �eld strength, M is the magnetization, and
T is the temperature. The above equation (1) was
implemented in Mathematica using the algorithm
below [14]

∆SM
(Ti + Ti+1)

2
≈ 1

Ti+1−Ti

[ Bmax∫
0

dB M (Ti+1, B)

−
Bmax∫
0

dB M(Ti, B)

]
, (2)

where B is the magnetic �eld induction to the rela-
tion B = µ0H.
The calculated temperature dependences of mag-

netic entropy change for all samples are presented
in Fig. 5. The highest ∆SM values calculated for
a magnetic �eld change of ∼ 5 T were 5.30, 4.16,
3.23, and 3.01 J/(kg K) for Mn0.97W0.03CoGe,
Mn0.95W0.05CoGe, Mn0.93W0.07CoGe, and
Mn0.9W0.1CoGe, respectively. Similarly to our
previous work on the selective substitution of
Mn by Zr [7] and Pd [8], the change in magnetic
entropy was the largest for the Zr and Pd dopant
content of x = 0.05. An increase in the content
of the W addition causes a decrease in the value
of the magnetic entropy change, which con�rmed
the results of measuring the Curie temperature.
Moreover, a successive signi�cant broadening of
the ∆SM peak with an increase in W content was
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Fig. 5. The ∆SM vs T curves revealed for Mn0.97W0.03CoGe (a), Mn0.95W0.05CoGe (b), Mn0.93W0.07CoGe
(c), and Mn0.9W0.1CoGe (d) alloys.

noticed. Present results are much lower than those
revealed for pure gadolinium, which is treated as
a fundamental magnetocaloric material [15]. Such
good properties of Gd are caused by the high-
est magnetic moment and the highest e�ective ex-
change coupling around room temperature [16].
Moreover, the results are also lower than those
for MnCoGe modi�ed by Fe or In addition, which
is manifested by the fact that the ∆SM value
reached even 10.6 or 52 J/(kg K), respectively. The
Curie temperature is comparable to those delivered
in [17, 18].
Taking into account practical applications of

MM'X alloys in domestic devices, the refrigeration
capacity (RC) was calculated. The RC value was
determined based on ∆SM vs T curves using the
following equation [19]

RC(δT,Hmax) =

Thot∫
Tcold

dT ∆SM (T,Hmax), (3)

where RC is the refrigerant capacity, δT =
Thot−Tcold is the temperature range of the thermo-
dynamic cycle (δT corresponds to the full width at
half maximum of magnetic entropy change peak),
and Hmax is the maximum value of the external
magnetic �eld.
Calculations of the RC parameter revealed almost

the same values for each produced alloy from the
series. It is related to a systematic increase in full

width at half maximum with a rise in W content,
despite a decrease in maximum magnetic entropy
change. The values of the change in magnetic en-
tropy ∆SM and the refrigeration capacity RC are
summarized in Table II.
A relatively simple and fast method to study or-

der phase transition was proposed by Law et al.
in [20]. This technique uses a phenomenological �eld
dependence of the magnetic entropy change, which
could be written by following relation [20]
∆SM = C (Bmax)

n
, (4)

where C is a constant depending on temperature
and n is the exponent related to the magnetic state
of the sample. Calculation of the exponent n by
modifying (4) in the form proposed in [21] is as fol-
lows
ln

(
∆SM

)
= ln(C) + n ln

(
Bmax

)
. (5)

As shown in [22], the exponent n depends on the
magnetic state of the material. If we assume that
the tested material obeys the Curie�Weiss law, the
exponent n should be n = 1 in the ferromagnetic
state (below TC) and n = 2 in the paramagnetic
state (above TC). Its value at TC is strongly related
to critical exponents and could be written in the
following form

n = 1 +
1

δ
(
1− 1

β

) , (6)

where β and δ are critical exponents.
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Fig. 6. Temperature dependence of the exponent
n calculated for all tested (Mn,W)CoGe samples.

TABLE II

The magnetic entropy change ∆SM and refrig-
eration capacity RC for the Mn0.97W0.03CoGe,
Mn0.95W0.05CoGe, Mn0.93W0.07CoGe, and
Mn0.9W0.1CoGe alloys.

Sample

Magnetic

�eld

change

∆(µ0H)

[T]

Magnetic

entropy

change

∆SM

[J/(kg K)]

Refrigeration

capacity

RC [J/kg]

Mn0.97W0.03CoGe

1 1.14 32

2 2.37 56

3 3.45 74

4 4.56 102

5 5.30 134

Mn0.95W0.05CoGe

1 0.93 34

2 1.83 58

3 2.74 78

4 3.75 104

5 4.16 132

Mn0.93W0.07CoGe

1 0.74 33

2 1.08 60

3 1.82 76

4 2.39 106

5 3.23 135

Mn0.9W0.1CoGe

1 0.76 32

2 1.11 64

3 1.51 82

4 2.12 108

5 3.01 142

The n vs T curves for all tested samples are col-
lected in Fig. 6. The shape of the n vs T curves
constructed for the tested alloys with the addi-
tion of W is characteristic of the second type
phase transition. A characteristic hump is observed
near the Curie point value, which is typical for

structural transformations similar to the results de-
scribed in [23, 24]. The values of the exponent n
revealed at the Curie point are 0.86, 0.79, 0.82,
0.79 for Mn0.97W0.03CoGe, Mn0.95W0.05CoGe,
Mn0.93W0.07CoGe, and Mn0.9W0.1CoGe, respec-
tively. These values are similar, which suggests that
the values of critical exponents are close to others.

4. Conclusions

The research carried out in this work focused on
the in�uence of partial substitution of Mn by W
on the structure and thermomagnetic properties,
as well as phase transitions of the tested MnCoGe
alloys. XRD studies revealed the presence of two
phases in all tested samples � an orthorhombic
phase of the TiNiSi-type and a hexagonal phase
of the Ni2In-type with various W dopant contents.
The detailed analysis of the X-ray di�raction pat-
tern assisted by the Rietveld re�nements did not
reveal any structural transformation. The increase
in the content of the addition of W at the expense of
Mn in the tested alloys resulted in a decrease in the
Curie temperature. A gradual decrease in magnetic
entropy change with a rise of W in alloy composition
was detected. The symmetrical shape of the tem-
perature dependences of magnetic entropy change
suggested second-order phase transition, which was
con�rmed by an analysis of n vs T curves con-
structed for the tested alloys. A course of all n vs
T curves was independent of W content and char-
acteristic of the second-order phase transition.
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The structure of the antiferroelectric smectic C∗
A phase is investigated for two liquid crystals with almost

identical molecular structures, except for chiral centers. The X-ray di�raction results determined the
crystal unit cell parameters, smectic layer spacing, average distance within layers, and correlation length
of the short-range positional order. The coe�cients of thermal expansion are determined for the crystal
phases. The molecular modeling with the semi-empirical PM7 method and density functional theory
calculations with the def2TZVPP basis set and B3LYP-D3(BJ) functional are applied to determine the
tilt angle of molecules from the experimental smectic layer spacing. The most probable conformations
are then selected based on a comparison with the tilt angle measured by the electro�optic method,
known from the previous results. In the most suitable molecular models, the chiral chain makes an
approximately 90◦ angle with the molecular core, and some fragments in the �uorinated part of the
achiral terminal chain are in the gauche conformation.

topics: X-ray di�raction, smectic liquid crystals, layer spacing, tilt angle

1. Introduction

The smectic phases are liquid crystalline (LC)
phases characterized by the lamellar order. The
lamellar order is quasi-long-range for the simplest
smectic phases, and the positional order within the
smectic layers is only short-range. In the smectic A
(SmA) phase, the average tilt angle Θ of molecules
relative to the layer normal is zero, while in the
smectic C (SmC) phase, Θ ̸= 0. There are a few
types of the SmC phase, including the synclinic,
default SmC, and anticlinic SmCA phases. In the
latter, the tilt angle has an opposite sign in neigh-
boring layers. The SmC∗ and SmC∗

A phases, where ∗

means that they are formed of chiral molecules, can
show, respectively, the ferro- and antiferroelectric
properties in certain conditions, corresponding to
bistable and tristable switching under the in�uence
of the electric �eld [1�3]. Particularly interesting are
the LC compounds forming the SmC∗

A phase with a

high tilt angle close to 45◦, where the chevron defect
in the LC alignment does not cause light leakage in
the dark state of a display [4, 5].
The smectic layer spacing d, which can be ob-

tained using the X-ray di�raction (XRD) method,
is correlated with the tilt angle Θ . Determining
the tilt angle from the XRD results and calculat-
ing molecular size using molecular modeling is not
straightforward because the shapes of mesogenic
molecules often deviate from the ideal rod. Con-
sequently, there is a di�erence between the tilt of
the molecular core (corresponding to the genuine
tilt angle Θ measured by the electro-optic method)
and the overall tilt of a molecule (referred to as the
steric tilt angle) [6�8]. The formula for the tilt an-
gle, which results from these considerations, is as
follows
Θ = arccos(d/L) + δΘ , (1)

where L is the molecular length, and δΘ is the shape
parameter. For a rod-like molecule, δΘ = 0, while
for non-linear molecules, this parameter can even
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Fig. 1. Molecular formulas of I.5.(HH) (S) and II.5.(HH) (S).

exceed 20◦ [8]. It is necessary to test several molec-
ular conformations to �nd the one that enables the
best reproduction of the tilt angle measured by
the electro-optic method [6�8]. In our previous pa-
pers and in the literature, various conformations are
taken into account, including the more extended
hockey-stick conformations [8�10] and more bent
(C-shaped, zig�zag) ones [8, 10�12]. Knowledge of
the most likely conformations can facilitate, e.g., the
interpretation of the infrared (IR) spectra, the anal-
ysis of which usually involves the density functional
theory (DFT) calculations of the intra-molecular vi-
brations [10, 11].
This work presents a comparative study of

two chiral LC compounds. These compounds
are (S)-4'-(1-methylheptylcarbonyl)biphenyl-4-yl
4-[5-(2,2,3,3,4,4,4-hepta�uorobutoxy)pentyl-1-
oxy]benzoate, abbreviated as I.5.(HH) (S) or
3F5HPhH6 (the �rst notation is further used)
and (S)-4'-(1-ethylhexyloxycarbonyl)biphenyl-4-yl
4-[5-(2,2,3,3,4,4,4-hepta�uorobutoxy)pentyl-1-oxy]
benzoate, abbreviated as II.5.(HH) (S). The molar
mass of these compounds is the same, and their
molecular structures are almost identical (Fig. 1).
The only di�erence is in the chiral center, based
on (S)-(+)-2-octanol and (S)-(+)-3-octanol for
I.5.(HH) (S) and II.5.(HH) (S), respectively. They
both exhibit the antiferroelectric smectic C∗

A phase
with a high tilt angle approaching 45◦ [13]; they
are, therefore, promising components for ortho-
conic LC mixtures suitable for displays [4, 5]. The
previous experimental results indicate that both
these compounds form a glass of a smectic phase:
I.5.(HH) (S) of the hexatic smectic X∗

A phase
(SmI∗A or SmF∗

A) for cooling rates ≥ 5 K/min [14]
and II.5.(HH) (S) of the antiferroelectric SmC∗

A
phase for cooling rates ≥ 2 K/min [15]. The fact
that these compounds can be easily supercooled
is another feature that makes them good for
application in LC mixtures, where the observed
range of the smectic phase should be as wide as
possible.
The aim of this paper is analysis of the XRD pat-

terns of I.5.(HH) (S) and II.5.(HH) (S) collected
as a function of temperature. The structural pa-
rameters of the crystal, smectic, and isotropic liq-
uid phases are obtained and discussed in relation
to the results from other experimental methods
published in [14, 15]. Then, the molecular models

of I.5.(HH) (S) and II.5.(HH) (S) from the same set
of conformations, optimized by the DFT method,
are tested to determine the tilt angle from (1).
The conformations, which give the tilt angle con-
sistent with the tilt measured by the electro-optic
method [13], are supposed to be the most probable
conformations exhibited by molecules in the SmC∗

A
phase.

2. Experimental and computational details

The synthetic route of (S)-4'-(1-methylheptyl-
carbonyl)biphenyl-4-yl 4-[5-(2,2,3,3,4,4,4-hepta-
�uorobutoxy)pentyl-1-oxy]benzoate (I.5.(HH) (S))
is described in [16, 17] and synthesis of (S)-
4'-(1-ethylhexyloxycarbonyl)biphenyl-4-yl 4-[5-
(2,2,3,3,4,4,4-hepta�uorobutoxy)pentyl-1-oxy]ben-
zoate (II.5.(HH) (S)) is presented in [18].
The X-ray di�raction experiment for the poly-

crystalline pristine samples (not melted after syn-
thesis) was carried out with X'Pert PRO (PANa-
lytical) di�ractometer in the Bragg�Brentano ge-
ometry with the Cu Kα radiation. The di�raction
patterns were collected in the 2θ = 2�30◦ range dur-
ing heating from room temperature until the tran-
sition to isotropic liquid. The temperature was con-
trolled using the TTK 450 (Anton Paar) stage. The
XRD data analysis was performed in FullProf [19],
PASCal [20, 21], and OriginPro.
The molecular modeling was performed in Gaus-

sian 16 [22]. The conformational energy scans
were carried out for isolated molecules and se-
lected torsional angles with the semi-empirical PM7
method [23]. The lowest-energy conformations were
further optimized by the DFT method (def2TZVPP
basis set [24], B3LYP-D3(BJ) exchange-correlation
functional [25�27]). The preparation and visualiza-
tion of molecular models was done in Avogadro [28].

3. Results and discussion

3.1. Crystal unit cell

At room temperature, both compounds are in
the crystal phases (Fig. 2), and the XRD pat-
terns can be indexed in the orthorhombic and
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TABLE I

Thermal expansion coe�cients αi and matrix of
transition between the crystallographic directions
and principal strain axes for the crystal phases of
I.5.(HH) (S) and II.5.(HH) (S).

Compound Axis
αi (×10−6)

[K−1]
a b c

I.5.(HH) (S) x −231(4) 1 0 0
y 386(17) 0 1 0
z 331(13) 0 0 1
V 489(15)

II.5.(HH) (S) x 179(6) 0.7359 0 0.6771
y 123(3) 0 1 0
z 136(3) −0.5485 0 0.8362
V 442(4)

monoclinic crystallographic system for I.5.(HH) (S)
and II.5.(HH) (S), respectively. The unit cell sizes
were determined by the Le Bail �tting method [29].
The lattice parameters in the room temperature for
I.5.(HH) (S) are a = 35.68(2) Å, b = 17.23(2) Å,
c = 7.603(8) Å, α = β = γ = 90◦ and for
II.5.(HH) (S) are a = 21.866(7) Å, b = 4.834(6) Å,
c = 18.69(2) Å, β = 92.73(9)◦, α = γ = 90◦. The
parameter a for I.5.(HH) (S) is comparable with the
molecule's length of 30�41 Å, based on the DFT re-
sults for various conformations. This indicates that
the crystal phase of the pristine I.5.(HH) (S) sample
very likely has a lamellar structure. The calculated
length of the II.5.(HH) (S) molecule is 30�39 Å,
which does not correspond to any lattice constant.
Thus, the arrangement of molecules is likely not
similar to that in the smectic phases. The di�eren-
tial scanning calorimetry results for pristine samples
indicate that the enthalpy change at melting, which
is equal to 18.0 kJ/mol for I.5.(HH) (S) [17], is much
smaller than 27.8 kJ/mol for II.5.(HH) (S) [18]. This
corresponds to the XRD results, which show that
the lamellar crystal structure of I.5.(HH) (S) resem-
bles more closely the smectic phase than the proba-
bly non-lamellar crystal structure of II.5.(HH) (S),
therefore the enthalpy of melting is lower in the for-
mer compound.
The unit cell parameters, determined from the

XRD patterns as a function of temperature (Fig. 3),
were analyzed in the PASCal program, which en-
ables the calculation of the coe�cients of thermal
expansion (CTEs) along the principal strain axes
x, y, z [20, 21] (Table I). CTE in a given direction
i = x, y, z is de�ned as [20]

αi =
1

T

(
li(T )

li(0)
− 1

)
, (2)

where li(T ) is length (or volume, if the overall CTE
is calculated) at temperature T . For I.5.(HH) (S),
which crystallizes in the orthorhombic system, the
principal axes overlap with the crystallographic

Fig. 2. X-ray di�raction patterns of I.5.(HH) (S)
and II.5.(HH) (S) in their pristine crystal phases
and after melting to the SmC∗

A phase. The vertical
bars indicate the peak positions corresponding to
the crystal unit cells mentioned in the main text.
The wide maximum at 2θ = 6�7◦ is a background
contribution.

directions a, b, c, and the transformation matrix be-
tween them is simply a unit matrix. As the b and
c parameters deviate from the linear dependence
above 318 K, only values from the 298�318 K range
were used in calculations. The I.5.(HH) (S) com-
pound in the crystal phase shows the positive ex-
pansion in the b and c directions, while along the
a direction, CTE is negative. Another behavior is
observed for the II.5.(HH) (S) crystal, which has
positive CTEs along all directions. Despite signi�-
cant di�erences in the anisotropy in thermal expan-
sion, the volume CTE has similar values for both
compounds.

3.2. Short-range order

The short-range order within the smectic layers
appears in the di�raction patterns as a wide maxi-
mum with the middle at 2θ ≈ 18◦. The same maxi-
mum is present after the transition to the isotropic
liquid state. When plotted in the scattering vector
space q = 4π sin(θ)/λ, the wide maximum has a
Lorentzian shape [30, 31]

I(q) =
I0

1 + ξ2(q − q0)2
, (3)

where I0 is the maximum height, q0 is the maximum
position, and ξ is the correlation length. The dis-
tance w = q0/π, which corresponds approximately
to the molecular width, is determined with an ac-
curacy better than 0.01 Å (Fig. 4) and is within the
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Fig. 3. Unit cell parameters for the crystal phases
of I.5.(HH) (S) (a) and II.5.(HH) (S) (b).

4.76�4.99 Å range for I.5.(HH) (S) and 4.84�5.06 Å
for II.5.(HH) (S). It is in agreement with slightly
wider II.5.(HH) (S) molecules, due to the structure
of their chiral center. Note that the presented w val-
ues are mean distances for each temperature, while
the distribution of intramolecular distances is quite
wide, and they may di�er even by 0.5 Å between
particular molecules. The mean w distance does not
change signi�cantly after the transition to isotropic
liquid. The correlation length of the short-range or-
der, determined with the accuracy of ca. 0.1�0.2 Å,
decreases upon heating in the smectic phases and
has an approximately constant value in isotropic
liquid. It takes larger values for I.5.(HH) (S) than
for II.5.(HH) (S), both in the smectic phases and
isotropic liquid phase. Just above the Cr → SmC∗

A
transition temperature, at 341�348 K, the ξ value
is equal to 6.7�7.1 Å for I.5.(HH) (S), while for
II.5.(HH) (S) at lower temperatures 334.5�335.5 K,
ξ equals 5.7�5.8 Å. A larger correlation length for
I.5.(HH) (S) corresponds to the occurrence of the
monotropic hexatic smectic phase formed by this
compound upon overcooling [14], which was not ob-
served for II.5.(HH) (S) [15]. The short-range corre-
lations include only the nearest neighbors, as the ξ
values are in the same order as the w distance. Cor-
relation lengths obtained for other compounds in
the smectic A or C phases are comparable with the
results for I.5.(HH) (S) and II.5.(HH) (S) for some
cases [31�33], but they can also be larger, above
10 Å [34, 35].

3.3. Smectic layer order

The lamellar order is present in the smectic
phases, which corresponds to the low-angle sharp
di�raction peaks. For the investigated compounds,
the 1st and 3rd order peaks are visible, and
the layer spacing (Fig. 5) was determined from
the position of both of them using the Bragg
equation
nλ = 2d sin(θ), (4)

where n is the di�raction order, λ is the X-ray wave-
length, d is the layer spacing, and θ is the peak po-
sition [36]. The layer spacing in the smectic phases
of I.5.(HH) (S) is 1.8�2.1 Å larger than that of
II.5.(HH) (S), which is caused by a longer chiral ter-
minal chain of I.5.(HH) (S), as the tilt angle in both
compounds deep in the SmC∗

A phase is similar, i.e.,
44.5◦ for I.5.(HH) (S) and 43◦ for II.5.(HH) (S) [13].
The SmC∗

A → SmC∗ transition in I.5.HH (S) is only
very weakly visible in the d(T ) plot as a discontin-
uous increase by 0.3 Å. For II.5.(HH) (S), no sig-
ni�cant increase in d indicates the SmC∗

A → SmA∗

transition. The previous results from other exper-
imental methods [15] show that it is troublesome
to detect the SmA∗ phase of this compound on
heating.

Fig. 4. Mean distance between molecules (a) and
correlation length of the short-range order (b) deter-
mined from the XRD patterns. The vertical dashed
lines indicate the smectic → isotropic liquid transi-
tion temperature for each compound.
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Fig. 5. Smectic layer spacing (a) and the ratio of
the 1st and 3rd order peak from the lamellar or-
der (b) determined from the XRD patterns. The
Lorentz-polarization factor corrected the intensi-
ties in (b). Two outlier points in (b) close to the
isotropization temperature were excluded from the
linear �t.

The intensities of the 1st and 3rd order peaks
are proportional to the τ1 and τ3 order parame-
ters, respectively, describing the lamellar order. For
the simplest, sinusoidal density wave, 1 > τ1 > 0
and τm = 0, where m > 1 [37]. The ratio of in-
tensities of the 1st and 3rd order peak I003/I001,
corrected by the Lorentz-polarization factor [38],
is larger for I.5.(HH) (S) than for II.5.(HH) (S),
which means that in the former compounds, there
is a larger deviation from the sinusoidal density
wave. The I003/I001 ratio for both compounds in-
creases with decreasing temperature in an exponen-
tial manner, which is visible as a linear dependence
when I003/I001 is plotted in the logarithmic scale
(Fig. 5b); only the points close to the transition to
the isotropic liquid show some deviations from this
dependence.

3.4. Tilt angle

The conformational energy scans for a few tor-
sional angles in the I.5.(HH) (S) and II.5.(HH) (S)
molecules were previously presented in [14, 15]
and were used for the interpretation of the di-
electric relaxation processes. New conformations

Fig. 6. Molecular model optimized with the DFT
method (φ1 ≈ 62�63.5◦, φ2 ≈ 110◦, φ3 ≈ 295◦).
For I.5.(HH) (S), the φ1, φ2 and φ3 angles are in-
dicated. For II.5.(HH) (S), the L0 and A vectors
are de�ned. The molecular length is obtained as
L = L0 + 3.22 Å, and the shape parameter δΘ is
equal to an angle between L0 and A.

were included to determine the tilt angle from the
XRD results in this study. The molecular models
from [14, 15] were used as the starting point for
new calculations. The semi-empirical PM7 method
is useful for performing quick scans of the conforma-
tional energy as a function of a given torsional an-
gle, because the calculation for an isolated molecule
consisting of 91 atoms, as it is for both considered
compounds, lasts less than one minute. The amount
of possible molecular conformations is large. There-
fore, only selected torsional angles can be investi-
gated in a reasonable time. These torsional angles,
indicated in Fig. 6, are the C�C�C∗�O angle φ1 in
the chiral center, as well as the C�O�C�C angle φ2

and O�C�C�C angle φ3 in the �uorinated part of
the achiral chain. They were chosen because each of
them signi�cantly in�uences the length and shape
of molecules. The PM7 scans for φ1 and φ3 show
three local minima in energy, while for φ2 there are
two local minima (Fig. 7). Only the φ1 scans dif-
fer slightly between I.5.(HH) (S) and II.5.(HH) (S),
while the φ2 and φ3 scans for both compounds over-
lap, as these angles are far from the chiral cen-
ter. In the next step, the DFT calculations, each
lasting up to 12 h, were performed for conforma-
tions corresponding to the local minima in energy,
without any constraints in the torsional angles. The
DFT method reveals a third local minimum in en-
ergy for φ2, and in some cases, the φ values in
the optimized models di�er slightly from the re-
sults of the simpler PM7 method. For each con-
sidered torsional angle, there are local minima in
energy corresponding to an antiperiplanar confor-
mation (φ ≈ 180◦) and two gauche conformations.
Eventually, 27 molecular models with various values
of φ1, φ2, and φ3 were optimized for each compound
(Table II).
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TABLE II

Tilt angle Θ in the SmC∗
A phase of I.5.(HH) (S) and II.5.(HH) (S) obtained from the experimental smectic

layer spacing at 340 K and 334 K, respectively, and molecular models optimized by the DFT method. For each
conformation, the relative energy ∆E is given together with the values of torsional angles ϕ1, ϕ2, ϕ3. The bold
font indicates results that are in agreement with the 2◦ error with the experimental tilt angle [13] at corresponding
temperatures, namely 44.5◦ for I.5.(HH) (S) and 42◦ for II.5.(HH) (S).

I.5.(HH) (S) II.5.(HH) (S)

∆E [kJ/mol] φ1 [deg] φ2 [deg] φ3 [deg] Θ [deg] ∆E [kJ/mol] φ1 [deg] φ2 [deg] φ3 [deg] Θ [deg]

0.02 62.3 78.7 50.3 46.2(1) 0 63.5 78.6 50.2 45.9(4)

2.81 62.4 88.6 175.6 44.5(1) 2.82 63.3 88.4 175.2 41.7(3)

4.23 62.3 109.7 294.7 42.8(2) 4.27 63.5 109.6 294.6 41.2(5)

1.70 62.4 181.3 58.5 34.4(1) 1.68 63.4 181.2 58.4 45.8(3)

3.95 62.4 180.0 180.1 42.9(1) 3.95 63.5 180.1 179.9 44.6(3)

1.67 62.4 178.8 301.4 46.2(1) 1.68 63.4 179.0 301.5 50.3(3)

4.24 62.2 250.5 65.6 � 4.26 63.4 250.6 65.4 24.9(7)

2.83 62.4 271.5 184.7 35.9(1) 2.84 63.4 269.8 183.4 35.4(3)

0 62.2 281.3 309.9 15.9(3) 0.04 63.5 281.5 309.8 33.9(5)

1.45 174.4 78.8 50.5 51.2(1) 9.99 178.6 78.7 50.4 53.1(3)

4.23 174.25 90.1 176.8 50.3(1) 12.79 178.5 89.7 176.2 51.7(3)

5.69 174.4 109.9 294.6 49.8(1) 14.24 178.7 109.9 294.5 51.7(3)

3.12 174.3 181.0 58.5 43.7(1) 11.66 178.7 181.3 58.5 45.4(3)

5.38 174.3 180.2 180.0 47.8(1) 13.93 178.6 180.3 180.1 49.2(2)

3.11 174.2 178.5 301.6 50.8(1) 11.68 178.7 180.5 301.5 52.5(3)

5.67 174.3 250.4 65.5 32.2(1) 14.24 178.8 250.3 65.6 33.0(3)

4.24 174.4 271.0 184.4 44.6(1) 12.80 178.7 271.6 184.8 45.7(3)

1.43 174.3 281.2 309.8 34.8(1) 10.00 178.8 281.2 309.8 36.3(3)

1.90 300.8 78.7 50.0 43.0(2) 1.86 297.5 78.7 50.0 49.0(4)

4.72 300.9 89.0 175.8 40.0(1) 4.67 297.5 87.9 174.9 44.9(3)

6.15 300.6 109.4 294.5 35.8(2) 6.14 297.5 109.6 294.6 45.0(4)

3.58 300.9 181.1 58.5 38.4(1) 3.55 297.5 181.3 58.4 42.9(3)

5.85 300.8 180.3 180.1 41.1(1) 5.85 297.5 179.8 179.9 45.4(3)

3.58 300.8 178.9 301.5 46.6(1) 3.55 297.6 178.8 301.5 50.6(3)

6.16 300.8 250.7 65.4 � 6.13 297.5 250.7 65.4 20.0(7)

4.74 301.0 271.5 184.7 31.3(1) 4.71 297.5 270.4 183.7 37.2(3)

1.92 300.8 281.4 309.7 18.3(3) 1.89 297.6 281.3 309.7 30.0(5)

The tilt angle Θ was calculated using formula (1).
The smectic layer spacing determined just above
the melting of the crystal phase, d = 30.75(3) Å for
I.5.(HH) (S) and 29.0(1) Å for II.5.(HH) (S), was
inserted in this formula. The molecular length L
was de�ned as the distance between the terminal C
atom from the chiral chain and the terminal F atom
from the achiral chain, plus the non-bonded C�F
distance 3.22 Å [39]. For the sake of unambiguity of
L, the same F atom, which follows the positions of
the C atoms in the achiral chain, was selected for
all conformations. There are various approaches to
calculate the shape parameter δΘ [8]. In this work,
δΘ was de�ned simply as an angle between the
C�F vector related to the molecular length and the
C�O vector, where C is located in the COO group

between the biphenyl ring and the chiral center,
and O is adjacent to the benzene ring (see Fig. 6).
The �nal values of Θ obtained from the XRD and
DFT results are presented in Table II. The uncer-
tainties in Θ given in parentheses are related to
uncertainties in d, which do not exceed 1◦. How-
ever, for practical purposes, an agreement within
the ±2 error with experimental Θ from [13] is sat-
isfactory, and the bold font in Table II denotes
such values. One can see that for both compounds,
a good agreement is obtained for conformations
where φ1 ≈ 62�63.5◦ and φ2 ≈ 89◦, φ3 ≈ 175�176◦

or φ2 ≈ 110◦, φ3 ≈ 295◦. Thus, these con-
formations, among the considered ones, are most
likely exhibited by the real molecules in the SmC∗

A
phase.

84



Comparative X-ray Di�raction Study of Two Liquid Crystalline. . .

Fig. 7. Conformational energy of I.5.(HH) (S) and
II.5.(HH) (S) molecules as a function of torsional
angles, de�ned in the main text, calculated with
the PM7 and DFT methods.

4. Conclusions

The structural parameters of I.5.(HH) (S)
and II.5.(HH) (S), with chiral centers based on
(S)-(+)-2-octanol and (S)-(+)-3-octanol, in the
crystal and smectic phases were compared using the
X-ray di�raction patterns registered as a function of
temperature. The main conclusions are as follows:

� In the pristine samples, I.5.(HH) (S) crys-
tallizes in the orthorhombic system, while
II.5.(HH) (S) crystallizes in the monoclinic
system. I.5.(HH) (S) exhibits the strong
anisotropy of CET, which is negative along
the a-axis and positive along the b- and c-axes.
For II.5.(HH), CETs are positive in all direc-
tions.

� The average distance between molecules is
smaller and the correlation length describ-
ing the short-range order within the smec-
tic layers is larger for I.5.(HH) (S) than for
II.5.(HH) (S).

� The smectic layer spacing and deviation from
the sinusoidal density wave is larger for
I.5.(HH) (S) than for II.5.(HH) (S). In both
compounds, the ratio of the 3rd and 1st
di�raction peaks decreases exponentially with
increasing temperature.

� Among the set of 27 conformations obtained
by DFT calculations, the most probable are
these with φ1 ≈ 62�63◦ and φ2 ≈ 89◦,
φ3 ≈ 175�176◦ or φ2 ≈ 110◦, φ3 ≈ 295◦, as
they lead to good agreement with the exper-
imental tilt angle (measured by the electro-
optic method in [13]) for both compounds.
Further XRD experiments will show if the
conformations that are considered most prob-
able for I.5.(HH) (S) and II.5.(HH) (S) agree
with the optical tilt angle for similar com-
pounds.
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This study investigates the existence, stability, and propagation of fundamental, dipole, and tripole
modes in parity�time symmetric potentials with competing cubic and quintic nonlinearities. We discuss
such parity�time solitons in the presence of a focusing quintic nonlinearity and a defocusing cubic
nonlinearity. Assuming a �xed quintic nonlinearity coe�cient σ2 of 1, these solitons can exist and remain
stable within a suitable power range. Fundamental solitons can remain stable even for lower values of
σ1, while dipole and tripole solitons may only be stable for larger values of σ1. By employing appropriate
parameters, a signi�cant proportion of solitons can be stabilized. The stability and propagation of the
solitons are demonstrated through linear stability analysis and direct numerical simulations.

topics: optical solitons, parity�time (PT) symmetry, stability, cubic and quintic nonlinearity

1. Introduction

Non-Hermitian Hamiltonians with parity�time
(PT) symmetry have entirely real eigenvalue spec-
tra, given that the complex potential meets the nec-
essary condition, i.e., V ∗

PT (x) = V ∗
PT (−x) [1�5].

The real and imaginary parts of such potentials
must display symmetry and antisymmetry with re-
spect to position. Spatial solitons in these PT po-
tentials have been extensively studied in recent
years using various nonlinear media, including Kerr
media [3�9], saturable nonlinear media [10�12],
and non-local media [13�17], among others [18�24].
In addition, spatial solitons have been excited
in various PT-symmetric potentials, including
the Scar�-II potential, optical lattice potential,
harmonic-Gaussian potential, and super-Gaussian
potential. Properties such as stability, symmetry
breaking, and dynamic evolution have been widely
discussed. In recent years, various types of opti-
cal solitons have been extensively studied, includ-
ing bright solitons, gap solitons, dark solitons, vor-
tices, and vector solitons. These solitons are sup-
ported by complex PT-symmetric potentials. It is
widely accepted that linear PT-symmetric systems
have a critical property, namely the existence of a
threshold value for the strength of the imaginary
component of a complex potential, known as the
PT-symmetry breaking point. Once the threshold
is surpassed, the spectrum shifts from real-valued

to complex-valued. Article [25] provides a compre-
hensive review of nonlinear waves in PT-symmetric
physical systems. In addition to Kerr or cubic non-
linearity, beam propagation has also been stud-
ied in media with higher-order nonlinearity. The
presence of such nonlinearity signi�cantly modi-
�es beam propagation and can lead to completely
new phenomena. Beam stability is achieved with
higher-order nonlinearity. The inclusion of the quin-
tic nonlinearity results in the formation of a sta-
ble composite soliton, which is not observed in
Kerr media. The variational method is used to
examine the generation and nonlinear dynamics
of multi-dimensional optical dissipative solitonic
pulses with the complex cubic�quintic Ginzburg�
Landau equation [26]. In physical realizations, the
quintic nonlinearity arises from three-body in-
teractions in a dense Bose�Einstein condensate.
Observations of cubic�quintic optical nonlinear-
ity have been reported in the crystal, chalco-
genide glasses, and ferroelectric �lms [27�30]. Re-
cent studies have investigated the stability and evo-
lution of solitons in media with competing cubic
and quintic nonlinearities [31�37]. This article dis-
cusses multipole solitons in PT-symmetric poten-
tials with focusing cubic and de-focusing quintic
media [31]. It investigates the fundamental solitons
in the cubic�quintic nonlinear Schrödinger equa-
tion with PT-symmetric potentials [32]. Addition-
ally, it explores spatial solitons in non-parity�time-
symmetric complex potentials with de-focusing
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cubic and focusing quintic media [33]. This arti-
cle analyses stable solitons in the one- and two-
dimensional generalized cubic�quintic nonlinear
Schrödinger equation with fourth-order di�raction
and PT-symmetric potentials [34]. It also studies
one-dimensional gap solitons in quintic and cubic�
quintic fractional nonlinear Schrödinger equations
with a periodically modulated linear potential [35].
Additionally, it presents families of fundamental
and multipole solitons in a cubic�quintic nonlinear
lattice in fractional dimension [36]. This study ex-
amines gap solitons in parity�time-symmetric opti-
cal lattices with competing cubic and quintic non-
linearities [37]. The results of [37] indicate that all
dipole solitons are unstable, and only a small por-
tion of fundamental solitons are stable when the
strength of the focusing quintic nonlinearity is �xed.
After comparing the above-mentioned articles

(e.g., [31�37]), we found that most of them have
studied the ground state and multipole solitons with
focusing cubic and defocusing quintic nonlinearity.
However, there are few studies on defocusing cu-
bic and focusing quintic nonlinearity. In particu-
lar, there has been relatively little exploration of
multipole solitons in PT potentials exhibiting both
focusing quintic and defocusing cubic nonlinearity.
This study discusses one-dimensional spatial optical
solitons in PT single potentials with focusing quin-
tic and defocusing cubic nonlinearity. The model
discussed in [31�37], i.e., one-dimensional nonlin-
ear Schrödinger equation, is used to explore multi-
pole solitons in PT single potentials. In this paper,
we will consider a complex single potential with
real part V (X) = V0 sech

2(X/X0) and imaginary
part W (X) = W0 sech(X/X0) tanh(X/X0). When
V0, X0, W0 are changed, the pro�le of the real
and imaginary components will be modulated. The
Schrödinger equation can describe the propagation
of a beam in nonlinear media. The nonlinearity in
this article is due to cubic and quintic nonlineari-
ties. The competing e�ects between these two non-
linearities play a signi�cant role in the existence and
stability of solitons. The focusing quintic nonlinear-
ity coe�cients (σ2) are �xed at 1, while the coe�-
cients of the cubic nonlinearity (σ1) are varied from
−1 to 0. The results indicate that solitons can exist
and be stable within a suitable power range. Fun-
damental solitons can remain stable even for lower
values of σ1, while dipole and tripole solitons may
only be stable for larger values of σ1. However, it
is important to note that these solitons are only
stable within a small range of existence when ap-
propriate parameters are employed. The stability of
stationary solutions is analysed through linear sta-
bility analysis, and their evolution is veri�ed using
the beam propagation method.
The paper is organized as follows: In Sect. 2, we

present the model and the method used for the
linear stability analysis. In Sect. 3, we present a
summary of extensive numerical results that outline
the stability domains for the fundamental, dipole-,

and tripole-bound states. These results are based
on the computation of eigenvalues for small pertur-
bations and are corroborated by direct simulations
of perturbed propagation dynamics of the solitons.
Finally, in Sect. 4, we conclude the results.

2. Theoretical model

This study examines the propagation of
one-dimensional spatial optical solitons in PT-
symmetric single potentials with competing
cubic�quintic nonlinearities. The mathematical
model used is the one-dimensional nonlinear
Schrödinger equation. Optical waveguides with bal-
anced gain and loss induce linear potentials, which
aids in stabilizing various types of self-trapped
modes. The propagation of the slowly varying
beam envelope ψ(X,Z) can be described by the
normalized nonlinear Schrödinger equation, which
is also discussed in [31�37],

i
∂ψ(X,Z)

∂Z
+
∂2ψ(X,Z)

∂X2
+ σ1 |ψ|2 ψ(X,Z)

+σ2 |ψ|4 ψ(X,Z) + VPT ψ(X,Z) = 0, (1)

where X and Z are the transverse coordinate and
scaled propagation distance, respectively; ψ(X,Z)
corresponds to the slowly varying amplitude of
the light �eld; σ1,σ2 are the coe�cients of the
cubic and quintic nonlinearity, respectively; and
VPT = V (X) + iW (X) is the PT-symmetric
potential. In the case of PT-symmetry, the poten-
tial satis�es the conditions V (X) = V (−X) and
W (−X) = −W (−X). Here, the function V (X)
describes the real refractive index and W (X)
represents the gain-or-loss distribution of the
potential.
Now we consider the solution of the form

ψ(X,Z) = ϕ(X) exp(iµZ), where µ is a real prop-
agation constant. Then we can obtain the following
equation
∂2ϕ

∂X2
+ σ1 |ϕ|2 ϕ+ σ2 |ϕ|4 ϕ+ VPT ϕ = µϕ. (2)

The modi�ed squared operator method [38] can be
used to obtain a localized solution for ϕ(X). The
stability of this solution was investigated using the
Fourier collocation method [39]. The solution of (2)
is given by small perturbations f(X), g(X), and is
taken to be of the form [31�37]

ψ(X,Z) = ϕ(X) exp(iµZ)

+ε
[
f(X,Z)eλZ + g∗(X,Z)e−λ∗Z

]
exp(iµZ).

(3)

Now substituting the expression in (1) and linearis-
ing, one gets the following coupled set of linear
eigenvalue equations

L̂

{
f

g

}
= λ

{
f

g

}
, (4)
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Fig. 1. (a) The dependence of the power P on the propagation constant µ. (b) The solid and dashed curves
are, respectively, for real and imaginary parts of fundamental solutions when P = 2.1 at σ1 = −0.5. (c) Linear
stability eigenvalues when P = 2.1 at σ1 = −0.5. (d, e) Stable or unstable propagations of fundamental modes
when P = 2.1 and P = 1.7 at σ1 = −0.5, respectively. (f) Unstable propagation of fundamental soliton for
the lower value of σ1, where σ1 = −1, P = 1.7. (g) Stable area in green with di�erent values of σ1. The other
parameters are chosen as V0 = 4, X0 = 2, W0 = 0.5.

where

L̂ =

{
L̂1 L̂2

−L̂∗
2 −L̂∗

1

}
, (5)

while L̂1 = ∂XX +2σ1 |ϕ|2+3σ2 |ϕ|4+VPT −µ, and
L̂2 = σ1ϕ

2 + 2σ2ϕ
3ϕ∗. The symbol �∗� represents

a complex conjugation. The perturbed solution will
grow exponentially with Z, resulting in an unstable
localized mode if real(λ) ̸= 0. On the other hand,
the localized modes are completely stable only when
real(λ) = 0 for every λ (i.e., the system possesses
solely imaginary eigenvalues).

3. Stability and evolution of solitons

This discussion concerns the solitons under the
focusing quintic nonlinearity and various cubic non-
linearities in the presence of a PT potential. Specif-
ically, let us consider a PT potential with the
real part V (X) = V0 sech

2(X/X0) and imaginary
part W (X) = W0 sech(X/X0) tanh(X/X0). When

X0 = 1, the PT potential is the complex Scarf II po-
tential, considered in [1�5]. The pro�le of the real
and imaginary components can be modulated by
changing the value of X0. The same applies to V0
and W0. Additionally, the values of σ1 and σ2 vary
to form these solitons. The stability and propaga-
tion properties of the solitons are then described in
detail.
Firstly, we will discuss the fundamental solitons.

The properties of fundamental solitons are depicted
in Fig. 1. The focusing quintic nonlinearity has a
�xed coe�cient of σ2 = 1 throughout this paper,
while the coe�cient of the cubic nonlinearity σ1 is
varied and ranges from −1 to 0. To maintain gener-
ality, let σ1 = −0.5, which makes the quintic nonlin-
earity focusing and the cubic nonlinearity defocus-
ing. The parameters V0 = 4, X0 = 2 and W0 = 0.5
are chosen. The dependence of the propagation con-
stant µ on the power P (i.e., P =

∫∞
−∞ dx |ϕ|2)

is shown in Fig. 1a. This fundamental soliton fam-
ily exists in the domain where 3.10 ≤ µ ≤ 3.92,
while the solitons are stable within the area where
3.32 ≤ µ ≤ 3.92. The stable area is plotted with
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a green solid curve. The curve meets either the
Vakhitov�Kolokolov (VK) [40, 41] or anti-VK [42]
criteria, which serve as necessary conditions for the
solitons' stability created by any defocusing or fo-
cusing nonlinearity. Solitons exist within a stable
range of power, as shown by the curve. This range
is bounded by minimum and maximum values, i.e.,
Pmin ≤ P ≤ Pmax.
Figure 1b presents the soliton pro�le, where the

solid and dashed curves correspond to the real parts
and imaginary sections of fundamental solutions at
P = 2.1, respectively. It is evident that the solitons
with a power of P = 2.1 are within the stable area.
Figure 1c shows the linear-stability spectrum of this
stable soliton where the real parts of all eigenvalues
are zero when P = 2.1. The numerical study exam-
ines the nonlinear evolution of stable and unstable
PT solitons under perturbation. Figure 1d, e shows
the stable and unstable propagation of soliton mode
propagation perturbed with random noise added at
a level of 5% of the soliton amplitude at (d) P = 2.1
and (e) P = 1.7. In the stable case shown in Fig. 1d,
the soliton intensity remains unchanged during evo-
lution. In the unstable case depicted in Fig. 1e, the
soliton intensity experiences a decrease after sta-
ble propagation for a certain distance. It should be
noted that the largest real part of the correspond-
ing eigenvalue is very small, with max(Re(λ)) being
0.0011 when P = 1.7. Hence, a weak instability cor-
responding to a very small growth rate is observed.
Speci�cally, for soliton families to exist un-

der a particular power P , the cubic nonlinearity
strength σ1 must not go beyond a threshold of
σmin ≤ σ1 ≤ 0. The fundamental solitons are lin-
early stable only within a speci�c portion of their
existence region. Numerical simulations indicate
that power attains a maximum and a minimum
value when σ1 is between −1 and 0. No fundamen-
tal solitons exist when power exceeds the maximum.
While if the power is less than the minimum, the
fundamental soliton can exist for any value of σ1 be-
tween −1 and 0. For instance, when P = 2.1, such
fundamental solitons can exist if σ1 is lower than
the threshold, i.e., for −1 ≤ σ1 ≤ 0, these solitons
remain stable within the region of −0.63 ≤ σ1 ≤ 0.
Numerical calculations indicate that fundamental
solitons do not exist when P > 2.96, while all fun-
damental solitons can exist for any value of σ1 from
−1 to 0 when P < 1.95. It is important to note that
the stability and propagation properties of the soli-
tons are highly sensitive to the values of σ1. Gener-
ally, when σ1 is increased, Pmin decreases more than
Pmax, resulting in an expansion of the stable exis-
tence area. Conversely, when σ1 is decreased, Pmin

increases more than Pmax, leading to a shrinkage of
the stable existence area. This implies that the sta-
bility region is narrower for lower values of σ1 and
wider for larger values of σ1. Thus, the instability
can be increased for lower values of σ1. Figure 1f il-
lustrates the unstable propagation of the fundamen-
tal soliton with σ1 = −1 and P = 1.7. Evidently, the

soliton intensity experiences a sudden decrease af-
ter stable propagation for a certain distance. Higher
instability leads to shorter distances.
To analyse the stable properties of these soli-

tons, we plotted the stable area for the fundamental
solitons with varying values of σ1. Figure 1g dis-
plays the stable area in green. Figure 1g illustrates
that fundamental solitons can remain stable even
for lower values of σ1. It is evident that the soli-
tons shown in Fig. 1e, f are not within the stable
region. Furthermore, we aim to elucidate the e�ect
of the potential's form on the stability regions of
solitons and their impact on the spatial shape of
nonlinear modes, as well as the in�uence of com-
peting nonlinearities. The purpose of this investi-
gation is to examine the role of the PT-symmetric
potential on the nonlinear mode characteristics. To
achieve this, we perform calculations using di�er-
ent values of the parameters. In general, we observe
that the amplitude of the real parts of the funda-
mental solutions increases with an increase in V0,
however, it decreases with an increase inW0 and X0

at a particular power. Conversely, the amplitude of
the imaginary part exhibits the opposite behaviour.
In general, the stability regions of solitons will be
enlarged for higher values of V0 and lower values
of W0. Most importantly, the power P of the sta-
ble soliton decreases with the decrease in X0, and
the stable region of solitons expands. For instance,
when X0 = 1.5, the solitons are stable within the
area where 0.55 ≤ P ≤ 2.15, given the parameters
V0 = 4, W0 = 0.5, σ1 = −0.5. There are additional
stable solitons for various values of σ1 ranging from
−1 to 0, and the stable region has expanded. Under
the same conditions, the solitons are more stable for
lower values of X0.
Next, we will explore the dipole instances, as de-

picted in Fig. 2, which illustrates typical images
of dipole solitons. For the value of σ1, we chose
−0.2, while other parameters were selected as fol-
lows V0 = 4, X0 = 2, W0 = 0.5. The power curve of
the dipole solitons is presented in Fig. 2a, revealing
a clear pattern of increase in power of the dipole
solitons with the propagation constant µ. Dipole
soliton exists in the domain where 0 ≤ P ≤ 4.70,
and the solitons are stable within the area where
0.50 ≤ P ≤ 1.54. The dipole soliton exists within a
speci�c domain, and it stabilizes within a de�ned
zone, as demonstrated by the solid green curve.
The solid and dashed curves in Fig. 2b display, re-
spectively, the real and imaginary components of
dipole solutions at power level P = 1. Addition-
ally, Fig. 2c exhibits the linear stability spectrum
of the stable soliton where the real portions of all
eigenvalues are zero. It is evident that the dipole
solitons with power P = 1 exist within the sta-
ble region. Furthermore, we have conducted a nu-
merical analysis of the nonlinear evolution of both
stable and unstable dipole solitons under pertur-
bation. In Fig. 2d and Fig. 2e, the stable and un-
stable propagations of dipole solitons are shown
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Fig. 2. (a) The dependence of the propagation constant µ on the power P . (b) The solid and dashed curves
are for real and imaginary parts of dipole solutions when, respectively, P = 1 at σ1 = −0.2. (c) Linear stability
eigenvalues when P = 1 at σ1 = −0.2. (d, e) Stable or unstable propagations of nonlinear dipole modes when
P = 1 and P = 1.8 at σ1 = −0.2, respectively. (f) Unstable propagation of dipole soliton when P = 1 at
σ1 = −0.5. (g) Stable area in green with di�erent values of σ1. The parameters are chosen as V0 = 4, X0 = 2,
W0 = 0.5.

at P = 1 and P = 1.8, respectively. Figure 2d
demonstrates the robustness of dipole solitons as
their intensity remains unchanged during evolution.
However, in the unstable case shown in Fig. 2e, the
soliton intensity decreases after stable propagation
over a certain distance. The maximum real part
of the corresponding eigenvalue is extremely small,
with max(Re(λ)) being 0.0025 at P = 1.8. Such a
weak instability is indicative of a very small growth
rate. The e�ect of competing cubic and quintic non-
linearities varies depending on the value of σ1. In
general, it is easy to generate dipole solitons for
any value of σ1 ranging from −1 to 0 for a spe-
ci�c power P . However, the stable region is narrow
in a speci�c section of their existence area. For in-
stance, when given P = 1, in order for these dipole
solitons to exist and remain stable, σ1 should be
within the range of −0.35 ≤ σ1 ≤ 0. Dipole solitons
become unstable when σ1 < −0.35. We vary σ1 over
the range of −1 to 0, observing the typical unstable
propagation of the dipole soliton for lower values
of σ1. Figure 2f illustrates this phenomenon with
σ1 = −0.5 and P = 1. It is evident that the soliton

intensity undergoes changes during its propagation.
In general, dipole solitons tend to be unstable for
lower values of σ1 but are relatively stable for larger
values. This can be observed by comparing Fig. 2d
and Fig. 2f.
In summary, Fig. 2g displays the stable area in

green for these dipole solitons with varying values
of σ1. Figure 2g shows that dipole solitons may only
be stable for larger values of σ1. It is clear that the
dipole solitons in Fig. 2e, f are not within the sta-
ble area. In this study, we investigate the impact of
competing nonlinearities on the stability of solitons,
as well as the in�uence of the PT-symmetric po-
tential on the nonlinear mode characteristics. The
amplitude of the real parts of the dipole soliton so-
lutions generally increases with an increase in V0
but decreases with an increase in W0 and X0 at a
particular power. Conversely, the amplitude of the
imaginary part exhibits the opposite behaviour. In
general, the power decreases as X0 decreases under
the same conditions. The stability regions of soli-
tons will be enlarged for higher values of V0 and
lower values of W0, while they will shrink with the
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Fig. 3. (a) The dependence of the power P on the propagation constant µ. (b) The solid and dashed curves
are for, respectively, the real and imaginary parts of tripole solutions when P = 2 at σ1 = −0.2. (c) Linear
stability eigenvalues when P = 2 at σ1 = −0.2. (d, e) Stable or unstable propagations of nonlinear tripole
modes when, respectively, P = 2 and P = 2.6 at σ1 = −0.2. (f) Unstable propagation of tripole soliton when
P = 2 at σ1 = −0.5 . (g) Stable area in green with di�erent values of σ1. The parameters are chosen as V0 = 4,
X0 = 2, W0 = 0.5.

decrease in X0. For example, when X0 = 1, there
are no stable dipole solitons when σ1 ≤ −0.38, given
the parameters V0 = 4 and W0 = 0.5. Generally,
the stability region is narrower for lower values of
σ1 and wider for larger values of σ1. Thus, the in-
stability can be increased for lower values of σ1. It
should be noted that all solitons are a�ected by ran-
dom noise, which is added at a level of 5% of the
soliton amplitude at the input.
Finally, we will now consider the tripole cases.

Figure 3 displays typical images of tripole solitons.
Here, σ1 is set to −0.2, while the other parameters
are as follows: V0 = 4, X0 = 2,W0 = 0.5. In Fig. 3a,
we can observe the power curve of the tripole soli-
tons. The tripole soliton family exists within the
domain 0 ≤ P ≤ 7.0, while the solitons are sta-
ble within the area 0.78 ≤ P ≤ 2.23. The stable
area is displayed as a green solid curve. Figure 3b
shows the real (solid curves) and imaginary (dashed
curves) parts of tripole solutions when P = 2. Fig-
ure 3c shows the linear-stability spectrum of the sta-
ble soliton, where the real parts of all eigenvalues
are zero when P = 2. The stable region consists

of tripole solitons with power P = 2. To con�rm
the �ndings of the linear stability analysis, we nu-
merically simulated equation (1) to propagate the
stationary solution. We perturbed tripole solitons
with a 5% random noise and summarized the sub-
sequent soliton evolutions in Fig. 3d, e. The results
show that the intensity of the stable soliton mode
propagation remains constant, while in the unsta-
ble case, it decreases. The power value of P = 2
in Fig. 3d falls within the stable region. However,
the power value of P = 2.6 in Fig. 3e does not fall
within the stable region. In the unstable case, the
maximum real part of the corresponding eigenvalue
is very small, with a maximum of Re(λ) = 0.0034
when P = 2.6. Therefore, the growth rate is low
for weak instability. When considering a particu-
lar power P , it is possible to form tripole solitons
for any value of σ1 from −1 to 0. However, their
existence is limited to a narrow stable region. The
competition between cubic and quintic nonlineari-
ties changes as σ1 varies from −1 to 0. For exam-
ple, tripole solitons remain stable when P = 2 and
σ1 varies between −0.41 and 0, but they become
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unstable when σ1 decreases. Figure 3f displays the
typical unstable propagation of a tripole soliton for
a lower value of σ1, where σ1 = −0.5, P = 2. Upon
comparison with Fig. 3d, f, it becomes clear that the
tripole soliton can indeed be stable for a larger value
of σ1. However, for a lower value of σ1, it becomes
di�cult for the tripole soliton to remain stable.
To summarise, Fig. 3g displays the stable area in

green for tripole solitons with varying values of σ1.
Figure 3g shows that tripole solitons may only be
stable for larger values of σ1. It is evident that the
tripole solitons illustrated in Fig. 3e, f are outside
the stable region. In this study, we also investigate
the impact of the PT-symmetric potential on the
nonlinear mode characteristics and stability prop-
erties. Our �ndings indicate that, in general, the
amplitude of the real parts of the tripole soliton
solutions increases with an increase in V0 but de-
creases with an increase in W0 and X0 at a partic-
ular power. Conversely, the amplitude of the imag-
inary part exhibits the opposite behaviour. Under
the same conditions, the stability regions of solitons
will be enlarged for higher values of V0 and lower
values ofW0. It is di�cult to form stable solitons for
very low values ofX0. Generally, the power of stable
solitons decreases as X0 increases. Tripole solitons
exist when the power exceeds the minimum and is
less than the maximum at a certain σ1. The sta-
bility region is narrower for lower values of σ1 and
wider for larger values of σ1.
Furthermore, we conducted numerous numeri-

cal simulations with alternative parameters, which
yielded comparable �ndings. Solitons are able to ex-
ist, remain stable within a suitable power range, and
sustain stability for a larger value of σ1. A consid-
erable proportion of solitons can be stabilized by
employing appropriate parameters.

4. Conclusions

In conclusion, this study examines the existence,
stability, and propagation of fundamental, dipole,
and tripole modes in PT potentials with compet-
ing cubic and quintic nonlinearity. The case of PT
solitons under focusing quintic nonlinearity and var-
ious defocusing cubic nonlinearity is discussed. The
competing e�ect between cubic and quintic non-
linearities plays a signi�cant role in the existence
and stability of both fundamental and multi-pole
PT solitons. The focusing quintic nonlinearity coef-
�cients (σ2) are �xed at 1, while the coe�cients of
the cubic nonlinearity (σ1) are varied from −1 to 0.
The results indicate that solitons can exist and be
stable within a suitable power range, with greater
stability observed for larger values of σ1. Funda-
mental solitons can remain stable even for lower
values of σ1, while dipole and tripole solitons may
only be stable for larger values of σ1. These solitons
may be stable within a small range of existence by

employing appropriate parameters. Linear stability
analysis was conducted to investigate the stabil-
ity of these stationary solutions. Additionally, di-
rect numerical simulations were used to explore the
propagation of these solutions.
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Correlated and uncorrelated Debye�Waller factors and correlation function in atomic vibrations
described by mean square relative displacement, mean square displacement, and displacement�
displacement correlation function, respectively, have been studied based on correlated and uncorrelated
Einstein models, including many-body e�ects. The impact of many-body e�ects in the derived analytical
expressions of the above-considered quantities is realized by using the e�ective potentials of the derived
Einstein models, which take into account the contributions of all nearest neighbors of vibrating atoms.
The Morse potential is used to describe the single-pair atomic interactions. The di�erence between the
correlated Debye�Waller factor and the uncorrelated one is considered to be the source of the corre-
lation e�ect described by the correlation function, which is temperature- and crystal-type-dependent.
The larger such di�erence is, the stronger the correlation e�ect it generates. The numerical results for
the Cu crystal agree with experimental results and with those calculated using other theories.

topics: correlated and uncorrelated Debye�Waller factors, correlation function, correlated and uncorre-
lated Einstein models, e�ective potentials and many-body e�ects

1. Introduction

Thermal atomic vibrations and disorders in ex-
tended X-ray absorption �ne structure (EXAFS)
spectroscopy and other related spectroscopy give
rise to Debye�Waller factors (DWFs) [1�26]. These
factors used in EXAFS and related spectra depend
on the temperature T as e−W (T ) and on the wave
number k (or energy). For EXAFS spectroscopy,
W (T ) ≈ 2k2σ2(T ), where σ2(T ) is the mean square
relative displacement (MSRD) of bond between ab-
sorber and backscatter atoms. The EXAFS DWF
is analogous to factor found in X-ray and neutron
di�raction or the Mössbauer e�ect, where W (T ) =
1
2k

2u2(T ). The di�erence is that the EXAFS DWF
refers to correlated averages over relative displace-
ments, as is the case of the MSRD σ2(T ), while
in X-ray absorption or neutron di�raction, u2(T )
refers to the mean square displacement (MSD) of
a given atom. Unfortunately, the MSRD or corre-
lated DWF σ2(T ) and the MSD or uncorrelated
DWF u2(T ) are closely related with one another
and from them, the displacement�displacement cor-
relation function (DCF) or correlation function
CR(T ) describing the correlation e�ects is gener-
ated. Accurate DWFs and other related functions

such as u2(T ) and CR(T ) are crucial to quantitative
treatment of the X-ray absorption spectra and dif-
ferent e�ects in EXAFS theory.
Many e�orts have been made to derive procedures

for studying DWFs of materials. Satisfactory proce-
dures are those of classical methods [2�6], which
have the advantages of simplicity and work very
well at high temperatures, except for limitations at
low temperatures due to the absence of zero-point
vibration. Importantly, the derived procedures in-
clude also quantum methods, which have the advan-
tages of working at both low and high temperatures.
These include, for example, the e�ective anhar-
monic single-particle potential method [7], the sin-
gle bond correlated Einstein model [8], the path in-
tegral e�ective potential [9], the full lattice dynami-
cal (FLD) approach [10, 11], the local force constant
theory [12], the dynamic matrix calculation [13], the
path-integral Monte Carlo calculation [14], the an-
harmonic correlated Einstein model (ACEM) [15],
the anharmonic correlated Debye model [16], and
many others. The e�orts undertaken have proven to
make signi�cant contributions to materials research,
for example [17�24]. Here, ACEM is successfully ap-
plied in the development of several methods such
as: EXAFS theory including anharmonic contribu-
tions [17], method for studying EXAFS of doping
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materials compared to Mössbauer studies [18], pres-
sure e�ects in EXAFS [19], thermodynamic prop-
erties of isotopes [20] and of semiconductors [21].
Moreover, based on DWFs, the e�ective methods
have been derived for studying strong anharmonic-
ity in tin monosul�de evidenced by local distortion,
high-energy optic phonons [22], melting curve, eu-
tectic point, Lindemann's melting temperature of
close-packed hexagonal (hcp) binary alloys [23], and
a semi-classical ACEM for hcp crystals [24]. Unfor-
tunately, there are still few works [25, 26] concerning
the uncorrelated DWF u2(T ) and the DCF or cor-
relation function CR(T ) describing the correlation
e�ects in atomic vibrations.
The purpose of this work is to derive the method

enabling the calculation and analysis of correlated
and uncorrelated DWFs and then correlation func-
tion in atomic vibrations (i.e., σ2, u2, and CR, de-
scribed, respectively, by MSRD, MSD, and DCF),
including many-body e�ects. In Sect. 2 the analyti-
cal expressions have been derived for the correlated
DWF σ2(T ) based on the correlated Einstein model
(CEM) using a correlated atomic vibration (CAV)
and for the uncorrelated DWF u2(T ) based on the
uncorrelated Einstein model (UCEM) using a sin-
gle atomic vibration (SAV). The correlation func-
tion CR(T ) is generated from the di�erence between
the derived σ2(T ) and u2(T ). The many-body ef-
fects given in the derived analytical expressions of
σ2(T ), u2(T ) and CR(T ) are obtained based on the
CEM and UCEM e�ective potentials, which include
contributions of all nearest neighbors of the ab-
sorber and backscatter atoms in the case of CEM
and of a single atom in the case of UCEM. The
created method leads to the simpli�cation of the
operation of a many-body system in the EXAFS
theory to a useful one, which is a one-dimensional
model. The Morse potential is assumed to describe
the single-pair atomic interactions. The numerical
results for Cu (Sect. 3), i.e., for one of the intensively
studied crystals, are compared with: (i) experimen-
tal values taken from the measured Morse parame-
ters (MMP) [27], (ii) measured values [7, 27�29] for
σ2(T ), and also (iii) with values calculated using
other theories [25, 26] for the ratio CR/u

2, which
in fact show good agreement. Conclusions on the
obtained results are presented in Sect. 4.

2. Correlated and uncorrelated DWFs

and correlation function based

on CEM and UCEM

2.1. Relation of correlation function with
correlated and uncorrelated DWFs

The de�nition of MSRD or correlated DWF
σ2(T ) implies its close relation with the MSD or un-
correlated DWF u2(T) and the DCF or correlation

function CR(T). It can be written as

σ2 (T ) =

〈[
R̂0 · (ui−u0)

]2〉
= 2u2 (T )−CR (T ) ,

(1)

where ui−u0 included in the �rst equation of (1)
contains the atomic displacements of the i-th and
0-th sites de�ned by their displacements from those
of the equilibrium positions, R̂0 is the unit vector
pointing from the 0-th site towards the i-th site, and
the bracket ⟨. . . ⟩ denotes the thermal average.
Moreover, in the second equation of (1), the un-

correlated DWF or MSD u2(T) has been de�ned as

u2 (T ) =
〈(

u0 · R̂0
)2〉

=
〈(

ui · R̂0
)2〉

, (2)

and then the DCF of correlation function CR(T)
had to take the form

CR (T ) = 2
〈(

u0 · R̂
0
)(

ui · R̂
0
)〉

=

2u2 (T )− σ2 (T ) , (3)

which is apparently obtained by the di�erence be-
tween the correlated and uncorrelated DWFs.

2.2. E�ective potentials of CEM and UCEM

In order to specify the thermodynamic param-
eters, it is necessary to determine the local force
constants [7�21]. The e�ective potential applied in
the present theory can be expressed as a function of
the displacement x = r−r0 along the direction R̂0,
with r and r0 being the instantaneous and equilib-
rium distances between the absorber and backscat-
ter atoms. Thus, the expressions of the potencial for
the CEM using CAV (V C

eff(x)) and for the UCEM
using SAV (V S

eff(x)) have the following forms

V
C(S)
eff (x) ≈ 1

2
k
C(S)
eff x2, (4)

where the di�erence of the mentioned potentials is
caused by the di�erence between their e�ective lo-
cal force constants kCeff for the CAV model and kSeff
for the SAV model, used in the present theory.
Note that since atomic correlations do not involve

anharmonic contribution, the e�ective interatomic
interaction potential given by (4) only includes har-
monic terms.
The values of kCeff for the atomic correlated ef-

fective potential can be obtained by comparing the
potential V C

eff(x) of (4) to that de�ned for a single
bond pair in the center-of-mass frame [14] of the
absorber with mass M1 and the backscatter atoms
with mass M2. Therefore, we have

V C
eff (x) = V (x) +

∑
j ̸=i

V

(
µ

Mi
x R̂12 · R̂ij

)
=

V (x) + 2V
(
−x

2

)
+ 8V

(
−x

4

)
+ 8V

(x
4

)
, (5)

where the �rst term on the right concerns only
absorber and backscatter atoms, the second one,
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containing the sum i over absorber (i = 1) and
backscatter (i = 2) and the sum j over their remain-
ing nearest neighbors, describes the lattice contri-
butions or many-body e�ect to the pair interaction
and depends on crystal structure type. Here, R̂ is
the bond unit vector. The second equation of (5) is
for the monatomic face-centered cubic (fcc) crystals,
in which the reduced mass µ = M1M2/(M1 +M2)
is replaced by M/2 because M = M1 = M2 stands
for the atomic mass.
The values of kSeff are obtained by using the poten-

tial V S
eff(x) of (4) and a method [30] for the single-

atom e�ective potential, which takes into account
only the in�uence of N nearest atomic neighbors of
the central atom as

V S
eff (x) =

N∑
j=1

V
(
xR̂

0
· R̂j

)
=

V (x) + V (−x) + 4V
(x
2

)
+ 4V

(
−x

2

)
, (6)

where R̂j are the unit vectors of the nearest neigh-
boring atoms with respect to the equilibrium posi-
tion of the central atom. The second equation of (6)
is for monatomic fcc crystals.
The advantage of applying the e�ective poten-

tials given by (5) for CEM and (6) for UCEM in
the present theory is the possibility of taking into
account many-body e�ects or lattice contributions.
This is achieved by including the contributions of
all nearest neighbors of the absorber and backscat-
ter atoms for the CEM and of a single atom for
the UCEM, where these derived e�ective potentials
are presented as one-dimensional. In this manner, a
complicated task of many-body system in EXAFS
theory is simpli�ed to one-dimensional model.
To describe a single-pair atomic interaction, we

use the Morse potential expanded up to second or-
der (harmonic term) around its minimum
V (x) = D

(
e−2αx − 2e−αx

)
≈ D

(
−1 + α2x2

)
,
(7)

where α describes the width of the potential, and
D is the dissociation energy.
Based on the atomic structure of the fcc crystal,

the e�ective local force constants kCeff of CEM and
kSeff of UCEM, given indirectly by the Morse poten-
tial parameters in (4), could be written here as
kCeff = 5Dα2, kSeff = 8Dα2. (8)

Note that the signi�cant di�erence between the
above kSeff and kCeff will lead to a di�erence of the
EXAFS quantities obtained from CEM and UCEM.

2.3. Analytical expressions of correlated and
uncorrelated DWFs as well as correlation function

Based on CEM, the analytical expression of the
temperature-dependent correlated DWF or MSRD
σ2(T ) using CAV has been derived and given by

σ2 (T ) ∼=
〈
x2

〉
= σ2

0

1 + z

1− z
, σ2

0 =
ℏωC

E

kCeff
, (9)

z = exp

(
−θCE

T

)
, θCE =

ℏωC
E

kB
, ωC

E =

√
kCeff
µ

,

(10)
where µ is the reduced mass of correlated vibrating
atoms and kB is the Boltzmann constant.
Similarly, based on UCEM, the analytical ex-

pression of the temperature-dependent uncorrelated
DWF or MSD u2(T) using SAV has been derived
and given in the form

u2 (T ) = u2
0

1 + z1
1− z1

, u2
0 =

ℏωS
E

kSeff
, (11)

z1 = exp

(
−θSE
T

)
, θSE =

ℏωS
E

kB
, ωS

E =

√
kSeff
M

,

(12)
where M is the mass of a composite atom.
In the above analytical expressions, the CEM

frequencies and temperatures are given by, respec-
tively,

ωC
E =

√
kCeff
µ

and θCE =
ℏωC

E

kB
, (13)

and the UCEM frequencies and temperatures are
given by, respectively,

ωS
E =

√
kSeff
M

and θSE =
ℏωS

E

kB
. (14)

Consequently, the correlation function CR(T ) de-
scribing the correlation e�ect is calculated using (3)
based on the above expressions for the uncorrelated
DWF u2(T ) and correlated DWF σ2(T ). The de-
rived correlation function has the form

CR (T ) = 2u2
0

1 + z1
1− z1

− σ2
0

1 + z

1− z
, (15)

where σ2
0 , z and u2

0, z1 are de�ned in (9)�(10) and
(11)�(12), respectively.
Hence, the correlation function CR(T ) describing

the correlation e�ects of atomic vibrations in the
materials results from the di�erence between the
correlated DWF σ2(T ) and the uncorrelated DWF
u2(T ). It has the same unit as DWF, behaving as
a thermodynamic parameter. Actually, the reason
causing this correlation e�ect can be attributed to
the di�erence between the local force constants kCeff
and kSeff , as well as the di�erence between the re-
duced mass µ in CEM using CAV and the mass
M of a composite atom in UCEM using SAV. This
property will be discussed in detail through the nu-
merical results presented in Sect. 3 for Cu as a fcc
crystal.
Note that the functions σ2(T ), u2(T), and CR(T)

obtained above include many-body e�ects or lattice
contributions because they contain the e�ective lo-
cal force constants kCeff and kSeff describing the cor-
related and uncorrelated DWFs which actually in-
clude many-body e�ects.
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3. Numerical results and discussions

Now, the expressions derived in the previous sec-
tions are applied to the numerical calculations for
Cu in the fcc phase. Using the Morse potential pa-
rameters of Cu [31], i.e., D = 0.3429 eV, α =
1.3588 Å−1, and its measured Morse parameters,
i.e., (MMP) [27] D = 0.33 eV, α = 1.38 Å−1, the
e�ective local force constants kCeff , k

S
eff , as well as the

correlated Einstein frequencies ωC
E and temperature

θCE , and the uncorrelated Einstein frequency ωS
E and

temperature θSE with respect to CAV in CEM and to
SAV in UCEM, respectively, have been calculated.
Some of the results are included in Table I.
The calculated results for the above-considered

quantities of Cu written in Table I show the sig-
ni�cant di�erences between the CAV model (with
upper index �C�) and the SAV model (with upper
index �S�). The e�ective local force constant for the
SAV model (kSeff) is much larger than the one (kCeff)
for the CAV model. The reasons for this di�erence
can be attributed to the di�erence in the number
and mass of vibrating particles, because in the CAV
model, there is only half of them compared to the
SAV model. Actually, in the center-of-mass frame
of single bond pair for the CAV model, the crys-
tal behaves as it consists of quasi-atoms having a
reduced mass that equals only half the composite
mass of the atom, as shown in (5), and their number
is only half the atomic number for the SAV model,
because each quasi-atom is constructed from a pair
of composite atoms. This di�erence also leads to the
result, in which the values of correlated Einstein fre-
quency ωC

E and temperature θCE obtained from the
CAV model are larger than, respectively, ωS

E and
θSE , obtained from the SAV model (Table I). Here,
the value of θCE = 234K calculated using the present
theory (Table I) is close to the experimental result
of 232 K [3, 29].
Figure 1 illustrates the e�ective potentials

V
C(S)
eff (x) of Cu calculated using the present the-

ory for the CAV and SAV models, which agree
well with the experimental values (Exper.) obtained
from MMPs [27]. Here, the SAV potential V S

eff(x)
is bigger than the CAV potential V C

eff(x) because
the e�ective local force constant for the SAV model
(kSeff) is larger than the one (k

C
eff) for the CAV model

(Table I). This means that the atomic interaction
described by the SAV model or the CEM is stronger
than the one for the CAV model or the UCEM.
This discrepancy also leads to the di�erence be-
tween other quantities such as ωC

E , θ
C
E (calculated

using CEM) and ωS
E , θ

S
E (calculated using UCEM),

written in Table I. Such properties can be under-
stood because the number and the mass of atoms
in the SAV model are larger than those of the quasi-
atoms in the CAV model.
Figure 2 illustrates the temperature dependence

of the Debye�Waller factors: correlated DWF or
MSRD σ2(T ), uncorrelated DWF or MSD u2(T ),

Fig. 1. E�ective potentials V
C(S)
eff (x) of Cu, calcu-

lated using the present theory for CAV in CEM and
for SAV in UCEM, and compared to the experimen-
tal values (Exper.) [27].

TABLE I

The values of kC
eff , k

S
eff , ω

C
E , θ

C
E , ω

S
E , θ

S
E for Cu, cal-

culated using the present theory and compared to
the experimental values (Exper.) obtained from the
MMPs [26].

Quantities Present Exper. [26]

kC
eff [N/m] 49.7867 50.3450

kS
eff [N/m] 79.6587 80.5520

ωC
E (×1013) [Hz] 3.0628 3.0799

ωS
E (×1013) [Hz] 2.7394 2.7547

θCE [K] 233.9531 235.2611

θSE [K] 209.2540 210.4239

and correlation function DCF CR(T ) obtained from
the di�erence, and also σ2(T ) and u2(T ) of Cu cal-
culated using the present theory. They are all lin-
ear with T at high temperatures, beginning from
the Einstein temperature where the classical limit
applies, and they contain zero-point energy contri-
butions at low temperatures, which is a quantum
e�ect. Here, the calculated results of σ2(T ), u2(T ),
CR(T ) agree well with experimental values (Exper.)
obtained from MMPs [26] and with the measured
values for σ2(T ), labeled as Exper. (1) [28], Ex-
per. (2) [29], Exper. (3) [27], Exper. (4) [7]. More-
over, the values of σ2(T ) are greater than those of
u2(T ), and that makes the damping factor in the
EXAFS and other related spectroscopy for the SAV
model greater than for the CAV model.
Note that the di�erence between the obtained

correlated DWF σ2(T ) and the uncorrelated one
u2(T ) of Cu, shown in Fig. 2, is the source causing
the correlation e�ect described by CR(T ). Hence,
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Fig. 2. Temperature dependence of correlated
DWF σ2(T ), uncorrelated DWF u2(T ) ,and corre-
lation function CR(T ) of Cu, calculated using the
present theory. The results are compared to the ex-
perimental values (Exper. (MMP)) obtained from
MMPs [26] and the measured values for σ2(T ): Ex-
per. (1) [28], Exper. (2) [29], Exper. (3) [27], Ex-
per. (4) [7], at di�erent temperatures.

Fig. 3. Temperature dependence of the ratios
CR/u

2 and CR/σ
2 of Cu, calculated using the

present theory. The results are compared to ex-
perimental values (Exper. (MMP)) obtained from
MMPs [27], as well as to the results calculated us-
ing the force constant model (FCM) [25] and Debye
model (DM) [26] for the ratio CR/u

2.

the correlation e�ect of Cu clearly depends on this
di�erence appearing in di�erent crystals. Figure 2
also shows that the larger di�erence between σ2(T )

and u2(T ) generates stronger correlation e�ect than
the lesser one. Here, the correlation function CR(T )
(Fig. 2) at high temperatures is stronger than at low
temperatures. Moreover, the correlation e�ect has
resulted only from the e�ective local force constants
of the harmonic interatomic interaction potential,
which clearly proves that it is a harmonic e�ect.
The ratio CR/u

2 is often considered in studying
EXAFS correlation e�ects [25, 26]. Figure 3 illus-
trates temperature dependence of the ratios CR/u

2

and CR/σ
2 of Cu, calculated using the present the-

ory. These results show percentages of the corre-
lation e�ects contributing to the thermodynamic
properties of fcc crystals, e.g., to MSD or uncor-
related DWF and to MSRD or correlated DWF, re-
spectively. They are constant at high temperatures,
beginning from the Einstein temperature. This in-
dicates that at these high temperatures, the tem-
perature dependence of σ2(T ), u2(T ), and CR(T )
of Cu is similar. The result for CR/u

2, calculated
using the present theory, is found to be in reason-
able agreement with those calculated using the force
constant model (FCM) CR/u

2 = 0.415 [25] and the
Debye model (DM) CR/u

2 = 0.387 [26]. Moreover,
the ratio CR/u

2 presented in Fig. 3 is greater than
CR/σ

2. This shows that the correlation e�ect com-
pared to MSD or uncorrelated DWF is larger than
the one compared to MSRD or correlated DWF.

4. Conclusions

In this work, a method has been derived, enabling
the calculation and analysis of the temperature-
dependent correlated DWF σ2(T ), uncorrelated
u2(T ), and the correlation function CR(T ) in atomic
vibrations of materials based on CEM and UCEM,
including many-body e�ects.
The many-body e�ects shown in the derived ana-

lytical expressions of the correlated DWF σ2(T ),
uncorrelated DWF u2(T ), and correlation func-
tion CR(T ) have been achieved by using CEM and
UCEM, i.e., models including the contributions of
all nearest neighbors of the absorber and backscat-
ter atoms (for CEM) and a single atom (for UCEM),
as well as formulate their e�ective potentials in the
useful form of one-dimensional model.
The present theory has signi�cantly simpli�ed a

complicated many-body system task into a one-
dimensional model, as well as provided a method
for determining the uncorrelated DWF or MSD and
correlation function that is simpler than those using
X-ray absorption or neutron di�raction and other
theories.
The correlation e�ect has been described based

on only the e�ective local force constants of the
harmonic e�ective potentials obtained by the CAV
model used in CEM and the SAV model used in
UCEM, which clearly proves that it is a harmonic
e�ect.
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The di�erence between the correlated DWF de-
termined by CEM and the uncorrelated DWF de-
termined by UCEM is considered to be the source
causing the correlation e�ect. It has the same di-
mension as DWF, and is temperature and crystal
types dependent. The larger this di�erence is, the
stronger correlation e�ect it generates.
The reasons for the di�erence in the thermody-

namic properties of crystals described by the corre-
lated DWF σ2(T ) for the CAV model used in CEM
and by the uncorrelated DWF u2(T) for the SAV
model used in UCEM are attributed to the di�er-
ence in their e�ective local force constants caused
by the di�erence in the number and the mass of vi-
brating atoms between these models, where for the
SAV model they are double compared to those for
the CAV model.
The ratios CR/u

2 and CR/σ
2 provide percent-

ages of the correlation e�ects contributing to the
thermodynamic properties of crystals described by
the functions u2(T ) and σ2(T ), respectively. Their
constant values at high temperatures indicate the
similarity in temperature dependence of the consid-
ered values, e.g., the correlated DWF σ2(T ), the
uncorrelated DWF u2(T ), and the correlation func-
tion CR(T ), at these high temperatures.
The present theory avoids the intensive FLD cal-

culations required by a many-body system task, yet
it provides a good agreement of the calculated re-
sults of σ2(T ), u2(T ), and CR(T ) of Cu with the
experimental ones obtained from the MMPs, the
measured values for σ2(T ), as well as values calcu-
lated using FCM and DM for CR/u

2 of Cu. This
illustrates the simplicity, advantages, and e�ciency
of the present theory in EXAFS data analysis, es-
pecially in studying the correlated DWF σ2(T ), the
uncorrelated DWF u2(T), and the correlation func-
tion CR(T) in EXAFS theory.
This theory can also be applied to the study of

the considered quantities of other fcc crystals that
were not considered in this work, and it can also be
generalized to research these values of other crystal
structures based on the calculation of the CAV and
SAV local force constants of these materials.
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Many theoretical models depicting excitable cells stem from the Hodgkin�Huxley model. Over the past
few decades, quantitative studies on its electrophysiology and nonlinear dynamics have yielded consid-
erable progress. In this study, we employ a landscape and �ux theory to statistically explore the global
dynamic characteristics of the classical Hodgkin�Huxley neuron. We quantify the underlying landscape
and �ux to address global stability. Our results provide an intuitive understanding of a global picture
of the dynamic system. By quantifying the average curl �ux, we reveal that it serves as the dynam-
ical origin for the emergence of a new state and a dynamical indicator for bifurcation. In addition,
we quantitatively calculate the entropy production, identifying it as an essential thermodynamic in-
dicator for bifurcation. The time asymmetry of the cross-correlations can be directly computed from
existing experimental time series, o�ering a practical indicator for bifurcation analysis. This paper
presents our �ndings and their implications for a better understanding of the behavior of excitable
cells.

topics: non-equilibrium Hodgkin�Huxley (HH) neuron dynamics, landscape, curl �ux, critical transition

1. Introduction

The pioneering work of Hodgkin and Huxley
laid the foundation for unraveling the mysteries of
neuron excitability, providing a fundamental the-
oretical framework for investigating the electrical
properties of neurons [1�6]. Since then, research
in this �eld has expanded to explore the intrica-
cies of neuron behavior and the mechanisms un-
derlying neuronal activity. One aspect of this re-
search was the investigation of local bistability,
which has been extensively studied through the
combined use of numerical calculations and bifur-
cation theory. Speci�cally, the condition that the
direct current (DC) I is the only bifurcation pa-
rameter has been explored in detail [7, 8]. In addi-
tion, the introduction of the e�ective calcium con-
centration to modify the deterministic equations

allowed the exploration of bifurcation diagrams in
the [k+]�V plane ([k+] representing both extracel-
lular and intracellular potassium concentration [9]).
Recent research has focused on the study of a two-
bifurcation-parameter system [10], as well as the
exploration of multiparameter bifurcation [11]. Of
particular interest is the coexistence of stable qui-
escence and stable limit cycles localized in speci�c
ranges of bifurcation parameters, which has led to
the use of statistical methods to describe the nonlin-
ear dynamics of Hodgkin�Huxley neurons [12, 13].
Overall, the work of Hodgkin and Huxley has paved
the way for continued investigation into the complex
dynamics of neurons and their underlying mech-
anisms [14]. Besides, the Hodgkin�Huxley (HH)
model describes neurons that exhibit local bista-
bility and undergo a subcritical Hopf bifurcation,
which provides the possibility of state transitions
and forms the basis for the dynamical mechanism of
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bursting oscillations in neurons. One way to achieve
this is by adding stochastic noise [15�18]. Biologi-
cal neurons are constantly exposed to various types
of noise in their environment, and considering the
stochastic oscillations is necessary when studying
their dynamical mechanisms. Although stochastic
dynamics in the HH-model neurons have been par-
tially studied, quantifying and understanding the
physical mechanism of their global behavior to re-
veal the underlying phase transition mechanisms re-
mains challenging.
In this work, we investigate the local bistable

properties of the original four-dimensional
Hodgkin�Huxley equations under the in�uence of
noise. Additionally, we apply the recently developed
theory of landscape and �ux to reveal its stochastic
dynamical mechanisms [19�21]. Given that the
Hodgkin�Huxley neuron model is subject to noise,
the prediction of neuron trajectories becomes par-
tially infeasible. In such scenarios, it becomes more
meaningful to quantitatively assess the statistical
distribution of individual neuron states at di�erent
times and to characterize the overall distribution
within the whole state space. The landscape��ux
framework has been employed in non-equilibrium
systems, o�ering valuable insights into associated
behaviors [22�29]. This framework has proven to
be a useful tool for gaining a deeper understanding
of the dynamics and behavior of such systems.
However, only a limited number of studies have
used this theory to investigate the nonlinear
dynamical mechanisms of individual HH neurons.
Therefore, we explore state transitions using the
topographical structure of the potential landscape
and quantify the probabilistic �ux and entropy
production in the state space. By examining their
relationship with the bifurcation parameters of the
system, we analyze their roles and contributions in
state transitions and the emergence of new states.
We found that average �ux and entropy produc-
tion rate can serve as indicators of bifurcation.
We also calculate di�erences in cross-correlation
functions forward-in-time and backward-in-time
and discuss the observed behaviors and the degree
of time-reversal symmetry breaking. This provides
a practical indicator for bifurcation that can be
directly extracted from experimental time series.
Moreover, we analyze the behavior of the criti-
cal slowing down in bifurcation by investigating
the characteristic decay time of autocorrelation
functions and its correlation near the bifurcation.
By conducting these explorations, we enhance
our comprehension of the nonlinear dynamical
mechanisms exhibited by HH neuron models in
the presence of noise, facilitating quantitative
analysis. This research has substantial implications
for illuminating the behavior of individual neurons
and the overall functionality of the nervous system.
Drawing upon the intricate landscape structure of
its diverse states, we present a fresh perspective on
this fundamental aspect of neuronal excitability.

2. Methods

2.1. Stochastic Hodgkin�Huxley equations

The Hodgkin�Huxley (HH) model has made sub-
stantial contributions to the understanding of neu-
ronal electrophysiology, providing a foundational
framework for studying the electrical properties
of neurons. This model is characterized by a sys-
tem of four nonlinear ordinary di�erential equations
(ODEs). In the real world, neurons are constantly
in�uenced by noise, including external noise (such
as interference signals from the stimulus current)
and internal noise (such as stochasticity in ion chan-
nels). These noises a�ect the activity of neurons,
introducing randomness and uncertainty into the
neuronal system. When investigating neuronal be-
havior and information processing, it is crucial to
take these noise factors into account. Many previous
studies introduced current noise and subunit noise
to an HH neuron [30�32]. Due to ease of implemen-
tation and computational e�ciency, current noise
and subunit noise have become widely adopted as
approximations for modeling stochastic HH dynam-
ics. In our study, we incorporated these two types of
noise into the statistical HH model, which is mathe-
matically represented by a system of four stochastic
nonlinear equations

Cm
dV

dt
= −gK n4(V−VK)− gNa m

3h (V−VNa)

−gL(V−VL) + I + Γ1(x, t),

dm

dt
= αm(V )(1−m)− βm(V )m+ Γ2(x, t),

dh

dt
= αh(V )(1− h)− βh(V )h+ Γ3(x, t),

dn

dt
= αn(V )(1− n)− βn(V )n+ Γ4(x, t). (1)

Here, Γ1(x, t) = AV Γ (x, t), Γ2(x, t) = AmΓ (x, t),
Γ3(x, t) = AhΓ (x, t), Γ4(x, t) = AnΓ (x, t),
AΓ(x,t) = [AV , Am, Ah, An] is the scaling factors
matrix of Gaussian white noise, while Γ represents
Gaussian white noise, which is a type of stochastic
force. In this article, we transformed the third equa-
tion of (1) by multiplying both sides of it by 100,
obtaining the �nal form dh1

dt = αh(V )(100−h1) −
βh(V )h1 + Γ3(x, t) (where h1 = 100h). In (1),
V is the membrane potential, and I is de�ned as
I = Istim/A, denoting the stimulus current applied
per unit area of the cell membrane. The scaling
factor for potassium ion conductance, measured in
mS/cm2, is gK. The variable n is designated as
the activation variable for potassium (K+) chan-
nels, ranging from 0 to 1. This re�ects the probabil-
ity of each subunit in the channel being open. The
model assumes that a potassium channel consists
of four cooperative subunits, fully open only when
all are activated. This assumption is an e�ective
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simpli�cation that proves to be very e�ective in
many scenarios. The equilibrium potential of potas-
sium ions is represented by VK. Then, the term
gK n4(V−VK) naturally depicts the current across
the cell membrane caused by potassium ions. Ac-
cordingly, gNa is the scaling factor for sodium ion
conductance. The gating variables m and h are di-
mensionless and represent the activation variable
and the inactivation variable for sodium channels,
respectively. They also range from 0 to 1 and jointly
represent the opening and inactivation of sodium
channels, a concept validated by further research.
The equilibrium potential of sodium ions is repre-
sented by VNa, and gNa m

3h(V−VNa) is the compo-
nent of the current across the cell membrane caused
by sodium ions. Moreover, the term gL(V−VL) de-
notes additional factors in�uencing the generation
of positive or negative currents across the cell mem-
brane, where gL is the leak conductance � a con-
stant signifying the total conductance of other ions
across the membrane, and VL is the equilibrium po-
tential for the leak current, generally approximating
the resting membrane potential. The capacitance of
the neuronal membrane is represented by Cm.
In the above system of nonlinear ODEs, the quan-

titative description of αx and βx, where x can rep-
resent m, h, or n, takes the form

αm =
αm (V−vm)

1− e−(V−vm)/Kαm
,

βm = βm e−V/Kβm ,

αh = αh e−V/Kαh ,

βh =
βh

1 + e−(V−vh)/Kβh
,

αn =
αn (V−vn)

1− e−(V−vn)/Kαn
, βn = βn e−V/Kβn . (2)

In (1)�(2), αm and βm represent the rates at which
activation of molecules opens or closes sodium ion
channels, respectively. The scaling factors for these
rates are denoted as αm and βm. The equilibrium
potentials for activation and inactivation processes
in sodium channels are represented by vm and
vh, respectively. Similarly, αh and βh denote the
rates at which inactivating molecules switch be-
tween open and closed states in sodium channels,
with associated constants αh and βh. For potassium
ion channels, αn and βn describe the rates of sub-
unit gate transitions, with vn indicating their equi-
librium potential. The constants related to these
rates and transitions in both sodium and potassium
channels are Kαm, Kβm, Kαh, Kβh, Kαn, and Kβn.
These parameters collectively de�ne the gating ki-
netics of the ion channels in the model.
Focusing on the sodium and potassium ion chan-

nel dynamics in neurons, the HH model accu-
rately simulates Na+ and K+ ion �ows during
action potentials and response to stimulus varia-
tions, elucidating action potential frequency modu-
lation. The HH model quantitatively explains action

potential generation and phenomena such as re-
fractory periods and anode break e�ects. Although
the HH model provides an idealized representation
of neuronal electrophysiological activity, and HH-
like models based on ion channels can capture var-
ious aspects of neuronal characteristics, it is evi-
dent that each neural system operates as a non-
equilibrium system that is constantly in�uenced by
input and stochastic disturbances. These random
noise sources, originating from the environment and
inherent system dynamics, play a crucial role in neu-
rophysiology [33, 34]. Therefore, analyzing stochas-
tic dynamic phenomena in neuronal models holds
the utmost signi�cance. In our investigation, we
augment the original system of nonlinear ODEs by
adding Gaussian white noise terms, resulting in a
series of Langevin equations (LEs) [15].

2.2. Landscape and �ux theory

When a biological system is functioning, it is in-
evitably subjected to intrinsic noise, which is in-
herent to any system operating above absolute zero
temperature. There are also external �uctuations
arising from the environment. To simplify our anal-
ysis, we use Gaussian white noise as a means of
simulating environmental e�ects. Consequently, the
inclusion of noise modi�es the dynamics described
by dx

dt = F (x) + Γ (x, t), where Γ (x, t) is Gaus-
sian white noise. Here, F (x) represents the driving
force of the system, which corresponds to the deter-
ministic HH equations described in (9) in the Ap-
pendix. The vector variable x represents the state
of the studied neuron in the phase space, speci�-
cally characterized by (V,m, h, n). The amplitude of
the noise can be determined by ⟨Γ (x, t)Γ (x, t′)⟩ =
2D(x) δ(t−t′) = 2DG(x) δ(t−t′), where D is the in-
tensity of the noise and G(x) is a di�usion matrix.
Deterministic dynamical equations change into a se-
ries of nonlinear Langevin equations. Correspond-
ingly, the main characteristics we explore will be
investigated using non-equilibrium statistical con-
cepts and methods, rather than chasing stochas-
tic trajectories that stem from diverse initial condi-
tions. The Langevin equation (LE) investigates the
statistical characteristics of the system's trajecto-
ries. We can equivalently transform it to the prob-
ability distribution of the entire state space at a
given time. It allows us to study the Fokker�Planck
di�usion equations that can be deduced from LEs
to explore such open systems [22, 35, 36], namely

∂P (x, t)

∂t
= −

∑
i

∂[Fi(x)P (x, t)]

∂xi

+
∑

i

∑
j

∂2[Dij(x)P (x, t)]

∂xi∂xj
. (3)

Here, Dij(x) = DGij(x). The detailed deriva-
tion is provided in the Appendix. It is notewor-
thy that, due to the application of additive and
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isotropic Gaussian white noise, for the sake of the-
oretical convenience, we consider the di�usion ma-
trix G(x) to be an identity matrix. By imposing
appropriate natural boundary conditions and ensur-
ing su�cient decay in the outer region, we can ex-
plore the asymptotic behavior of the Fokker�Planck
equation and derive the corresponding steady-state
probability distribution. We use Pss to represent
the aforementioned steady-state probability distri-
bution (small �ss� denotes statistical steady states).
Now, we de�ne a probabilistic �ux J that satis�es
J = FP − ∇ · (DGP ). Combining this with (3),
we obtain the probability conservation form of the

Fokker�Planck equation ∂P (x,t)
∂t + ∇ · J(x, t) = 0.

When the system reaches a steady state after a su�-
ciently long time under appropriate boundary con-
ditions, the probability density no longer changes
with time. Then, we can easily infer that the diver-
gence of the probabilistic �ux vanishes, i.e.,∇·Jss =
0. Since we apply additive Gaussian white noise to
the system to explore its global stability, the di�u-
sion matrix D is a constant matrix, indicating that
the divergence of D is zero (∇ ·D(x) = 0). We can
then deduce the driving force of the system accord-
ingly as

F =
Jss +D(∇Pss)

Pss
=

Jss

Pss
−D∇U, (4)

where ∇U represents the gradient of the potential
function U associated with the system. By analogy
to the Boltzmann law in equilibrium systems, we
de�ne the population probability potential U as

U = − ln
(
Pss

)
. (5)

The newly de�ned non-equilibrium potential U re-
�ecting the weight of the states o�ers a clear
physical interpretation and enables the evaluation
of global stability and behavioral characteristics.
The landscape, which corresponds to the three-
dimensional (3D) topographical structure of U ,
plays a crucial role in landscape and �ux theory.
The presence of basins and barriers within this
landscape allows for a comprehensive depiction of
global stability and the probability distribution of
all states. Based on the deductions mentioned ear-
lier, we successfully decompose the system's driving
force into two components. According to (4), the
�rst component is associated with the steady-state
probabilistic �ux Jss and the density of the proba-
bility distribution Pss, while the second component
is related to the gradient of the potential landscape
U . In a steady state, the probabilistic �ux has zero
divergences, indicating two representing scenarios:
(i) when the net input or output is zero, the system
maintains detailed balance, and (ii) when the �ux
is non-zero, but with zero divergences, the system
experiences a non-equilibrium state with broken de-
tailed balance. Non-zero, divergence-free �ux is a
hallmark of non-equilibrium systems [20]. It can be
viewed as a rotational and curl �ux. The dynam-
ics of non-equilibrium systems are co-determined
by both the non-equilibrium potential and the curl

�ux, resembling the motion of electrons in an elec-
tric �eld (characterized by the potential gradient)
and a magnetic �eld (re�ected by the curl �ux).

2.3. Non-equilibrium thermodynamics, average
probability �ux, and dissipative-dependent EPR

For non-equilibrium systems, an intriguing ques-
tion is the speci�c degree of departure from equilib-
rium. This can be characterized using several spe-
ci�c quantities. As discussed earlier, non-zero yet
divergence-free rotational �ux serves as a distinctive
signature of non-equilibrium systems, and substan-
tial evidence suggests its intimate correlation with
the existence of non-equilibrium energy pumps.
This �ux plays a pivotal role in maintaining the
stability of the limit cycle oscillations within non-
equilibrium systems [19�26, 37]. Inspired by this,
we can de�ne an average probabilistic �ux Jav =∫

dx |Jss|∫
dx

to quantify the global non-equilibrium ex-

tent of a system. Moreover, in non-equilibrium sys-
tems, energy consumption and dissipation are in-
evitable. The energy dissipation, which is associated
with the entropy production rate in the steady state
of the non-equilibrium system, serves as a global
physical characteristic for measuring the system's
departure from equilibrium. For non-equilibrium
systems, the change in entropy over time can be
divided into two parts, i.e.,

dS

dt
= − d

dt

∫
dx P (x, t) ln

(
P (x, t)

)
=∫

dx (J ·(DG)−1·J)
P

−
∫
dx (J ·(DG)−1·Feff )=

S′
t − S′

e, (6)

where the entropy production rate (EPR) S′
t =∫

dx (J·(DG)−1·J)
P is non-negative. It represents

the total entropy change in the system and
its surroundings and always obeys the second
law of thermodynamics. On the other hand, the
heat dissipation rate or the entropy �ow rate
S′
e =

∫
dx (J ·(DG)−1 · (F −D∇ ·G)) can be posi-

tive or negative, taking into account the energy and
information �ow between the system and its envi-
ronment, leading to an increase or decrease in the
system's entropy, respectively. Hence, the entropy
of a non-equilibrium system does not necessarily al-
ways increase or maximize, while the total entropy
production is always positive. We de�ne the e�ec-
tive force Feff as Feff = F−D∇·G [20�22, 25, 38].

2.4. Time irreversibility of the cross-correlation
function and critical slowing down

The average di�erence between the forward-in-
time and backward-in-time cross-correlation of two
random sequences enables us to evaluate the extent
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of detailed balance breaking and quantify the time
irreversibility of a non-equilibrium system [26, 37].
It can be calculated as

∆CC =

√
1

tf

∫ tf

0

dτ
(
CXY (τ)−CY X(τ)

)2

, (7)

where CXY (τ) and CY X(τ) present the forward-
in-time cross-correlation function and backward-in-
time cross-correlation function, respectively. Here,
CXY (τ) = ⟨X(0)Y (τ)⟩ =

∑
XiY jP ss

i Pij(τ)
(i, j are used to denote di�erent states); P ss

i is
the value of steady-state probability at state i;
Pij(τ) represents the probability of the system
transitioning from state i to state j within a
time interval τ . Additionally, CXY (τ)−CY X(τ) =
XAY B(P ss

A PAB(τ)−P ss
B PBA(τ)) = XAY BJss

ABτ ,
(when τ is small) [24, 26, 35]. Evidently, the dispar-
ity between the forward-in-time and backward-in-
time cross-correlation functions is intricately linked
to the level of the steady-state probabilistic �ux or
the degree of detailed balance breaking.
Neurons can demonstrate abrupt transitions or

systemic shifts, such as the shift from a resting state
to the �ring of an action potential. This occurrence
is commonly referred to as a critical transition. As
the system approaches a critical transition point,
the internal dynamics would undergo a state tran-
sition. During this phase, alterations in the auto-
correlation function often reveal notable features,
such as increased and prolonged temporal correla-
tions. This insight encourages the use of the auto-
correlation function analysis, o�ering clues into the
internal dynamics as the system approaches a crit-
ical state. This approach serves as a quantitative
measure of the critical slowing down behavior.

3. Results and discussion

3.1. Linear stability analysis of the
Hodgkin�Huxley model

To investigate the di�erent states of a single neu-
ron, we start with linear stability analysis and use
MATLAB to �nd numerical solutions. This anal-
ysis helps us predict the long-term behavior and
stability of the system under di�erent parameter
conditions. Explanations and default values of con-
stants in the HH equations, unless otherwise speci-
�ed, are provided in Table I [5, 39].
Linear stability analysis is a method used to

study the stability of deterministic dynamic systems
described by di�erential or di�erence equations. Nu-
merous researchers have extensively explored the
linear stability analysis of the HH model [7, 40].
Here, we summarize the key �ndings of the linear
stability analysis of the HH model.
The basic steps involve �nding equilibrium

points, linearizing dynamic equations, calculating
the Jacobian matrix, and determining eigenvalues

to assess stability. The Jacobi matrix is a matrix of
partial derivatives that describes the linearized dy-
namics of the model around an equilibrium point.
During linear stability analysis, the stability of the
equilibrium points is determined by examining the
real and imaginary eigenvalue parts of that the Ja-
cobi matrix. If all eigenvalues have negative real
parts, the equilibrium point is stable. If one or more
eigenvalues have positive real parts, the equilibrium
point is unstable. If there are eigenvalues with zero
real parts and non-zero imaginary parts, further
analysis may be required. Such equilibrium points
are considered non-hyperbolic, and the geometric
structure near these points may change. This be-
havior is known as a bifurcation at non-hyperbolic
point. The Jacobian matrix of the HH model (see
(10) and (11) in Appendix) can be represented as

JJacobi =


∂f1
∂V

∂f1
∂m

∂f1
∂h

∂f1
∂n

λmm′
∞ −λm 0 0

λhh
′
∞ 0 −λh 0

λnn
′
∞ 0 0 −λn

 , (8)

where λx = αx(V )+βx(V ) and x∞ = αx(V )
αx(V )+βx(V ) .

Here, x can be replaced with m, h, n. The de-
tailed derivation can be found in the Appendix.
In Table II, we present the eigenvalues denoted
as λi for i = 1, 2, 3, 4. To investigate the sta-
bility of the system, we apply the linear stabil-
ity analysis method. This analysis identi�es criti-
cal points where the stability of the system exhibits
a qualitative change, known as a bifurcation. We
can determine the system's stability under di�erent
conditions by examining the signs of the corre-
sponding eigenvalues λ. It is observed that when
I < 9.7796 µA/cm2 and I > 154.5266 µA/cm2, the
states of the system are stable. In other words, the
system will remain in its steady state under these
speci�c current conditions.

To gain a comprehensive understanding of the dy-
namic behavior and stability of the HH model, and
to visually illustrate the formation and evolution of
attractors, we employed the MatCont software to
generate a bifurcation diagram with the parameter
I as the bifurcation parameter.

Figure 1a presents a bifurcation diagram with
I as the bifurcation parameter, ranging from I =
−18 µA/cm2 to I = 200 µA/cm2. Solid gray lines
represent stable steady states, corresponding to sta-
ble resting states of neurons in physiology, denoted
as SRS, while dashed gray lines represent unstable
steady states, denoted as URS. As I increases, a
subcritical Hopf bifurcation, denoted as H1, occurs.
Stable limit cycle oscillations are shown by the max-
imum (solid orange line) and minimum (solid yel-
low line) V values, labeled as SLC. Unstable limit
cycle oscillations are also shown by the maximum
(scattered orange dots) and minimum (scattered
yellow dots) V values, labeled as ULC. The second
Hopf bifurcation point is marked as H2. This visual-
ization e�ectively elucidates the system's dynamic
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TABLE I
Explanations and default values of parameters.

Parameters Explanation Default values

Cm neuronal membrane capacitance 1.0 µF/cm2

gNa sodium conductance 120 mS/cm2

gK potassium conductance 36 mS/cm2

gL leak conductance 0.3 mS/cm2

VNa equilibrium potential of sodium ions 115 mV

VK equilibrium potential of potassium ions −12 mV

VL reversal potential for the leak current 10.599 mV

αm
constant related to the transfer rate of activating molecules (closed → open),

denoted as αm

0.1 ms−1

βm
constant related to the transfer rate of activating molecules (open → closed),

denoted as βm

4.0 ms−1

vm equilibrium potential of activating molecules 25.0 mV

Kαm dimensionless constant related to αm 10.0

Kβm dimensionless constant related to βm 8.0

αh
constant related to the transfer rate of inactivating molecules (open → closed),

denoted as αh

0.07 ms−1

βh
constant related to the transfer rate of inactivating molecules (closed → open),

denoted as βh

1.0ms−1

vh equilibrium potential of inactivating molecules 30.0 mV

Kαh dimensionless constant related to αh 20.0

Kβh dimensionless constant related to βh 10.0

αn
constant related to the transfer rate of each subunit gate (closed → open),

denoted as αn

0.01 ms−1

βn
constant related to the transfer rate of each subunit gate (open → closed),

denoted as βn

0.125 ms−1

vn equilibrium potential of each subunit gate 10.0 mV

Kαn dimensionless constant related to αn 10.0

Kβn dimensionless constant related to βn 80.0

TABLE II
Numerical results for stability analysis.

I V0 m0 h0 n0 λ1 λ2 λ3 λ4

0.0000 0.0000 0.0529 0.5961 0.3177 −4.6753 −0.20 + 0.38i −0.20− 0.38i −0.1207

5.0000 3.2667 0.0772 0.4794 0.3687 −4.5975 −0.10 + 0.52i −0.10− 0.52i −0.1292

9.7796 5.3459 0.0973 0.4062 0.4018 −4.7643 0.5862i −0.5862i −0.1385

120.0000 19.8776 0.3661 0.0886 0.6175 −8.7149 0.15 + 0.97i 0.15− 0.97i −0.2810

154.0000 21.9132 0.4189 0.0706 0.6429 −9.4024 0.0024 + 1.0618i 0.0024− 1.0618i −0.3104

154.5266 21.9419 0.4197 0.0704 0.6432 −9.4121 1.0629i −1.0629i −0.3109

155.0000 21.9677 0.4204 0.0702 0.6436 −9.4208 0.0021 + 1.0640i 0.0021− 1.0640i −0.3113

180.0000 23.2537 0.4544 0.0609 0.6588 −9.8554 −0.11 + 1.11i −0.11− 1.11i −0.3310

behavior as the parameter I varies, including the
presence of stable and unstable periodic solutions
and their relationship to stable and unstable steady
states.
At the top corner of panel (a), the nested inset

plot depicts the phase states of the system for dif-
ferent bifurcation parameter ranges. The dark blue
vertical line marks the boundary between stable
steady states and stable limit cycles, labeled I0. The

purple vertical line represents the I value of H1,
denoted as I1, while the red vertical line, marked
as I2, indicates the boundary between stable limit
cycles and stable resting states at H2. Through
calculation, we obtain I0 = 6.2645 µA/cm2, I1 =
9.7796 µA/cm2, and I2 = 154.5266 µA/cm2.
These three vertical dividing lines delineate dis-
tinct states within the system. In Fig. 1a, B repre-
sents the bistable region of the classical HH model,
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Fig. 1. Deterministic bifurcation diagram. (a) Overall bifurcation diagram with I as the bifurcation param-
eter. The solid orange line shows the maximum V value within the stable limit cycle (SLC), while the solid
yellow line shows the minimum V value within SLC. The solid gray line represents a stable resting state,
denoted as SRS. The dashed gray line represents an unstable resting state, denoted as URS. The scattered
orange dots denote the maximum value of V within the unstable limit cycle (ULC), while the scattered yellow
points represent the minimum value of V within ULC. Here, H1 is the �rst Hopf bifurcation point and H2 is
the second Hopf bifurcation point. The axes embedded above are a simpli�ed diagram of the overall bifurcation
plot. The dark blue vertical line is marked as I0, the purple vertical line is marked as I1, and the red vertical
line is marked as I2. MPI signi�es the region I < I0, where neurons are in a stable resting state, while MPII
represents the stable resting state when I > I2. The region between I0 and I1 is denoted as B, indicating the
bistable region where neurons oscillate between SRS and SLC. MLC denotes the parameters region that the
system undergoes a mono-stable limit cycle, which is between I1 and I2. (b) Local dynamical bifurcation detail
illustration of the bistable region in the HH model. The dark blue vertical dashed line indicates the limit point
bifurcation of cycles (LPC) at the boundary, where one stable limit cycle and one unstable limit cycle merge
into a single limit cycle. The coordinate area inserted in the upper right corner is an enlarged illustration of
the yellow rectangular area to the right of the dark blue LPC. It includes a pink vertical dashed line indicating
LPC at the boundary, where two unstable limit cycles merge into one unstable limit cycle, while the blue
vertical dashed line represents the period-doubling bifurcation, labeled PD. The green vertical dashed line
marks another occurrence of LPC. The �uorescent green vertical dashed line represents the Neimark�Sacker
(NS) bifurcation. (c) Dynamical evolution diagram of the HH neuron near H1 without noise. The blue solid
line with arrows indicates the evolution direction of the dynamic state near H1 as I gradually increases, while
the green solid line with arrows represents the dynamic evolution path as I gradually decreases. The solid
gray line represents a stable resting state. The scattered orange dots show the maximum value of V during
oscillations of ULC, providing a simpli�ed representation of di�erent ULC. The solid orange line represents
the maximum value of V during stable limit cycle oscillations, providing a simpli�ed representation of di�erent
SLC. The relative positions of I0 and I1 are marked with dark blue and purple crosses, respectively.
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and MLC signi�es a singular stable limit cycle re-
gion. Additionally, we denote the region I < I0 as
MPI and the region I > I2 as MPII, corresponding
to regions of stable resting states.
Figure 1b provides an enlarged view of the dashed

rectangular region in panel (a), including a further
magni�ed illustration that illustrates multiple bi-
furcations from stable resting states to stable limit
cycles. Discrete orange and yellow dots represent,
respectively, the maxima and minima of the unsta-
ble limit cycles, while vertical dashed lines mark the
locations of bifurcations. The limit point bifurca-
tion is a critical phenomenon in nonlinear dynami-
cal systems. It involves the transition of equilibrium
or periodic solutions (limit cycles) from stable to
unstable states, or vice versa. This process can give
rise to new stable solutions or the disappearance
of existing ones. The term �limit point bifurcation
of cycles� (LPC) speci�cally denotes this behavior
in the context of periodic solutions (limit cycles).
The emergence of LPC indicates a change in the
characteristics or numbers of limit cycles. In panel
(b), LPC at I = I0 = 6.2645 µA/cm2 (dark blue
vertical dashed line) indicates the merging of the
stable limit cycle and the unstable limit cycle into
a single limit cycle. LPC at I = 7.9220 µA/cm2

(green vertical dashed line) represents the merging
of a unstable limit cycle with a relatively large am-
plitude with another an unstable limit cycle with
relatively small amplitude into an unstable limit
cycle with an amplitude between the two. LPC at
I = 7.8465 µA/cm2 (pink vertical dashed line) is
similar to LPC at green vertical dashed line, in-
dicating the merging of two unstable limit cycles
into one unstable limit cycle. For simpli�cation, we
will refer to LPCs occurring at di�erent currents by
their colors. For example, LPC corresponding to a
dark blue vertical dashed line is simpli�ed as a dark
blue LPC. PD denotes the period doubling (�ip) bi-
furcation, happening at I = 7.8495 µA/cm2 (blue
vertical dashed line). When switching from the PD
point to another branch, the period of the unsta-
ble limit cycle undergoes a sudden doubling. And
NS, i.e., the Neimark�Sacker (secondary Hopf) bi-
furcation, occurs at I = 8.1882 µA/cm2 (mint green
vertical dashed line) [41, 42]. In the upper right cor-
ner of panel (b), the inserted subplot provides an
enlarged illustration of the yellow rectangular area
to the right of the dark blue LPC. This is to get
a clearer representation of the detailed dynamics
within the interval 7.8 < I < 8.21 µA/cm2 and to
o�er a clearer distinction of bifurcation positions in
this range.
Dynamical evolution trends near H1 are depicted

in panel (c). The solid gray line represents the sta-
ble resting state. The scattered orange dots rep-
resent the maximum values of V during the os-
cillations of the unstable limit cycles, providing a
simpli�ed representation of the di�erent unstable
limit cycles. The solid orange line represents the
maximum values of V during stable limit cycle

oscillations, simplifying the representation of dif-
ferent stable limit cycles. As the bifurcation pa-
rameter I gradually increases from a value be-
low I0 = 6.2645 µA/cm2 and goes across I1 =
9.7796 µA/cm2 (corresponding to the �rst Hopf
bifurcation point H1), the system evolves overall
along the direction of the blue arrow, switches from
the stable resting state represented by the solid gray
line to H1, and then to the unstable limit cycle
indicated by the scattered orange dots, and ulti-
mately reaches the stable limit cycle represented by
the solid orange line. In this process, the Hodgkin�
Huxley neuron undergoes a sequence of bifurca-
tions: from a stable resting state to H1, further to
NS (where I = 8.1882 µA/cm2), then to the pink
LPC, followed by PD (where I = 7.8495 µA/cm2),
and then to the green LPC, further reaching the
dark blue LPC, and eventually entering the stable
limit cycle oscillations. The HH neuron will evolve
in the direction of the green arrow in Fig. 1c, se-
quentially undergoing processes starting from the
stable limit cycle represented by the solid orange
line, to the unstable limit cycle represented by the
scattered orange dots, and eventually reaching the
stable resting state represented by the solid gray
line. During this whole process, a series of bifur-
cations will take place (see Fig. 1b): the system
�rst reaches the dark blue LPC, through PD to
the green LPC, then to the pink LPC, further to
NS, and it eventually reaches a stable resting state.
This explains why, without noise, the system only
reaches limit cycles after passing H1 by gradually
increasing the current I. When I0 < I < I1 is ful-
�lled, a coexistence of SRS and SLC emerges, in-
volving: a large amplitude stable limit cycle, one to
three small-amplitude unstable limit cycles, and a
stable resting state. Particularly, in the region be-
tween pink LPC and the green LPC, where multi-
ple unstable limit cycles appear, we designate it as
the w interval. The complex dynamics within this
interval are key features that distinguish the classic
HH model from a series of simpli�ed HH models,
such as the Morris�Lecar (ML) model [7]. Eventu-
ally, the unstable limit cycle disappears at I1. At
the endpoint zone MPII, a single steady-state so-
lution exists. This result demonstrates that when
the stimulus current is too high, the cell becomes
inactive or dies, illustrating the importance of pa-
rameter regulation for cellular dynamics. The dis-
cussions presented above are conducted under the
conditions of deterministic equations.

3.2. Landscape and �ux of a Hodgkin�Huxley
neuron

We now explore the application of the landscape�
�ux approach to neuronal dynamics by investi-
gating the HH model with Gaussian white noise
(see (1)). When we apply Gaussian white noise
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Fig. 2. The underlying potential landscapes and patterns of curl �ux distribution evolve as the bifurcation
parameter I increases under varying intensities of Gaussian white noise. Values of stimulus current I and noise
intensity D are shown at the top of each panel. Panels (a)�(d) show 3D landscapes under di�erent stimulus
currents and �uctuation strengths. Panels (e)�(h) show 2D dimensional contour plots of the landscapes and
steady-state �uxes under di�erent stimulus currents and �uctuation strengths. In panels (a) and (d), the red
�cross� indicates the single stable attractor corresponding to the deterministic equations. In panels (b) and (c),
the red circles represent the stable limit cycles of the deterministic equations under the condition of a given
stimulus current and noise intensity. Panels (e)�(h) illustrate the distribution of non-equilibrium driving forces
under the conditions corresponding to the top ones. The white arrows represent the steady-state probabilistic
curl �ux, while the black arrows depict the landscape gradient distribution.

simultaneously in each dimension, then we use a
one-dimensional array AΓ = [AV , Am, Ah, An] to
scale the magni�cation of the same noise intensity in
di�erent dimensions. We establish the correspond-
ing probabilistic di�usion equation to obtain statis-
tically steady-state probability distributions in the
state space of the system. As the HH model is inher-
ently four-dimensional, directly visualizing its po-
tential landscape poses challenges. Thus, we focus
on two key variables in the model, namely V and
h1, while integrating the remaining variables to de-
pict the comprehensive features of a single neuron
on a global scale.
Figure 2 shows the three-dimensional and two-

dimensional (2D) potential landscape, as well as
the driving forces' distribution of the HH neuron
for di�erent values of the bifurcation parameter
I, with the dimension noise ampli�cation matrix
set to AΓ = [1.0, 0.0001, 1.0, 0.0001]. Notably, for
computational convenience, we have introduced the
variable h1 = 100h to facilitate the depiction of
the corresponding potential landscape. When I =
5 µA/cm2 and D = 0.32, we evenly distributed 20×
23 initial points across the (V, h1) plane and tracked
their trajectories from t = 0 to t = 108 315 000. Sub-
sequently, we collected sample points from all tra-
jectories between t = 2500 000 and t = 108 315 000
to compute the probability distribution P . Then,
we further calculated the probability distribution
P for all trajectories between t = 3000 000 and
t = 108 315 000 and compared the results of these
two computations. We found that P was the same
for both calculations. Therefore, we hypothesize

that the system reaches a non-equilibrium steady
state after t = 3000 000 time steps. Unless stated
otherwise, we collected sample points for analysis
by tracking trajectories from 20 × 23 initial points
on the (V, h1) plane, starting from t = 3000 000
onwards. As depicted in Fig. 2a, when Gaussian
white noise is introduced and in the context of a
long-time limit, the uniqueness of the steady-state
solutions in the deterministic equation diminishes.
Instead, the �nal distribution of the global states
assumes a funnel-shaped con�guration. The stable
resting state solution of the deterministic equation
(marked by a red cross in the �gure) resides at a
local minimum of U , which indicates the maximum
probability within the overall state distribution. In
panel (e), the corresponding driving forces of the
system under the conditions outlined in panel (a)
are elucidated. The black arrows signify the force
arising from the negative gradient of the potential
landscape, consistently propelling the system's in-
stantaneous state towards states of higher probabil-
ity. Globally, the gradient force continually attracts
the system toward the lowest point of the potential
landscape funnel. The white arrows symbolize the
probabilistic curl �ux, which can be observed rotat-
ing around the single stable attractor, attempting
to perturb the instantaneous state in conjunction
with the gradient force. This e�ectively disrupts
the point attractor and holds the capacity to trig-
ger the emergence of new states. Besides, through
the combined action of probabilistic curl �ux, the
system is not solely dragged by the gradient force
directly to the bottom of the funnel. Instead, it
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spirals down towards the attractor basin. This il-
lustrates the essential interplay between both fac-
tors in maintaining the dynamics of non-equilibrium
systems.
In Fig. 2b and c, the potential landscapes associ-

ated with a singularly stable limit cycle oscillation
are illustrated. The topography of these landscapes
resembles a Mexican hat, with the steady-state
curl �ux in the ring valley prominently overshad-
owing the in�uences exerted by the steady-state
non-equilibrium potential's negative gradient. This
dominance of probabilistic �ux plays a vital role
in sustaining the stability of the periodic oscilla-
tory behavior. In two panels (b) and (c), the red
circles represent the limit cycles of stable peri-
odic oscillations under each respective input cur-
rent (I = 120 µA/cm2 in (b), and I = 154 µA/cm2

in (c)) in the absence of noise. Panels (f) and (g)
depict the distributions of driving forces in non-
equilibrium systems, corresponding to those illus-
trated in (b) and (c). In panels (f) and (g), the
white arrows denote the curl �ux components of
the non-equilibrium driving forces, whereas black
arrows represent the negative gradient part of these
driving forces. The red circles in these panels also
denote the limit cycles for stable periodic oscilla-
tions, speci�c to each input current in the noise-
free setting. Notably, in the vicinity of these limit
cycles, the probabilistic curl �ux is observed to align
parallelly. This observation provides a detailed ex-
planation of the previously mentioned phenomenon,
namely the stability of the periodic oscillations is
maintained due to the steady-state curl �ux within
the ring valley signi�cantly surpassing the in�uence
of the steady-state non-equilibrium potential's neg-
ative gradient.
As the bifurcation parameter I increases, neu-

ronal behavior switches from periodic oscillations
to a non-�ring state, which biologically corre-
sponds to neuronal inactivation or even cell death.
Figure 2d depicts the potential landscape topogra-
phy at the electrical current I = 155 µA/cm2, which
is just after the second Hopf bifurcation point H2,
where neurons are incapable of discharging. The to-
pography is similar to that explained in panel (a),
but with a noticeably larger and broader funnel
structure at the same noise intensity of D = 0.32.
It is conceivable that in a range where the cur-
rent value I exceeds the second Hopf bifurcation
point H2, the landscape funnel would become pro-
gressively sharper and narrower as the I values
increase, for the same noise intensity. Panel (h)
describes the distribution of the system's driving
forces corresponding to (d). In a low-noise envi-
ronment, the probabilistic �ux continues to be ro-
tational; however, the role of the negative gradi-
ent of the steady-state non-equilibrium potential
grows more pronounced compared to the circula-
tory e�ect. The system state would follow a down-
ward spiral trajectory to the lowest point of the po-
tential landscape funnel con�guration, marked by

the red cross in panels (d) and (h). This point
corresponds to the resting state of the neuron at
the input current I = 155 µA/cm2 in a noise-free
scenario.

3.3. A quantitative assessment of the system's
stability and robustness under a noisy background

Next, we investigate the impact of noise on neu-
rons within the MPI parameter set (i.e., in the re-
gion I < I0). The noise intensity coe�cients are
denoted by AΓ = [100.0, 0.0001, 0.1, 0.0001]. When
I = −10 µA/cm2, as depicted in Fig. 1, the deter-
ministic HH neuron is in the MPI parameter regime
and will remain in the resting state without external
stimulation. We collected simulated time series data
of the membrane potential V under noise intensities
D = 0.45 and D = 0.01 at I = −10 µA/cm2. It was
observed that noise with the intensity of D = 0.45
could trigger action potentials in the HH neuron,
while noise with an intensity of D = 0.01 could not
facilitate the generation of action potential. This
indicates that su�ciently high noise intensity can
help the HH neuron to depart from the resting
state and �re an action potential earlier compared
to the deterministic HH neuron. Subsequently, we
will focus on exploring the underlying dynamics of
the HH neuron at noise intensities that can facil-
itate action potential �ring in the MPI parameter
set. As an example in our investigation, we will use
the noise intensity D = 0.45 at I = −10 µA/cm2.
Figure 3a illustrates the transition of HH neurons
under the MPI parameters from a resting state to
spike generation in the presence of su�ciently in-
tense �nite noise. Starting from the resting state
corresponding to I = −10 µA/cm2, the dynamic
process lasts su�ciently long. After reaching a sta-
tistically steady state, we gather all trajectories and
states that occurred in the dynamic process in the
su�cient time. The collection of all trajectories and
states is plotted as a �nal two-dimensional mapping
of the potential landscape. The white dashed line
signi�es a threshold division, where the points on
the left are directly pulled back to the resting state
by the system's driving force, while the points on
the right complete a cycle under the driving force,
indicating the generation of action potential. This
illustrates the neuron's sensitivity to a threshold.
This corresponds to a phenomenon commonly ob-
served in fast-spiking cells when subjected to appro-
priate current stimulation, characterized by inter-
mittent switching between low-frequency periodic
�ring and a resting state [43]. When noise leads
the HH neurons to go beyond the threshold, the
phase trajectory can follow a circular path back to
the resting state under the in�uence of curl �ux.
Subsequently, the system further assesses the pos-
sibility of crossing the threshold again based on
the real-time noise contributions. Another action
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potential occurs when the neuron's parameters suc-
cessfully go cross the threshold again. However,
if the noise fails to assist the neuron in crossing
the threshold, it can directly return to the rest-
ing state rather than completing a circular path.
As a result, competitive dynamic emerges between
the resting state and the circular limit cycle un-
der sustained noise in�uence. The unpredictability
of noise presents a challenge in maintaining continu-
ous, sustained discharges, ultimately resulting in an
overall low-frequency �ring pattern. Hence, a com-
petitive dynamic emerges between the resting state
and the circular limit cycle under sustained noise
in�uence.
Figure 3b illustrates the probabilistic �ux dis-

tribution of the system once it reaches a statis-
tically steady state, where the distribution aligns
nearly parallel to the direction of the system's driv-
ing force F . In the low noise limit, the potential
function linked to the gradient part of the driving
force resembles a Lyapunov function in determinis-
tic dynamics. The points where the gradient of this
potential function hits zero act as attractors in de-
terministic dynamics. Here, the resting state and ac-
tion potential correspond to stable points and limit
cycles, respectively. The gradient force guides the
system's trajectories toward the bottom region of
the potential function, i.e., stable points and limit
cycles. The driving force linked to the probabilistic
�ux facilitates transitions between di�erent states in
the system. Additionally, due to su�ciently small
noise, the numerical value of the gradient force is
typically orders of magnitude smaller than the driv-
ing force associated with the probabilistic �ux. This
results in a distribution of the probabilistic �ux
closely resembles the overall driving force distribu-
tion of the system. The oscillation period can be
approximated by the loop integral of Jss/Pss along
the circular oscillation path [19].
It can be seen from (5) that the smaller the

value of U , the greater the probability of the cor-
responding state. The resting state precisely sits at
the lowest point of the entire potential landscape,
marked as Urest. The population probability poten-
tial U corresponding to the threshold can be repre-
sented using the minimum value of U on the white
dashed line, labeled Uthresh. When a neuron transi-
tions from the resting state to �ring an action po-
tential, it needs to jump from the lowest level to the
height of Uthresh of the potential landscape. We use
∆U = Uthresh − Urest to measure the barrier height
between two states. Figure 4a illustrates the trend
of the corresponding barrier height as the bifurca-
tion parameter changes. When subjected to noise of
the same intensity, the resulting green curve repre-
sents a �tting curve of the data points, which takes
the form of a exp(−b x) + c (where a, b, and c are
constants greater than zero). This indicates that as
the stimulation current increses, the barrier height
between the resting state and the �ring action po-
tential exhibits exponential reduction, making the

Fig. 3. The impact of noise on HH neuron dynam-
ics. (a) HH neurons under MPI parameters compete
between action potentials and subthreshold oscilla-
tions near the threshold. The white cross signi�es
the resting state. The black and red lines depict
distinct driving force streamlines from two points
near the threshold. The white dashed line separates
the resting state from spikes, depicting the neuron's
threshold (I = −10 µA/cm2, D = 0.45). (b) The
distribution of probabilistic �ux throughout the en-
tire process. The direction of the black arrows rep-
resents the direction of the system's probabilistic
�ux.

transition from the resting state to the action poten-
tial easier. Therefore, the barrier height between the
resting state and the action potential measures the
di�culty of transitioning between these two states,
serving as a quanti�cation criterion to estimate the
robustness of the resting state.
Under substantial Gaussian white noise, the HH

neuron departs from its deterministic resting state,
overcoming the height of the potential landscape,
∆U , to reach the threshold potential for generat-
ing an action potential. This critical period, from
the starting point until just beyond the thresh-
old potential, moments before the action poten-
tial is initiated, represents the minimum duration
needed for the HH neuron to escape its resting state,
or represents the initial transition time from the
resting state to the onset of an action potential.
Concerning the potential landscape's topography,
this duration signi�es the time required to depart
from the resting state's lowest point and reach
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Fig. 4. Quanti�cation of the transition di�culty
of Hodgkin�Huxley neurons from the resting to the
action potential state under MPI parameters. (a)
Change in barrier height versus bifurcation param-
eter I for the resting-to-action potential transition
(D = 0.245). (b) The logarithm of the mean �rst
pass time needed to reach the action potential from
the resting state as a function of barrier height
(D = 0.245).

Uthresh for the �rst time. We refer to this duration as
the ��rst-passage time�. By recording the �rst pas-
sage time repeatedly and calculating the average,
we will get the mean �rst passage time (MFPT)
� denoted as Tmfp. It o�ers another quanti�ca-
tion of the stability of the system. Figure 4b illus-
trates the natural logarithm of Tmfp vs the bar-
rier height ∆U . Under the same noise intensity, the
�tted curve exhibits an exponential trend (�tted
formula a exp(bx), where both a and b are greater
than 0). This indicates that as the barrier height in-
creases, the required evolution time becomes longer,
and the transition between di�erent states becomes
harder. Looking from left to right at the panel (b),
the system becomes more and more stable. The
quantitative �tting here shares a resemblance with
the Arrhenius law observed in equilibrium systems.
For the MLC parameter set of the HH neuron,

the comparative analysis between panels (b) and
(c) in Fig. 2 reveals varying heights of the cen-
tral island in the potential landscape, correspond-
ing to di�erent noise intensities and bifurcation pa-
rameters. To quantitatively determine the stability

of the system's limit cycle attractor, we relied on
3D potential landscapes to establish two barrier
heights, which aided us in tracing the range of the
limit cycle's path distribution in the state space.
One barrier is the di�erence in population proba-
bility potential between the highest point on the
central island in a Mexican hat and the lowest
point along the circular path � it is denoted as
Barrier1 = U0 − Umin; the other is the di�erence
between the highest point of the central island and
the value of U at the maximum along the circu-
lar path, i.e., Barrier2 = U0 − Umax. For di�erent
bifurcation parameters under the same noise inten-
sity, the height of the central island is correlated to
the size of the corresponding red circle in the 2D
phase space shown in panels (b), (c), (f) and (g)
in Fig. 2. A larger circular area indicates the need
for greater noise assistance or more statistical data
points to reach the high points within the central
island. Statistically, under the same noise intensity,
it's easier to reach the central island with a smaller
circular area, which naturally results in a smaller
formed barrier height. Here, we study the stabil-
ity of the system's limit cycle attractor under vary-
ing noise intensities applied to the same bifurcation
parameter.
In Fig. 5a, the variations of two barrier heights,

Barrier1 and Barrier2, vs the �uctuations of noise
intensity are presented. The solid line corresponds
to the di�erence in barrier heights along the upper
boundary of the attractor of the limit cycle, labeled
Barrier1. In contrast, the dashed line represents the
Barrier signifying the lower boundary of the limit
cycle. Both Barrier1 and Barrier2 decrease as the
noise intensity scaling coe�cient D increases. Panel
(b) illustrates the relationship between the average
�rst-passage time τ of the limit cycle attractor and
barrier heights. The escape time increases with the
barrier height. Thus, for the same input stimulus
current, higher applied noise leads to smaller bar-
rier heights and shorter average �rst-passage times
from the limit cycle attractor, indicating greater in-
stability of the limit cycle.

3.4. Entropy production, average probabilistic
flux, and phase transitions

Considering the phase transition of the HH neu-
ron with Gaussian white noise, we use the stim-
ulus current I as a changing parameter for com-
parison with a deterministic bifurcation diagram.
Figure 6a displays the system's EPR and the aver-
age probabilistic �ux Jav variations with I under
�nite-amplitude Gaussian white noise. Here, the
scales of the two y axes for �ux (on the right)
and EPR (on the left) are di�erent. Before reaching
the initial bifurcation point I1, Jav maintains rela-
tively low values. It undergoes an abrupt increase
at I1, marking a discontinuous phase transition.
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Fig. 5. Barrier heights and escape time in
Hodgkin�Huxley neurons under MLC parameters.
(a) Barrier heights U0 − Umin and U0 − Umax vs
noise intensity for I = 120 µA/cm2. (b) Compari-
son of escape time with barrier heights for various
noise intensities.

Subsequently, Jav gradually decreases to zero at I2,
indicating a continuous phase transition within the
system. However, as shown in Fig. 3, under su�-
cient �nite noise conditions, the system experiences
a transition period between the resting state and ac-
tion potentials before I1, corresponding to zone B
in the deterministic bifurcation diagram. This sug-
gests that due to noise in�uence, the system under-
goes oscillations even before I1. Why doesn't Jav
undergo a sudden change earlier?
We divided the entire state space into a grid

of small 200 × 200 squares and tracked all trajec-
tory points once the non-equilibrium steady state
was reached. By calculating the average absolute
values of the probabilistic �ux Junit for each grid
and summing these values throughout the sys-
tem, we obtained the total absolute values of the
probabilistic �ux Jtotal. Dividing this by the to-
tal number of squares in the state space, we can
get the average probabilistic �ux Jav over the en-
tire state space. When the HH neuron is in�u-
enced by limited noise and is su�ciently distant
from the Hopf bifurcation point H1 within the MPI
parameter set, it will generate intermittent irregu-
lar action potentials (see Fig. 3). When the resting
state coexists with periodic oscillations, reaching

a non-equilibrium steady state, we partition the en-
tire state space into two parts: the annular funnel
region where the static points are situated, and the
circular path formed by the limit cycle. To roughly
estimate the average �ux Jav in this bistable state,
we distinquish it into Jav−funnel in the annular fun-
nel region and Jav0 along the circular path. In the
circular depression area where the resting state re-
sides (we refer to Fig. 2e and h), Jav−funnel exhibits
no signi�cant changes compared to Jav−I−smaller

observed when the periodic oscillations have not
appeared. We isolated the circular path by exclud-
ing the funnel region around the resting state and
computed the average probabilistic �ux along this
circular path using Jav0 = (

∮
dl J)/(

∮
dl). Subse-

quently, by dividing this value by the number of the
spatial grid squares excluding the area around the
resting state, we obtained Jav1 for the entire state
space.
Interestingly, Jav0 exhibits a magnitude compa-

rable to Jav after the phase transition (I is within
the MLC range). The subsequent Jav1, on the con-
trary, is approximately four orders of magnitude
smaller than Jav. Due to the limited noise and small
stimulation current, the distribution of the resulting
limit cycle in the state space is narrow. This limited
spread prevents the formation of explicit central is-
lands, as Fig. 2b and c, because trajectories cor-
responding to the intermediate region within the
circular path cannot be reached. Although this is
not a fundamental defect, the system, in�uenced by
limited noise intensity and within a �nite computa-
tional time (recorded at time t = 108 315 000), fails
to reach states with a particularly small probability
distribution near the vertices of the central islands.
Consequently, this explains why the average prob-
abilistic �ux Jav1 across the entire state space does
not undergo an immediate abrupt change when the
resting state coexists with periodic oscillations in
the system. EPR also experiences a sudden change
at I1 and then gradually approaches zero at I2. This
is due to the close relationship between the calcula-
tion of EPR and the probabilistic �ux.
When looking at Fig. 2e�h and Fig. 3b, the gradi-

ent part of the system's driving force continuously
directs the system state towards the bottom region
of the potential landscape, stabilizing point attrac-
tors and limit cycles if they exist. Meanwhile, the
curl �ux, because of its rotational nature, tends to
destabilize point attractors. Greater curl �ux may
render the original state less stable and can even
alter the landscape's topography, �nally generating
new states, leading to a phase transition (as ob-
served in Figs. 2e, 2f, and 3b). Together, these three
mentioned panels of the �gures capture the di�er-
ent stages of the entire process. Figure 2g and h
vividly illustrates the less pronounced changes in
the curl �ux during a continuous phase transition.
Hence, the curl �ux plays a dynamic role in driv-
ing phase transitions or bifurcations/catastrophes
in non-equilibrium systems.
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Fig. 6. EPR and the average probabilistic �ux Jav. The solid red line represents the mean value of EPR
across the entire state space. In contrast, the dashed blue line re�ects the relationship between the system's
average probabilistic �ux Jav and the bifurcation parameter. The noise intensity is set at D = 0.1. The two
vertical dashed lines correspond to the two Hopf bifurcation points, I1 and I2, in the deterministic bifurcation
diagram. (b) First derivative of the average curl �ux with respect to the stimulus current. (c) First derivative
of EPR with respect to stimulus current.

The entropy production rate (EPR) quanti�es ir-
reversible processes within a system, indicating its
tendency to move towards higher entropy states.
When a non-equilibrium system reaches a statisti-
cally steady state after a su�ciently long time, the
numerical value of EPR equals the system's heat
dissipation rate or entropy �ow rate S′

e. This equiv-
alency allows EPR to describe the energy transfer
within the system. Within the range of I0 < I < I1,
as genuine limit cycles are not formed, neurons can
only physiologically engage in low-frequency dis-
charges, and therefore, EPR undergoes a sudden
change only at I = I1.
As for the second Hopf bifurcation point I2, we

calculated the �rst derivatives of the �ux and EPR
around I2, as shown in Fig. 6b and c. We found that
both the �rst derivatives of EPR and the �ux show
discontinuous changes at I2, indicating a second-
order phase transition at I2. The physical meaning
of the transition is that the neuron's steady states
change from stable periodic oscillation to a stable
resting state as the stimulus current increases. EPR
can be considered as the thermodynamic origin of
bifurcation or phase transition points in a non-
equilibrium system. Both Jav and EPR can serve as
order parameters for bifurcations and phase transi-
tions at I1 and I2 of the system.

3.5. Time irreversibility of the cross-correlation
function and critical slowing down

For the practical side, the average �ux and
EPR are not always easy to quantify directly
from experimental observations such as time series.

However, the non-equilibrium nature can be ex-
tracted directly from the time asymmetry of the
cross-correlations of the observables. If we consider
a neuron operating under the in�uence of noise, re-
ceiving a constant stimulus current and reaching a
statistically steady state as a non-equilibrium state,
we can calculate the di�erence in two-point cross-
correlation functions for the forward and reverse
times. This method helps quantify the extent of de-
tailed balance breaking and irreversibility of time
within the system.
Figure 7a displays a time series plot of the neu-

ron membrane potential V and the parameter h1,
representing the inactivation of sodium channels.
With relatively small noise applied and operated
at I = 10 µA/cm2 within the MLC range, V
and h1 demonstrate overall stable periodic oscil-
lations. However, setting the di�usion coe�cient
matrix AΓ to [100.0, 0.0001, 0.1, 0.0001] results in
maximal noise intensity imposed on V , leading to
more pronounced jagged �uctuations between ac-
tion potentials compared to those observed in h1.
Figure 7b shows the forward-in-time and backward-
in-time cross-correlation functions between V and
h1. The black line represents the correlation func-
tion proceeding forward in time � denoted as CV h1,
while the blue line corresponds to the function re-
verse in time � denoted as Ch1V . The lines exhibit
an approximate phase-complementary periodic os-
cillation and gradually diminish in amplitude to-
ward zero. Figure 7c illustrates the time-evolving
trend of the di�erence between forward-in-time and
backward-in-time cross-correlation functions � de-
noted as CV h1−Ch1V . Similarly, there are displayed
periodic-like oscillations, with the amplitude grad-
ually decreasing towards zero. It is important to
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Fig. 7. Quati�cation of the time irreversibility and
the degree of detailed balance breaking. (a) Trajec-
tories of the membrane potential V and h1 (I =
10 µA/cm2, D = 0.04, and h1 = 100h). (b) Time-
forward CV h1 (black) and time-reverse Ch1V (blue)
cross-correlation function between V and h1. Panel
(c) represents the di�erence between forward-in-
time and backward-in-time cross-correlation func-
tions, CV h1−Ch1V , plotted vs t. (d) Illustration of
the average di�erence of CV h1−Ch1V , denoted as
∆CC, in relation to I. The solid green line indicates
the change in ∆CC vs the bifurcation parameter I.
The purple vertical dashed line corresponds to the
current I1 at the �rst Hopf bifurcation point, H1,
while the red vertical dashed line represents I2 at
the second Hopf bifurcation point, H2. The dark
blue vertical dashed line corresponds to the cur-
rent I0.

note that in panels (a), (b), and (c), the condition
t = 0 does not represent the initial time of recording
the trajectory. Instead, it signi�es a point in time
reached after the system has been running for a suf-
�ciently long time to attain a statistically steady
state.

Figure 7d displays the variation of the average
di�erence CV h1 − Ch1V , denoted as ∆CC, with
respect to the bifurcation parameter I. The two

Fig. 8. The phenomenon of critical slowing down
near the subcritical Hopf bifurcation point H1 in
the Hodgkin�Huxley neuron. (a) The two-point au-
tocorrelation function of h1 and its �tting line (D =
0.045 and I = 5.4709 µA/cm2). (b) The natural log-
arithm of τ0 vs I (black solid line). The dark blue
dashed vertical line is I0 = 6.2645 µA/cm2. The red
dashed vertical line is I2 = 154.5266 µA/cm2.

dashed lines represent the stimulus currents I1 and
I2 corresponding to the two Hopf bifurcation points.
The forward-in-time and backward-in-time cross-
correlation functions serve as quanti�able indicators
of detailed balance breaking and time irreversibility,
respectively. Their experimental application, such
as in the use of �uorescence correlation spectroscopy
in single-molecule enzymology [44, 45], may be a
practical method for identifying potential bifurca-
tions or non-equilibrium phase transitions in HH
neurons. Comparing this with Fig. 6, ∆CC exhibits
a similar overall trend to Jav and EPR, however,
it shows an earlier signi�cant change near I0. This
aligns with the boundary between the MPI and
B regions in the deterministic bifurcation diagram
(Fig. 1a), suggesting that ∆CC might be a more
e�ective predictor of phase transitions compared to
Jav and EPR.
For neurons capable of transitioning from a rest-

ing state to spike �ring, it is theoretically possi-
ble to provide an indicator regarding the charac-
teristics of the critical slowing down as the neuron
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approaches the �rst Hopf bifurcation point H1 from
its resting state, as well as the H2 Hopf bifurca-
tion point from the resting state. To observe the
phenomenon of the critical slowing down within a
�nite observation window, we require appropriate
noise intensity and an observation interval su�-
ciently close to H1 and H2. Adjusting these factors
can enhance the accuracy and visibility of observ-
ing neuronal state transitions. We set D = 0.045
and AΓ = [1.0, 0.0001, 1.0, 0.0001] for our investiga-
tion. We used MATLAB to compute and normalize
h1's two-point autocorrelation function. Then, we
applied the �cftool� toolbox to �t the resulting curve
using the function exp(−x/τ0) cos(wx), w = 2πT ,
where τ0 represents a coherence time for the oscil-
lation [26, 46, 47]. Figure 8a illustrates the curve
of autocorrelation function for I = 5.4709 µA/cm2.
The red line signi�es the �tted curve, which dis-
plays the remarkable proximity to the original data.
Through this �tting process, we determined the
value of τ0. In Fig. 8b, we plotted the natural loga-
rithm of τ0 vs the current I. The natural logarithm
of τ0 exhibits a dramatic change at I0 and I2, indi-
cating a strong correlation between critical slowing
down and Hopf bifurcation for the classical HH neu-
ron model. Therefore, critical slowing down, aver-
age �ux, EPR, and irreversible cross-correlation can
provide indicators for bifurcation from the �uctua-
tion, dynamics, thermodynamics, and time asym-
metry perspectives.

4. Conclusions

In this study, we thoroughly investigated the
local bistability properties of the original four-
dimensional Hodgkin�Huxley equations under the
in�uence of noise. Combined with landscape and
�ux theory, we conducted a comprehensive analysis
of the stochastic dynamics of a single HH neuron,
revealing the characteristics of potential landscapes
and non-zero curl �ux after it reaches a statistically
steady state. We decomposed the driving force of
the system into two parts: one closely related to the
gradient of the probability distribution potential U ,
in short as the gradient force, and the other asso-
ciated with the steady-state probabilistic �ux Jss

and the steady-state probability distribution den-
sity Pss. The gradient force tends to drag the real-
time system state toward states with a larger proba-
bility distribution, e�ectively stabilizing the system
state on stable attractors in non-equilibrium sys-
tems. The component associated with the steady-
state probabilistic �ux Jss, exhibiting a rotational
characteristics, is dedicated to driving and sustain-
ing periodic oscillations.
We explored how strong noise triggers oscillations

prematurely, leading to a competitive coexistence
between neuronal quiescence and spike discharges.
Despite su�cient noise, the dominating rotational

force driving the emergence and sustenance of sta-
ble oscillations dominates over the gradient force.
Moreover, by evaluating the barrier height in co-
existence states, we quanti�ed the stability of the
resting state and further investigated the stability
of limit cycles in regions exclusively characterized
by stable periodic oscillations.
Through computation of the entropy production

rate (EPR) and the average probabilistic �ux Jav,
we discovered that both Jav and EPR serve as quan-
titative indicators for bifurcations or phase transi-
tions in the HH neurons. As it is not easy to di-
rectly measure these two metrics in experiments,
we further discussed the average di�erence be-
tween forward-in-time and backward-in-time cross-
correlations and the critical slowing down, which
can be directly measured in experiments. Moreover,
the average di�erence between forward-in-time and
backward-in-time cross-correlations tends to un-
dergo a break earlier than EPR and Jav, marking it
as an earlier warning signal for bifurcation or phase
transition points. In the original HH model, there
exists a subcritical Hopf bifurcation rather than
a saddle-node bifurcation, and the critical slowing
down is closely associated with the subcritical Hopf
bifurcation.
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Appendix

A1. The classical Hodgkin�Huxley equations and
the Jacobian matrix in their deterministic form

The deterministic Hodgkin�Huxley model can be
written as

Cm
dV

dt
= −gKn

4(V−VK)− gNam
3h(V−VNa)

−gL(V−VL) + I,

dm

dt
= αm(V )(1−m)− βm(V )m,

dh

dt
= αh(V )(1−h)− βh(V )h,

dn

dt
= αn(V )(1−n)− βn(V )n. (9)

During the linear stability analysis, stochastic forces
of the system are neglected and all equations on the
left-hand side are set to zero. The corresponding
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expressions on the right-hand side are denoted in
order as f1, f2, f3, f4. Then, the Jacobian matrix in
the deterministic form is as follows

JJacobi =


∂f1
∂V

∂f1
∂m

∂f1
∂h

∂f1
∂n

∂f2
∂V

∂f2
∂m

∂f2
∂h

∂f2
∂n

∂f3
∂V

∂f3
∂m

∂f3
∂h

∂f3
∂n

∂f4
∂V

∂f4
∂m

∂f4
∂h

∂f4
∂n

 (10)

Next, let us illustrate the procedure using ∂f2
∂V and

∂f2
∂m as examples. The remaining terms can be de-
rived by similar methods, i.e.,

∂f2
∂V

=
∂

∂V

[
αm(V )(1−m)− βm(V )m

]
=

∂

∂V

[
αm(V )−mαm(V )− βm(V )m

]
=

˙αm(V )− [ ˙αm(V )+ ˙βm(V )]m =

˙αm(V )[ ˙αm(V )+ ˙βm(V )]
αm(V )

αm(V ) + βm(V )
=

[
αm(V )+βm(V )

][ ˙αm(V )[αm(V )+βm(V )]

[αm(V ) + βm(V )]2

−αm(V )[ ˙αm(V )+ ˙βm(V )]

[αm(V ) + βm(V )]2

]
= λmṁ∞

∂f2
∂m

=

−[αm(V ) + βm(V )] = −λm (11)

In the above equations, λm = αm(V ) + βm(V ) and

m∞ = αm(V )
αm(V )+βm(V ) . The same procedure can be

applied to derive other elements of the Jacobian ma-
trices.

A2. From Langevin equations (LEs) to
Fokker�Planck equations

The system dynamics satisfy the following equa-
tion

dxi

dt
= fi(x, t) +

m∑
j=1

gijΓi(t). (12)

The �rst two moments of the Langevin force com-
ponent Γi(t) are given by

⟨Γi(t)⟩ = 0,

⟨Γi(t1)Γj(t2)⟩ = 2Di δijδ(t1 − t2), (13)

where i, j = 1, 2, ..., n. The multiplication factor gij
in (12) eliminates the variations of stochastic forces
to the variable x. In (13), δij satis�es

δij =

{
1, ifi = j,

0, ifi ̸= j.
(14)

To deduce an equation satis�ed by the system's dis-
tribution function P (x, t) from the Langevin equa-
tion (LE), it is essential to compute the various or-
der transition moments Mn(x, t, τ). As an example,
we consider the one-dimensional case

Mn(x, t, τ) = ⟨
(
x(t+τ)− x(t)

)n⟩ (τ ≪ 1). (15)

Starting from (12), the stochastic dynamics can be
described by dx

dt = f(x, t) + g(x, t)Γ (t). From here,
it is easy to get

x(t+τ)−x(t) =

t+τ∫
t

dt′
[
f(x(t′), t′)+g(x(t′), t′)Γ (t′)

]
.

(16)

Assuming that the integrands f and g can be ex-
panded in terms of x(t′)−x(t), it holds

f(x(t′), t′)=f(x(t), t′)+f ′(x(t), t′)(x(t′)−x(t)) + . . .

g(x(t′), t′)=g(x(t), t′)+g′(x(t), t′)(x(t′)−x(t)) + . . .

(17)

Substituting the expression (17) into (16) yields

x(t+ τ)− x(t) =

∫ t+τ

t

dt′ f(x(t), t′)

+

∫ t+τ

t

dt′ f ′(x(t), t′)
(
x(t′)−x(t)

)
+ . . .

+

∫ t+τ

t

dt′ g(x(t), t′)Γ (t′)

+

∫ t+τ

t

dt′ g′(x(t), t′)
(
x(t′)−x(t)

)
Γ (t′) + . . .

(18)

Repeatedly using (18) for the x(t + τ) − x(t) term
in the expression gives

x(t+ τ)−x(t) =

∫ t+τ

t

dt′ f(x(t), t′)

+

∫ t+τ

t

dt′ f ′(x(t), t′)

∫ t′

t

dt′′ h(x(t′), t′′)

+

∫ t+τ

t

dt′ f ′(x(t), t′)

∫ t′

t

dt′′ µ(x(t′), t′′)Γ (t′′)

+ · · ·+
∫ t+τ

t

dt′ g′(x(t), t′)Γ (t′)

+

∫ t+τ

t

dt′ g′(x(t), t′)Γ (t′)

∫ t′

t

dt′′ h(x(t′), t′′)

+

∫ t+τ

t

dt′ g′(x(t), t′)Γ (t′)

∫ t′

t

dt′′ µ(x(t′), t′′)Γ (t′′)

+ . . . (19)

To understand the statistical properties of x(t)
and obtain higher-order correlations such as
⟨x(t1)x(t2)x(t3)x(t4) . . . ⟩, we make the practical as-
sumption that the random variable Γ (t) follows a
Gaussian distribution. That means,

⟨Γ (t1)Γ (t2)Γ (t3) . . .Γ (t2n−1)⟩ = 0,

⟨Γ (t1)Γ (t2)Γ (t3) . . .Γ (t2n)⟩ =

(2D)n
n∑
i

[δ(ti1−ti2)δ(ti3−ti4) . . . δ(ti2n−1−ti2n)].

(20)
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By combining the statistical properties of the
Langevin force mentioned above by (13) and (20)
with (19), we can calculate the higher-order transi-
tion moments (see (15)). The �rst-order transition
moment is given by

M1(x, t, τ) = ⟨x(t+ τ)−x(t)⟩ =[
f(x, t) +Dg′(x, t)g(x, t)

]
τ +O(τ2). (21)

Here, O(τ2) represents the higher-order in�nitesi-
mal of τ . Similarly, one can obtain

M2(x, t, τ) = ⟨[x(t+τ)−x(t)]2⟩ =

2Dg2(x, t)τ +O(τ2), (22)

and

Mn(x, t, τ) = ⟨[x(t+τ)−x(t)]n⟩ ≤ O(τ2) (23)

for n ≥ 3. Assuming that the process under inves-
tigation is a Markov process, and using ρ(x, t) to
represent its distribution function and p to repre-
sent the probability of being in a certain state, the
following relations are derived

ρ(x, t+ τ) =

∫
dx′ p(x, t+ τ |x′, t)ρ(x′, t), (24)

ρ(x, t+ τ)− ρ(x, t) =
∂ρ(x, t)

∂t
τ +O(τ2). (25)

In p(x, t+τ |x′, t) =
∫
dy δ(y−x) p(y, t+τ |x′, t), let

expand the term δ(y−x), namely

δ(y−x) = δ(x′−x+y−x′) =∑∞

n=0

(y−x′)n

n!

(
∂

∂x

)n

δ(x′−x). (26)

After substituting it into the previous integral iden-
tity (24), we get the result

p(x, t+τ |x′, t) =[
1 +

∑∞

n=1

1

n!

(
− ∂

∂x

)n

Mn(x
′, t, τ)

]
δ(x′−x),

(27)

where

Mn(x
′, t, τ) =

∫
dy (y − x′)np(y, t+τ |x′, t). (28)

Substituting (27) into (24) and comparing with
(25), one gets

∂ρ(x, t)

∂t
= LKM ρ(x, t), (29)

LKM =

∞∑
n=1

(
− ∂

∂x

)n

Dn(x, t), (30)

Dn(x, t) = lim
τ→0

Mn(x, t, τ)

n!τ
. (31)

Since p(x, t|x′, t) is the transition probability at
time t′ with an initial distribution satisfying
ρ(x, t) = δ(x − x′), this transition probability also
follows
∂p(x, t|x′, t)

∂t
= LKM p(x, t|x′, t). (32)

This is the Kramers�Moyal forward equation. Com-
paring the high-order moment equation Mn here
with the previously de�ned one, it is easy to obtain

D1(x, t) = f(x, t) +Dg′(x, t)g(x, t),

D2(x, t) = Dg2(x, t),

Dn(x, t) = 0, (n ≥ 3).
(33)

Thus, the Kramers�Moyal equation with trunca-
tion at the second order of partial derivatives is

∂ρ(x, t)

∂t
= − ∂

∂x
[f(x, t) +Dg′(x, t)g(x, t)] ρ(x, t)

+D − ∂2

∂2x

[
g2(x, t)ρ(x, t)

]
. (34)

This is the Fokker�Planck equation for a one-
dimensional variable system.
The Fokker�Planck equation corresponding to

the multi-variable Langevin equations can be de-
rived using a similar approach, i.e.,

∂ρ(x, t)

∂t
= −

∑
i

∂

∂xi

[
Di(x, t)ρ(x, t)

]
+
∑
i

∑
j

∂2

∂xi∂xj
[Dij(x, t)ρ(x, t)], (35)

Di(x, t) = lim
τ→0

⟨xi(t+τ)− xi⟩
τ

=

fi(x, t) +D
∑
k

∑
l

gkl
∂

∂xk
gil, (36)

Dij(x, t) = lim
τ→0

⟨[xi(t+τ)−xi][xj(t+τ)−xj ]⟩
τ

=

D
∑
k

gikgjk. (37)
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