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Heterogeneous oscillator networks consist of a dynamical function that describes the state of the oscilla-
tor (containing several parameters) and a topology that reflects the connections between the oscillators.
Revealing the macroscopic dynamics of systems under different configurations of parameters and topol-
ogy is a topic worthy of discussion and comes with great challenges. In this study, we discuss the effect of
different parameter configurations on the damped free vibration of a classical spring oscillator network.
On the regular network, we give the analytical expression satisfied by the free vibration of the system
under over-damping and critical damping. Furthermore, we discuss the fastest and slowest exponential
rates of decay of the system for different parameter conditions. In conjunction with quadratic eigenvalue
theory, we extend the above analysis from regular networks to complex networks. We give a general
method for calculating the eigenvalue spectrum of the system for arbitrary parameter configurations.
In conjunction with the stability of the system and the rate of decay of the exponential rate, we also
give numerical simulation results for the second largest and smallest real parts of the eigenvalues of
the system. Finally, through the comparative analysis of the simulation results, we relax the matching
relationship between the three parameters (mass, damping, and degree) to the matching between two
parameters (mass and damping).

topics: parameter configurations, damped free vibration, over-damping, critical damping

1. Introduction

Behind the macroscopic dynamics of the system
implicitly is a mechanism for matching the parame-
ters in the function to the topology. Earlier studies
on first-order Kuramoto models showed that explo-
sive synchronization (ES) is observed in scale-free
networks when the intrinsic frequency of nodes is
positively correlated with node degrees [1]. Studies
related to ES have resulted in a universal recogni-
tion that the rules of organization between parame-
ters and topology underlying the dynamical behav-
ior may be crucial [2–8]. An interesting question is
how the dynamics of the system will be determined
when the key parameters in the function are placed
at important locations in the network. Zhan et al. [9]
discussed the vibronic frequencies of classical spring
oscillator networks of different masses on complex
networks and studied how the mass–space configu-
ration affects the second smallest (ω2) as well as the
largest frequency (ωN ) of the system. Specifically,
they studied the undamped second-order system as
follows [9]

mj ẍj = k

N∑
i=1

aij (xi−xj), j ∈ 1, 2, . . . , N, (1)

where mj represents the j-th oscillator’s mass;
k = 1 is the coupling strength (or spring coefficient);
N represents the number of mass points (oscillators
or nodes); aij = 1 if oscillator i and j are connected,
otherwise, aij = 0. Throughout the analysis, all mj

are different. Since (1) can better model the dynam-
ics of proteins in structural biology [10, 11], it has
strong practical applications. The authors of [10, 11]
found that when the mass of the oscillator is posi-
tively correlated with the degree point-to-point, ω2

is the largest, and ωN is the smallest. If the oscil-
lator with the smallest degree is given the largest
mass (the masses of the other oscillators are arbi-
trarily assigned), ω2 is the smallest. In contrast, ωN
is the largest when the oscillator with the largest
degree is assigned the lightest mass. Their results
also show that the rules of organization between
parameters and topology determine the overall dy-
namics of the system and that even a single node
is sufficient to control the collective behavior of the
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entire system. Therefore, revealing and effectively
using the organization principles of parameters and
topology is of significant theoretical and practical
significance.

Another important application of the parameter
configuration is the synchronization of the grid net-
work. Motter et al. [12] derived the condition for
the power-grid network to reach a steady state of
synchronization and then used this condition to de-
termine the corresponding adjustable parameters
of the generator when the system is spontaneously
synchronized [12]. Specifically, the dynamics of gen-
erator i is given by the following swing equation

2Hi

ωR

d2δi
dt2

= Pmi − Pei, i ∈ 1, 2, . . . , N. (2)

The parameter Hi is the inertia constant of the gen-
erator, ωR is the reference frequency of the system,
Pmi is the mechanical power provided by the gen-
erator, and Pei is the power demanded of the gen-
erator by the network (including the power lost to
damping). Note that (2) can be further organized
into the following system of equations (the specific
symbolic meanings are ignored here, see [12] for de-
tails)

Ż1 = Z2, (3)

Ż2 = −J Z1 − Γ Z2. (4)
Here Z1 and Z2 are N -dimensional vectors, and T
denotes the transpose of the vectors. It is worth
noting that in (4), Γ = βI. Here I represents the
unit matrix. In other words, in the above analysis,
the diagonal elements of Γ are all β. One wonders
how a system with damped free vibrations will be
determined when the diagonal elements of Γ have
arbitrary values in some interval. Here, we study
the free vibration of a classical spring oscillator net-
work under viscous damping for different parame-
ter configurations. The innovations of this study are
reflected in the following four aspects.

• In contrast to the study by Zhan et al. [9]
(see (1)), we have included viscous damping,
i.e., we consider the effect of different param-
eter configurations on the damped free vibra-
tion of the system.

• Unlike in the study by Motter et al. [12]
(see (4)), the diagonal elements of Γ are no
longer identical, but take on arbitrary values
within a certain interval.

• For regular networks, we give the analytical
expression satisfied by the damped free vi-
bration of the system on a star network. For
over-damping and critical damping, we give
the smallest and the largest non-zero eigen-
values of the system for different parameter
conditions (they determine the degree of ex-
ponential rate decay).

• In conjunction with quadratic eigenvalue the-
ory, we extend the above analysis from reg-
ular networks to complex networks. A gen-
eral method for computing the eigenvalue

spectrum of the system is given for different
parameter-matching schemes. Combined with
the system stability, we also give numerical
simulation results for the second largest and
smallest real part of the system eigenvalues.

The paper is organized as follows. In Sect. 2, we
give models of classical spring oscillators of differ-
ent masses with viscous damping. In Sect. 3, we first
give a general expression for the free vibration of the
system on a regular network (star network). Fur-
thermore, in Sect. 3.1, for over-damping and crit-
ical damping, we give the largest non-zero eigen-
value and the smallest eigenvalue of the system.
In conjunction with quadratic eigenvalue theory, in
Sect. 3.2, we extend the above study from regular
networks to complex networks and give a method
for computing the eigenvalue spectrum of a sys-
tem on a complex network. In Sect. 4, we give
numerical simulation results for the second largest
Re(λ2N−1) and smallest Re(λ1) real part of the
eigenvalues on the Erdös–Rényi (ER) network [13]
with different parameter matching schemes. Finally,
we summarize and conclude the above research
in Sect. 5.

2. Model

We consider the dynamics of N network-coupled
classical spring oscillators xj under the effect of vis-
cous damping, whose evolution is governed by

mj ẍj + cj ẋj = k

N∑
i=1

aij(xi − xj), (5)

where j ∈ 1, 2, . . . , N ; mi, xi, and ci represent the
j-th oscillator’s mass, phase, and damping, respec-
tively; k > 0 is the coupling strength. For sim-
plicity, we take k ≡ 1 throughout the paper. For
an undirected graph with no self-loop, aij = aji = 1
if oscillator j is coupled to oscillator i, otherwise,
aij = aji = 0. Furthermore, mj and cj are different
for all j in the next analysis. The above equation
(5) can be written in a compact form based on the
normal mode analysis

MẌ + CẊ + LX = 0, (6)
where M = diag({mj}), C = diag({cj}) and
diag denotes the diagonal matrix. The Laplacian
matrix is L = (dj−δijaij), where δij = 1 for
i = j and δij = 0, otherwise; dj is the de-
gree of node j. For convenience, we denote the
mass set m = (m1,m2, . . . ,mN ), the damping set
c = (c1, c2, . . . , cN ), and the degree vector d =
(d1, d2, ..., dN ) as m, c, and d, respectively. Next,
we consider the solution of (6) in form X(t) = eλtU
and substitute it into (6)(

λ2M + λC + L
)
U = 0. (7)

We assume that (7) is a quadratic eigenvalue prob-
lem (QEP) [14–20], i.e., we determine the scalar
λ ∈ C and the non-zero vectors x, y ∈ CN , such
that
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(
λ2M + λC + L

)
x = 0, (8)

yH
(
λ2M + λC + L

)
= 0, (9)

whereH stands for matrix conjugate transpose; x, y
are the left eigenvector and the right eigenvector
corresponding to λ, respectively; C represents the
complex number field and CN represents the Carte-
sian product of N complex number fields. In other
words, X(t) = eλtU is a solution to (6) if and only
if λ and U satisfy (8) and (9).

3. Theoretical analysis

3.1. Free vibration of a classical spring oscillator
with viscous damping on a star network

Next, we calculate the vibration frequencies
of the system on the star network from the
perspective of theoretical analysis. From (7) we
know that the characteristic polynomial of the
system is

Det


λ2m1 + λc1 + (N − 1) −1 . . . −1

−1 λ2m2 + λc2 + 1 . . . 0

...
...

. . .
...

−1 0 . . . λ2mN + λcN + 1

 = 0, (10)

where Det denotes the determinant of the matrix.
When λ2mi + λ ci + 1 = 0, the 2N − 2 eigenvalues
of the system in (10) can be expressed as

λi± =
−ci ±

√
c2i − 4mi

2mi
(11)

for i ∈ 2, . . . , N . Furthermore, the other two eigen-
values of the system are determined by the following
implicit expressions

λ2m1+λc1+(N−1) =
N∑
i=2

1

λ2mi+λci+1
. (12)

Obviously, λ2N = 0 is the solution of (12). As for
the other solution λ1, we note the following facts
(Viete theorem is used here)

λ1 + λ2 + . . . λ2N = −
N∑
j=1

cj
mj

, (13)

thus, we obtain the following result

λ1 = −
N∑
j=1

cj
mj
−

N∑
k=2

−ck ±
√
c2k−4mk

2mk
=− c1

m1
.

(14)

In the next analysis, we assume c2i ≥ 4mi

(i.e., over-damping and critical damping situations,
see (11)), which means the above 2N−2 eigenvalues
are all real. We can still sort them, i.e., λ1 ≤ λ2... ≤
λ2N−1 ≤ λ2N = 0. As a result, the general solution
of (6) is

X(t) =

2N∑
k=1

ck e
λktUk, (15)

where Uk denotes the eigenvector corresponding
to λk satisfying (8) and (9). Notice that eλ1t and
eλ2N−1t represent the fastest and slowest decay of
the exponential rate in the right-hand end of (15)
(we exclude the trivial result that λ2N = 0). In the
next analysis, we focus on the two values of λ1 and

λ2N−1. Without loss of generality, we denote the
largest of the above 2N−2 eigenvalues as λ+N . This
means that ∀i (i ∈ 2, . . . , N , see (11)), the following
condition always holds (λ+N ≥ λ

+
i )

mNci +mi

√
c2N−4mN > micN +mN

√
c2i−4mi.

(16)
Furthermore, we denote the smallest of the above
2N−2 eigenvalues as λ−2 . This means that ∀i, (i ∈
2, . . . , N , see (11)) the following condition always
holds (λ−2 ≤ λ

−
i )

m2ci +mi

√
c22−4m2 < mic2 +m2

√
c2i−4mi.

(17)

In connection with the previous analysis, if λ+N
is the second largest eigenvalue of the whole sys-
tem (the reader is invited to recall that the largest
eigenvalue of the system is 0) and λ1 is the smallest
eigenvalue of the whole system, only the following
conditions need to be satisfied (λ+N ≥ λ

+
i , λ

−
2 ≤ λ

−
i ,

λ+N > λ1 and λ−2 > λ1)

mNci +mi

√
c2N−4mN > micN +mN

√
c2i−4mi,

m2ci +mi

√
c22−4m2 < mic2 +m2

√
c2i−4mi,

m1cN < 2mNc1 +m1

√
c21−4m2,

2m2c1 < 2m1c2 +m1

√
c22−4mN .

(18)
Similarly, if λ1 is the second largest eigenvalue of the
whole system and λ−2 is the smallest eigenvalue of
the whole system, only the following conditions need
to be satisfied (λ+N ≥ λ

+
i , λ

−
2 ≤ λ

−
i and λ+N < λ1)

mNci +mi

√
c2N−4mN > micN +mN

√
c2i−4mi,

m2ci +mi

√
c22−4m2 < mic2 +m2

√
c2i−4mi,

m1cN > 2mNc1 +m1

√
c21−4m2.

(19)
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TABLE I

The mass set m, the damping set c, and the underlying network node degree d point-to-point configuration case.
The point-to-point positive (negative) correlation between m and d means that we use {m1/d1, . . . ,mN/dN}
({mN/d1, . . . ,m1/dN}) matching when m1 < m2 < · · · < mN , d1 < d2 < · · · < dN . Similarly, the point-to-point
positive (negative) correlation between c and d means that we use {c1/d1, . . . , cN/dN} ({cN/d1, . . . , c1/dN})
matching when c1 < c2 < · · · < cN , d1 < d2 < · · · < dN .

Description Symbol

m, c are matched with d point-to-point positive correlation m
p.t.p−−−→
+

d
p.t.p←−−−
+

c

m is positively correlated with d point-to-point,
c is negatively correlated with d point-to-point,

m
p.t.p−−−→
+

d
p.t.p←−−−
−

c

m is negatively correlated with d point-to-point,
c is positively correlated with d point-to-point,

m
p.t.p−−−→
−

d
p.t.p←−−−
+

c

m, c are matched with d point-to-point negative correlation m
p.t.p−−−→
−

d
p.t.p←−−−
−

c

Finally, if λ+N is the second largest eigenvalue of the
whole system and λ−2 is the smallest eigenvalue of
the whole system, only the following conditions need
to be satisfied (λ+N ≥ λ

+
i , λ

−
2 ≤ λ

−
i and λ−2 < λ1)

mNci +mi

√
c2N−4mN > micN +mN

√
c2i−4mi,

m2ci +mi

√
c22−4m2 < mic2 +m2

√
c2i−4mi,

m1cN < 2mNc1 +m1

√
c21−4m2,

2m2c1 > 2m1c2 +m1

√
c22−4mN .

(20)

3.2. Free vibration of a classical spring oscillator
with viscous damping on a complex network

Clearly, Ẋ = λeλtU = λX (the reader is invited
to recall that we assumed X = eλtU to be the so-
lution of (7)). We do the following variable substi-
tution

z =

(
x

λx

)
, w =

(
(λM + C)Hy

y

)
, (21)

A =

(
0 I

−L −C

)
, B =

(
I 0

0 M

)
, (22)

where I represents the N -dimensional unit matrix.
A direct result is Az = λBz and wH = λwHB. Note
the following facts
A− λB =(

0 I

−I −λM−C

)(
λ2M+λC+L 0

0 I

)(
I 0

−λI I

)
.

(23)
In summary, the QEP corresponding to (7) is

transformed into a generalized eigenvalue prob-
lem (GEP) [21–24]. Notice that Det(A − λB) =
Det(λ2M + λC + L). Therefore, the eigenvalues
of the GEP are the eigenvalues of the original
QEP. This allows us to obtain the full eigenvalues
of (7) by numerical computation (the authors used
the Cholesky decomposition numerical solution for
GEP). It is worth noting that on complex networks,

we cannot restrict the eigenvalues of the system (the
reader is invited to recall that on the network of
rules, we assume that c2i ≥ 4mi), which means that
we have to address the case of complex eigenvalues.
Fortunately, we are concerned with the real part
of the eigenvalues of the system from the point of
view of system stability. We can still sort them, i.e.,
Re(λ1) ≤ Re(λ2) · · · ≤ Re(λ2N−1) ≤ Re(λ2N ) ≤ 0
(eigenvalues are pure imaginary numbers). In fact,
combined with the general solution of (7) (X(t) =∑2N
k=1 ck e

λktUk), when λk is a complex number,
this means that X contains a linear combination of
e(αk± iβk)t. Thus,X contains a linear combination of
eαkt cos (βkt) and eαkt sin(βkt). When αk = Re(λk)
< 0, each of the above combinations has decayed at
an exponential rate. Correspondingly, we are inter-
ested in the second largest Re(λ2N−1) and smallest
Re(λ1) of the system. In fact, they represent the
slowest decay and the fastest decay, respectively.

Before giving specific numerical simulation re-
sults on complex networks, we give their nota-
tions for different parameter matching schemes.
Next, the point-to-point positive (negative) cor-
relation between m and d means that we
use {m1/d1, . . . ,mN/dN} ({mN/d1, . . . ,m1/dN})
matching when m1 < m2 < · · · < mN , d1 <
d2 < · · · < dN . All point-to-point matches of m,
c, and d are detailed in Table I. In addition, the
single-point positive (negative) correlation between
m and d means that we use {mN/dN} ({m1/dN})
at only one node, while the other nodes are matched
in a random way. All single-point matches of m, c,
and d are detailed in Table II.

4. Numerical simulations

4.1. Simulation results for Re(λ2N−1) with
different parameter configurations on ER networks

In Fig. 1a, we give simulation results for
Re(λ2N−1) under random matching of m and c on
the ER network, and the results are arranged in
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TABLE II

The mass set m, damping set c, and the underlying network node degree d in a single-point configuration. The
single-point positive (negative) correlation between m and d means that we use {mN/dN} ({m1/dN}) at only
one node, while the other nodes are matched in a random way. Similarly, the single-point positive (negative)
correlation between c and d means that we use {cN/dN} ({c1/dN}) at only one node, while the other nodes are
matched in a random way.

Description Symbol
m, c are matched with dmax single-point positive correlation m

s.p−−→
+

dmax
s.p←−−
+

c

m is matched with dmax single-point positive correlation,
c is matched with dmax single-point negative correlation,

m
s.p−−→
+

dmax
s.p←−−
−

c

m is matched with dmax single-point negative correlation,
c is matched with dmax single-point positive correlation,

m
s.p−−→
−

dmax
s.p←−−
+

c

m, c are matched with dmax single-point negative correlation m
s.p−−→
−

dmax
s.p←−−
−

c

m, c are matched with dmin single-point positive correlation m
s.p−−→
+

dmin
s.p←−−
+

c

m is matched with dmin single-point positive correlation,
c is matched with dmin single-point negative correlation,

m
s.p−−→
+

dmin
s.p←−−
−

c

m is matched with dmin single-point negative correlation,
c is matched with dmin single-point positive correlation,

m
s.p−−→
−

dmin
s.p←−−
+

c

m, c are matched with dmin single-point negative correlation m
s.p−−→
−

dmin
s.p←−−
−

c

ascending order after 50 000 random shuffles (or-
ange). Furthermore, we added two special forms of
matching, namely, m p.t.p−−−→

+
d

p.t.p←−−−
+

c (red, sphere)

and m
p.t.p−−−→
+

d
p.t.p←−−−
−

c (blue, sphere). We find
that the blue sphere is located among the orange
lines, while the red sphere is located at the bottom
of the whole figure. In other words, compared to
random matching, Re(λ2N−1) is the smallest under
m

p.t.p−−−→
+

d
p.t.p←−−−
+

c.

Similarly, in Fig. 1b, we will give the correspond-
ing results when m is randomly matched with c

(orange), m p.t.p−−−→
−

d
p.t.p←−−−
−

c (red, sphere), and

m
p.t.p−−−→
−

d
p.t.p←−−−
+

c (blue, sphere). We find that the

Re(λ2N−1) is minimum when m
p.t.p−−−→
−

d
p.t.p←−−−
−

c.
Comparing the blue sphere of Fig. 1a, we find that
the value of Re(λ2N−1) under m

p.t.p−−−→
−

d
p.t.p←−−−
+

c be-

comes the largest (compared to random matching),
and the corresponding exponential rate decays the
slowest (the reader is invited to recall the relation-
ship between Re(λk) and the rate of decay of the
exponential rate).

Next, in Fig. 2a, we give the simulation results
under parameter single-point matching accordingly.
As in Fig. 1a, we give the simulation results for
Re(λ2N−1) under random matching of m and c (or-
ange), m s.p−−→

+
dmax

s.p←−−
+

c (red), m s.p−−→
+

dmax
s.p←−−
−

c

(cyan), m s.p−−→
+

dmin
s.p←−−
+

c (blue), and m
s.p−−→
+

dmin
s.p←−−
−

c (magenta), respectively, and similarly

the results are arranged in ascending order after
50 000 random shuffles. We find that the value of
Re(λ2N−1) under m s.p−−→

+
dmin

s.p←−−
−

c (magenta) is
significantly larger than in the other three cases.
Comparing the magenta line with the blue line, we
can obviously observe the power of viscous damping
(the reader is reminded that in both cases, one is
assigned the strongest damping and the other the
weakest damping). This also means that the pres-
ence of viscous damping accelerates the rate of de-
cay of the exponential rate. Comparing the cyan
lines with the red lines, we can reach the same con-
clusion.

In Fig. 2b, we give the simulation results for
Re(λ2N−1) under m and c random matching (or-
ange), m s.p−−→

−
dmax

s.p←−−
−

c (red),m s.p−−→
−

dmax
s.p←−−
+

c

(cyan), m s.p−−→
−

dmin
s.p←−−
−

c (blue), and m
s.p−−→
−

dmin
s.p←−−
+

c (magenta), respectively, and similarly,
the results were arranged in ascending order after
50 000 random shuffles. Comparing Fig. 2a (m s.p−−→

+

dmin
s.p←−−
−

c) with Fig. 2b (m s.p−−→
−

dmin
s.p←−−
+

c), the ef-
fect of viscous damping is once again justified. Even
though the nodes are assigned different masses, the
value of Re(λ2N−1) is considerably reduced because
the latter is assigned the strongest viscous damping.
We are surprised to find that, excluding the top or-
ange line in the figure, the other four color lines al-
most overlap. In other words, the Re(λ2N−1) of the
systems of the other four matching methods differ
very little, and all are smaller than the values under
m and c random matching.
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Fig. 1. Effect of parameter point-to-point config-
uration on Re(λ2N−1). The results of Re(λ2N−1)
under different parameter matching schemes for
m, c, and d on Erdös–Rényi (ER) network — (a)
m

p.t.p−−−→
+

d
p.t.p←−−−
+

c (red, sphere), m p.t.p−−−→
+

d
p.t.p←−−−
−

c

(blue, sphere), random matching ofm and c and the
results are arranged in ascending order after 50 000

random shuffles (orange); (b) m p.t.p−−−→
−

d
p.t.p←−−−
−

c

(red, sphere), m p.t.p−−−→
−

d
p.t.p←−−−
+

c (blue, sphere),

random matching of m and c and the results are
arranged in ascending order after 50 000 random
shuffles (orange). Here, N = 50, 〈d〉 = 11.48
(〈d〉 = (1/N)

∑N
i=1 di). Here, the mass set (m) is

taken from a uniform distribution in the range 1–
10. The damping set (c) is then taken from a uni-
form distribution in the range 1–5. Unless specif-
ically mentioned otherwise, throughout the paper
these datasets will be used.

Next, let us see if we can relax the matching
of the above three parameters (m → d ← c) to
a match of two parameters (m ←→ c). In fact,
comparing the red sphere in Fig. 1a and b, we
find that Re(λ2N−1) does not differ much under the
two matching schemes. If we further analyze these
two matching schemes, we will find that the reason
for this phenomenon is actually the positive corre-
lation match between m and c points. Therefore,
in Fig. 3a, we ignore the parameter dmin and dmax

and directly match m with c in a point-to-point
positive correlation (pink sphere) and compare the

Fig. 2. Effect of parameter single-point configura-
tion on Re(λ2N−1). The results of Re(λ2N−1) un-
der different parameter matching schemes for m,
c, and d on ER network. (a) Random matching
of m and c (orange), m s.p−−→

+
dmax

s.p←−−
+

c (red),

m
s.p−−→
+

dmax
s.p←−−
−

c (cyan), m s.p−−→
+

dmin
s.p←−−
+

c (blue)

and m
s.p−−→
+

dmin
s.p←−−
−

c (magenta). All configura-

tions passed a random shuffle of 50 000 and the
results are in ascending order. (b) Random match-
ing of m and c (orange), m s.p−−→

−
dmax

s.p←−−
−

c (red),

m
s.p−−→
−

dmax
s.p←−−
+

c (cyan), m s.p−−→
−

dmin
s.p←−−
−

c (blue),

and m
s.p−−→
−

dmin
s.p←−−
+

c (magenta). All configura-

tions passed a random shuffle of 50 000 and the re-
sults are in ascending order. Insets are an enlarged
version of the shaded area.

results with the red sphere in Fig. 1a and b. As
we expected, we find that the values of Re(λ2N−1)
differ very little for the three matches. In fact, the
three values in Fig. 2a are Re(λ2N−1) = −0.249,
−0.235, and −0.231 (from smallest to largest). Sim-
ilarly, we now consider whether we can relax the
single-point matching case. Using the red line and
the blue line in Fig. 2a and b, we find that the
common feature of these four parameter match-
ing schemes is the single-point positive correlation
matching of m with c. Therefore, in Fig. 3b, we
directly match m with c in a single-point positive
correlation (purple) and compare it with the above
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Fig. 3. Relaxation of the configuration between
three parameters into a configuration between two
parameters. The result of Re(λ2N−1) after the
above three-parameter match (m → d ← c) is
relaxed to a two-parameter match (m ←→ c).
(a) Random matching of m and c and the results
are arranged in ascending order after 50 000 ran-
dom shuffles (orange), m p.t.p−−−→

+
d

p.t.p←−−−
+

c (red

sphere), m p.t.p−−−→
−

d
p.t.p←−−−
−

c (blue sphere), and m

are positively correlated with c point-to-point (pink
sphere). And the above three values are added to
Fig. 3b. (b) Random matching of m and c (orange),
m

s.p−−→
+

dmax
s.p←−−
+

c (red), m s.p−−→
−

dmax
s.p←−−
−

c (cyan),

m
s.p−−→
+

dmin
s.p←−−
+

c (magenta), m s.p−−→
−

dmin
s.p←−−
−

c (yellow), and m are positively correlated with
c single-point (purple). All configurations passed
a random shuffle of 50 000 and the results are in
ascending order. Insets are an enlarged version of
the shaded area.

four matching schemes. We find that the value of
Re(λ2N−1) also increased substantially if the impor-
tant parameter d was ignored. On the contrary, if
the above pairwise parameter matching (m ←→ c)
is placed on important nodes in the network, such
as dmin and dmax, the Re(λ2N−1) of the system is
reduced. The above analysis has significant practi-
cal applications. It allows us to obtain the asymp-
totic minimum of Re(λ2N−1) by matching only

Fig. 4. Effect of parameter point-to-point configu-
ration on Re(λ1). The results of Re(λ1) under differ-
ent parameter matching schemes for m, c, and d on
ER network — (a) m p.t.p−−−→

+
d

p.t.p←−−−
+

c (red, sphere),

m
p.t.p−−−→
+

d
p.t.p←−−−
−

c (blue, sphere), random matching

of m and c and the results are arranged in ascend-
ing order after 50 000 random shuffles (orange); (b)
m

p.t.p−−−→
−

d
p.t.p←−−−
−

c (red, sphere), m p.t.p−−−→
−

d
p.t.p←−−−
+

c

(blue, sphere), random matching ofm and c and the
results are arranged in ascending order after 50 000
random shuffles (orange).

one pair of parameters under the cost constraint.
Furthermore, observing Fig. 3b, we find that the
single-point matching produces the global smallest
Re(λ2N−1).

4.2. Simulation results for Re(λ1) with different
parameter configurations on ER networks

Figure 4 shows the simulation results of the sys-
tem Re(λ1) for different matching schemes of m,
c, and d on the ER network. Because Fig. 4 uses
the same parameter matching scheme as Fig. 1, the
marker point shapes and sizes are the same. There-
fore, in the discussion that follows, we focus our
attention on the results of the simulation experi-
ments rather than a lengthy repetitive narrative. In
Fig. 4a and b, we find that the difference is in the
case of Re(λ2N−1), when the red sphere is located
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Fig. 5. Effect of parameter single-point configura-
tion on Re(λ1). The results of Re(λ1) under dif-
ferent parameter matching schemes for m, c, and
d on ER network. (a) Random matching of m
and c (orange), m s.p−−→

+
dmax

s.p←−−
+

c (red), m s.p−−→
+

dmax
s.p←−−
−

c (cyan), m s.p−−→
+

dmin
s.p←−−
+

c (blue), and

m
s.p−−→
+

dmin
s.p←−−
−

c (magenta). All configurations

passed a random shuffle of 50 000 and the results
are in ascending order. (b) Random matching of m
and c (orange), m s.p−−→

−
dmax

s.p←−−
−

c (red),m s.p−−→
−

dmax
s.p←−−
+

c (cyan), m s.p−−→
−

dmin
s.p←−−
−

c (blue), and

m
s.p−−→
−

dmin
s.p←−−
+

c (magenta). All configurations

passed a random shuffle of 50 000 and the results in
are ascending order. Insets are an enlarged version
of the shaded area.

at the top of the figure. The blue sphere, on the
other hand, is located in the middle of the orange
line. This means that the Re(λ1) is maximum when
m

p.t.p−−−→
+

d
p.t.p←−−−
+

c and m p.t.p−−−→
−

d
p.t.p←−−−
−

c (compared

to random matching). Correspondingly, the expo-
nential rate decays the slowest. Next, we discuss
the simulation results of the parameters under the
corresponding single-point matching. In Fig. 5a, we
find that, excluding the orange color line, the other
four color lines (red, cyan, magenta, and blue) al-
most overlap. In Fig. 5b, we find that the magenta

Fig. 6. Relaxation of the configuration between
three parameters into a configuration between two
parameters. The result of Re(λ1) after the above
three-parameter match (m → d ← c) is relaxed
to a two-parameter match (m ←→ c). (a) Random
matching of m and c and the results are arranged
in ascending order after 50 000 random shuffles (or-
ange), m p.t.p−−−→

+
d

p.t.p←−−−
+

c, m p.t.p−−−→
−

d
p.t.p←−−−
−

c, and m

are positively correlated with c point-to-point. The
three values mentioned above differ so little that
we represent them uniformly with a red diamond
and add them to the Fig. 6b. (b) Random match-
ing of m and c (orange), m s.p−−→

+
dmax

s.p←−−
+

c (red),

m
s.p−−→
−

dmax
s.p←−−
−

c (cyan), m s.p−−→
+

dmin
s.p←−−
+

c (ma-

genta), m s.p−−→
−

dmin
s.p←−−
−

c (yellow), and m are pos-

itively correlated with c single-point (purple). All
configurations passed a random shuffle of 50 000
and the results are in ascending order. Insets are
an enlarged version of the shaded area.

line (m s.p−−→
−

dmin
s.p←−−
+

c) is located at the bottom
of the figure. Comparing the magenta line with the
blue line, we find that the strong viscous damp-
ing effect also reduces the value of Re(λ1) substan-
tially. Similarly, comparing the red and cyan lines,
the same conclusion can be drawn.

In Fig. 6a, we give the results for Re(λ1) under
m and c point-to-point positive correlation match-
ing. Comparing the three-parameter matching cases
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of m p.t.p−−−→
+

d
p.t.p←−−−
+

c, m p.t.p−−−→
−

d
p.t.p←−−−
−

c, we find

that the difference of Re(λ1) in the system is very
small. As the differences between the three values
above are small, we have used a red diamond to
represent them uniformly in the figure. In fact, the
three values in Fig. 6a are Re(λ1) = −0.55992,
−0.55979, and −0.55976 (from smallest to largest).
Also, in Fig. 6b we compare the Re(λ1) underm and
c random matching (orange), m and c single-point
positive correlation (purple), m s.p−−→

+
dmax

s.p←−−
+

c

(red), m s.p−−→
−

dmax
s.p←−−
−

c (cyan), m s.p−−→
+

dmin
s.p←−−
+

c

(magenta), and m s.p−−→
−

dmin
s.p←−−
−

c (yellow). We find

that the difference between the Re(λ2N−1) case, the
Re(λ1) under m ←→ c and m → d ← c, is not sig-
nificant. Furthermore, we find that the Re(λ1) are
globally maximal under m p.t.p−−−→

−
d

p.t.p←−−−
−

c.

5. Conclusions

In this study, we discuss the effect of parame-
ter configurations on the free vibration of a har-
monic oscillator network under the effect of vis-
cous damping. On the star network, our calcula-
tion gives the analytical expression satisfied by the
free vibration of the system under viscous damping
(15). We focused on the smallest and the largest
non-zero eigenvalues of the system, which represent
the fastest and the slowest decay of the exponen-
tial rate in (15). For the over-damped and critically
damped cases, our classification discussion traverses
all the cases where the above two eigenvalues are
taken for different parameter conditions. In con-
junction with quadratic eigenvalue theory, we have
successfully generalized the above analysis to com-
plex networks. Throughout our analysis, the selec-
tion of parameters in the system is arbitrary, thus
generalizing the work of Motter et al. [12] in grid
networks. By transforming the QEP problem into
a GEP problem, our theoretical analysis gives a gen-
eral method for capturing all eigenvalues of (5) on
complex networks. In connection with the relation-
ship between system eigenvalues and stability and
exponential rate decay, we studied the variation of
Re(λ1) and Re(λ2N−1) for all matching schemes (in-
cluding point-to-point and single-point matching)
between m, c, and d. A summary analysis of the
numerical simulation results gives us the following
results:

(i) we find that a single-point matching of m, c
with d produces the smallest Re(λ2N−1) (see
Fig. 3b);

(ii) for m p.t.p−−−→
+

d
p.t.p←−−−
+

c and m p.t.p−−−→
−

d
p.t.p←−−−
−

c,
we can relax the matching between three pa-
rameters (m → d ← c) to the matching be-
tween two parameters (m←→ c) (see Fig. 3a
and Fig. 6a);

(iii) comparing m
s.p−−→
+

dmin
s.p←−−
−

c with m
s.p−−→
+

dmin
s.p←−−
+

c, we find that the value of

Re(λ2N−1) is greatly reduced by the strong
viscous damping effect (see Fig. 2a);

(iv) we find thatm, c, and d point-to-point match-
ing produces the largest Re(λ1) (see Fig. 6b).

Vibration is a common form of motion in engi-
neering and technology [25–29]. The study of vi-
bration problems can be modeled as a second-order
system [30, 31]. In our study, we studied the ef-
fect of different configurations of parameters on the
vibration of the system, where all parameters are
taken arbitrarily. This means that we cannot de-
couple the system, as was the case in the study by
Motter et al. [12], which makes the study consider-
ably more challenging. This is why on complex net-
works we can only study Re(λ2N−1) and Re(λ1) by
numerical simulation. In fact, (6) has a wide range
of practical applications as an abstract second-order
system. These applications include but are not lim-
ited to the fields of spontaneous synchronization of
generators in power grids [12], protein structure dy-
namics [32], and vibration control [33, 34]. Next, we
will consider the impact of external drivers [35, 36].
How the parameter configuration affects the sys-
tem with damped forced vibrations is still an open
question. We also expect our research to generate
general interest in parameter-topology-dynamics.

Data are available on request from the authors.
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