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Partial discharge is one such phenomenon that can be monitored to assess the quality of insulation.
However, this phenomenon is quite intricate and requires an understanding of various concurrent pro-
cesses. This paper aims to analyze the behavior of the cable for the transport of direct current at high
voltage. At the fundamental level, partial discharge is a localized breakdown that occurs without com-
plete bridging of the insulation. The essential electrical properties that in�uence the optimal operation
of high-voltage direct current cables are studied and analyzed numerically. The distribution of potential
and electric �eld are determined by solving the Poisson equation using the �nite di�erence method.
The results of the numerical simulation for the di�erent parts of the cable in the presence of partial
discharges are presented and interpreted. Some aspects of this e�ect require further investigations in
order to validate a realistic mathematical model of the physical phenomena as an essential step towards
the accurate numerical simulation of the cable life approximation process.

topics: power transmission cable, high-voltage direct current (HVDC), partial discharge, Maxwell's
equations

1. Introduction

Currently, a large number of high-voltage lines in
the world are powered by three-phase alternating
current. But, in the particular context of some sub-
marine crossings or buried lines, transport is done
using high-voltage direct current (HVDC) for rea-
sons of economy, size, reliability, and availability.
Its main purpose is to allow the transport of elec-
tricity over long distances, which generates fewer
losses. The power-carrying capacity of an alternat-
ing current (AC) line is inversely proportional to
the transmission distance. The power-carrying ca-
pacity of direct current (DC) lines is not a�ected
by the transmission distance. HVDC is the optimal
solution for transporting electricity in buried or un-
derwater cables over distances greater than approxi-
mately 100 km. In fact, the reactive power produced
by the capacitive nature of the cable powered by al-
ternating current ends up preventing the transport
of the sought active power. In direct current, no
reactive power is produced in the cable [1�5].

The cost of a transmission line includes the cap-
ital investment required for the actual infrastruc-
ture and the costs incurred for operational needs.
The direct current line can carry as much power
with two conductors (having positive/negative po-
larities with respect to ground) as an alternating
current line with three conductors of the same size.
Therefore, for a given power level, a DC line re-
quires a small line, simpler and cheaper pylons, and
reduced conductor and insulation costs. DC lines do
not require reactive power compensation. However,
terminal equipment costs are increased due to the
presence of converters and �lters.
The use of HVDC allows for the reduction of

power transmission losses to approximately two-
thirds of those of the high-voltage alternating cur-
rent (HVAC) system. The absence of skin e�ect in
DC is also bene�cial in marginally reducing power
losses, and the dielectric losses in the case of power
cables are also much lower for DC transmission. The
e�ects of corona discharge tend to be less signi�cant
for direct current conductors than for alternating
current conductors.
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Fig. 1. Design of a polymer-insulated cable.

Due to its rapid controllability, DC transmission
has full control over the transmitted power and the
ability to improve transient and dynamic stability
in associated AC networks. It can also limit fault
currents in direct current lines. Additionally, direct
current transmission overcomes some of the prob-
lems associated with alternating current transmis-
sion.
Therefore, planning DC transmission for vari-

ous technological applications requires a detailed
study to assess the bene�ts. Currently, the num-
ber of direct current lines in an electrical network is
very small compared to the number of alternating
current lines. This indicates that DC transmission
is only justi�ed for speci�c applications, although
technological advancements and the introduction of
multi-terminal DC systems are expected to increase
DC lines.
Cables used in direct current connections are sub-

ject to constant electrical stress and therefore must
be designed di�erently from those used in alternat-
ing current. Due to the constant electrical stress
subjected to the insulation of the cables, the pres-
ence of partial discharges in the insulation modi�es
the distribution of the internal electric �eld, induc-
ing signi�cant local reinforcements of the electric
�eld, which will lead to a strong distortion of the
theoretical �eld, which can lead to an acceleration
of the aging of the cable [6�11]. The aging of the in-
sulation generally leads to an increase in structural
defects, likely to trap charges and overheat the dif-
ferent layers of the cable. The simultaneous pres-
ence of electrical and thermal gradients applied to
the cable insulation leads to a redistribution of the
electric �eld in the insulation, moving from capac-
itive behavior to resistive behavior. For a resistive
distribution of the electric �eld, the resistivity of the
insulator strongly depends on both the electric �eld
and the temperature. The presence of space charges
in the insulation of high-voltage cables poses a real
reliability problem. Until now, no method has al-
lowed for a direct measurement and localization of
these charges in a cable with thick insulation [12].
Currently, the most widely used material for

HVDC cable insulation is low-density polyethylene.
To reduce its conductivity, additives, such as high-
density polyethylene, metal oxide nanoparticles,
carbon allotropes, or various aromatic molecules,

are added to the plastic. These additives trap elec-
trical charges and reduce their mobility, which helps
reduce electrical conductivity.

2. Problem description

Figure 1 shows the geometry of our problem. The
simulation model is deduced from the real case,
which is a coaxial wire�cylinder con�guration that
presents perfect symmetry of revolution; moreover
the electrodes are considered to have in�nite length
along the wire.
Section of a 90 kV extruded electric cable model is

characterized by the copper conductor in the center
surrounded by polymer insulation, i.e., cross-linked
polyethylene, followed by a semiconductor layer, a
few copper conductors, an aluminum sheath, and
�nally a plastic protection.

2.1. Mathematical model

The basic equations governing the phenomenon of
partial discharges in electrical energy transmission
cables are reduced to Maxwell's equations of electro-
statics to which are added the equations of the con-
sidered environment. These equations are [13�18]

∇ ·E = ± ρ

ε0εr
, (1)

∇ · J = 0, (2)

J = ±ρµE, (3)

E = −∇U, (4)

∇2U = ∓ ρ

ε0εr
, (5)

where

� E is the electric �eld vector [V/m]. The sign
in (1) is positive if the active electrode is sub-
jected to a voltage of positive polarity, and
negative otherwise;

� U is the electric potential [V];

� ρ is the space charge density [C/m3] and is
always positive. The sign in (5) is negative if
the active electrode is subjected to a voltage
of positive polarity, and positive otherwise;

� J is the current density vector [A/m2]. The
sign in (3) is positive if the applied voltage is
of positive polarity, and negative otherwise;

� µ is the mobility of positive or negative ions
depending on the polarity of the active elec-
trode [m2/(V s)];

� ε0 is the absolute permittivity of vacuum
(ε0 = 8.85× 10−12 F/m);

� εr is the relative permittivity of the material
considered.

117



F. Hassaine et al.

Fig. 2. Partial discharge simulation model.

Equation (5) is the Poisson equation; it is ob-
tained by replacing the �eld expression given
by (2) in (1). Equation (2) is the current conti-
nuity equation. Equation (3) is the current density
equation.
In reality, it is extremely di�cult to �nd an exact

solution to these equations due to their non-linear
nature, and thus, simplifying approaches based on
hypothetical models are introduced to �nd solu-
tions to real problems. Several simplifying hypothe-
ses were introduced to solve the problem. Therefore,
a numerical solution is provided as a tool for solving
this set of equations [19�23].

2.2. Modeling a dielectric insulation with the
cavity

The breakdown mechanisms in polymer (PE) can
be divided into electric, thermal, electromechanical,
and partial discharge mechanisms [24].
Partial discharges occurring in gas-�lled voids

degrade the insulation and, under certain circum-
stances, can initiate electrical trees. The electrical
trees can continue propagating through the insula-
tion by continued discharges and �nally give rise to
breakdown.
Causes of partial discharges are local increases

in �eld strength (for example, at conductive points
or through �eld displacement) or local reductions
in electric strength (e.g., due to gas-�lled cavities).
The inception �eld strength for streamer discharges
in cavities is given by [25, 26]

EC = 25.2Up

(
1 +

8.6√
pd

)
. (6)

The limiting voltage for the appearance of dis-
charges on the dielectric is given by

VC = eEC

[
1 +

1

εr

(
d

e
−1

)]
. (7)

The electrical modeling of a partial discharge in
a cavity within an insulator can be translated using
an equivalent capacity diagram. The cavity can be
modeled by the capacitance, the part of the dielec-
tric surrounding the cavity by the capacitance Cb in
series with Cg, and the �awless part of the dielectric

will be represented by the capacitance Ca, parallel
to the other branch. Such a scheme is presented in
Fig. 2, where

� Cg � capacitance of the cavity, which is par-
allel to the Ca spark gap. When the cavity
breakdown voltage is reached, the spark gap
shorts out;

� Cb � capacitance of the dielectric without
partial discharge in series with the cavity;

� Ca � equivalent capacitance of the insulation
in parallel with Cg and Cb. This capacity cor-
responds to the sound part of the insulation;

� U � voltage applied to the terminals of the
dielectric;

� Vg � the voltage across the cavity;

� e � cavity thickness;

� d � dielectric thickness;

and where

Cg = ε0
S

e
, (8)

Cb = ε0εr
S

d− e
, (9)

Vg = U
Cb

Cb + Cg
. (10)

When air gap capacitance Cg voltage at both ends
reaches discharge voltage V0, a partial spark dis-
charge occurs in the air gap Vg. When Vg drops
to extinction, the spark is extinguished, a partial
discharge is completed, and a high-frequency par-
tial discharge pulse current is generated in the cir-
cuit [27].
This void will become the source of a partial dis-

charge if the applied voltage is increased, as the �eld
gradients in the void are strongly enhanced by the
di�erence in permittivities as well as by the shape
of the cavity [28].

2.3. Boundary conditions

As a boundary condition, Townsend assumed
that the electric �eld on the active electrode remains
constant and is everywhere equal to the threshold
value. Kaptzov postulated that the �eld distribu-
tion on the surface of the crowned conductor re-
mains constant and is equal to its threshold value
even if the applied voltage increases.
Near the surface of the high-voltage conductor,

the applied voltage is U = 90 kV and

E = EPeek = 32.3× 105 δ + 0.846× 105
√
δ/R1,

(11)

ρ0 =
Q0

V1
=

Q0

πR2
1l
, (12)

where Q0 is the total charge of the cable in the
absence of charges in the dielectrics and semicon-
ductors; R1 is the radius of copper conductive core;
l is the cable length = 50 m; δ is the relative density
of air.
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Fig. 3. Flowchart for solving the corona discharge problem in a wire-cylinder con�guration.

To avoid the e�ect of the ends, we assume that
the length of the cable is in�nite (l ≫ R1).

2.4. Method for solving the Poisson equation

To go from a continuous exact problem governed
by a partial di�erential equation to a discrete ap-
proximate problem, we used the �nite di�erence
method. The method consists in replacing partial
derivatives by divided di�erences or combinations of
point values of a characteristic function. Solving an
equation by the �nite di�erence method amounts to
replacing the search for a continuous solution with
the solution at a certain number of points [29, 30].
Any distribution of points in space can be used.
It consists in decomposing the study area into a
uniform rectangular grid, in which each node is
equidistant from its neighbor along the x and y
axes, and at each node, the di�erential system is
satis�ed.
The �nite di�erence method uses a mesh with

constant steps (regardless of the type of coordinates
used) and o�ers two types of solutions. The �rst is
explicit, i.e., the unknowns at the nodes of the mesh
are given explicitly by the equations. The second

type is implicit, i.e., the unknowns constitute a lin-
ear system that must be inverted and is based on
a �hollow� matrix form. Therefore, we can approxi-
mate the operators of a di�erential equation by �-
nite di�erences calculated at the nodes of a mesh.
Also, we can approximate the unknown function of
a di�erential equation.
In the �rst step of the resolution, we replace the

derivatives of order 2 in (5) with the following ex-
pressions

∂2U

∂x2
∼=

U(i−1, j)− 2U(i, j) + U(i+1, j)

(∆x)2
, (13)

∂2U

∂y2
∼=

U(i, j−1)− 2U(i, j) + U(i, j+1)

(∆y)2
. (14)

So, we �nd the unknown function with two variables

∇2U =
∂2U

∂x2
+

∂2U

∂y2
= ∓ ρ

ε0εr
⇒ U(i, j) =

U(i−1, j)+U(i+1, j)+U(i, j−1)+U(i, j+1)+h2

4
.

(15)

The partial di�erential equation is then replaced by
a system of algebraic equations for the nodal values.
We end up with a linear system in matrix form

AU = B, (16)
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TABLE I
Characteristics of the cable used in the simulation.

Element Type Thickness [mm]
Relative

permittivity

Resistivity [Ω m]

at 20◦C

conductor Al 7 8.00 2.65× 10−8

inner semiconductor layer Si 1 11.68 2.2× 103

insulation XLPE 10 2.50 3.2× 1011

outer semiconductor layer GaAs 1 12,40 5× 10−6

metallic shield Cu 2 0.99 1.68× 10−8

jacket: outer sheath PVC 3.5 5.00 1011

Fig. 4. Field lines for 1
4
of the calculation domain.

Fig. 5. Equipotential contours for 1
4
of the calcu-

lation domain.

where A is the sti�ness matrix; U is the matrix of
potentials at the nodes; B is the second member of
the system.
After solving linear system (16), we �nd the �rst

solution which represents the distribution of the po-
tential in the calculation domain.
The �owchart for solving the considered problem

is given in Fig. 3. The di�erent steps followed for
the numerical resolution are detailed in Sect. 3.

3. Results and discussions

In this investigation, we reported the results
obtained by applying the proposed �owchart to
the cylindrical con�guration. The accuracy of our
method depends on the accuracy of the model pa-
rameters. However, there are other parameters that
play an important role in the accuracy and speed of
calculations.

Fig. 6. Rectangular mesh of the cable geometric
model.

The HVDC cable studied has the characteristics
given in Table I. The active electrode is subjected
to a direct voltage of 110 kV. The cable is 25 m
long. The material chosen as insulation is cross-
linked polyethylene (XLPE). The metal screen is
grounded.

3.1. Discretization domain

The use of a regular mesh makes it possible to
have, at every point, the same form for the equa-
tions. The simplest of the regular meshes is the
square mesh (see Figs. 4�6).
The calculation is extended to a set of the calcu-

lation domain, which is subdivided into small ele-
ments by rectangular mesh, where each rectangle is
identi�ed by its four vertices (nodes).
The mesh presented in Fig. 6 is the mesh

that we chose to discredit our calculation do-
main. It is generated from equipotential and �eld
lines.
To achieve a compromise between precision and

the time necessary to draw Fig. 6, the increment
is chosen to be constant to obtain a uniform mesh.
The node (i, j) is given by the intersection of the
i-th line with the j-th contour.
A �eld �gure is, by de�nition, a curve tangent

at each point to the �eld vector de�ned at that
point. We also note that the �eld lines do not inter-
sect. They carry positive charges towards negative
charges (or to in�nity).
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3.2. Electric potential

The potential function de�nes a �eld of scalars,
which describes the electrical properties of space.
The set of points in space that are at the same
potential constitutes an equipotential surface. The
distribution of the electric potential between two
electrodes is shown in Figs. 7�8.

3.3. Electric �eld

Having estimated all the potential values at the
nodes of the mesh, the estimation of the elec-
tric �eld values is carried out by the interpola-
tion/extrapolation method.
Given a distribution of charges is considered ex-

ternal, it is therefore always possible to de�ne at
each point r in space a vector quantity E(r) called
the electric �eld. The distribution of the electric
�eld in our system is shown in Figs. 9�10.

Fig. 7. Variation of electric potential.

Fig. 8. Distribution of electric potential between
two electrodes.

Fig. 9. Electric �eld distribution between two elec-
trodes.

Fig. 10. Variation of the electric �eld: (a) in the
absence of a cavity, (b) in the presence of a cavity.

Knowing an electric �eld E means knowing the
electric �eld vector at each point in space, in di-
rection and intensity. In some simple cases, it is
given by an algebraic relation. In more complex
cases, it can be calculated at su�ciently �ne mesh
points.
With current computer resources, it is very easy

to write a program such that, after entering the
loads and their positions, the computer provides at
each requested point M a small arrow whose direc-
tion and length provide information on the electric
�eld at this point.
From the �eld variations between the two elec-

trodes, we can notice a �attening in the direction
of the collector plane because of the high ratio be-
tween the electric �eld on the wire and that of the
ground plane.
Data from the potential and electric �eld dis-

tributions will be used to re-estimate the space
charge density at the nodes. This procedure con-
tinues until the error on the potential becomes less
than a predetermined value. The error is de�ned
by

Err =

∣∣U (k) − U (k+1)
∣∣

Uav
, (17)

Uav =

(
U (k) + U (k+1)

)
2

, (18)

where k is the iteration number.
Once the error has been estimated, it is possible

to control the quality of the solution by calculating
the optimal size of each element of the mesh. This
amounts to constructing an optimal mesh, either in
the sense of imposed precision or in the sense of the
maximum size of the problem studied. This involves
developing a mesh adaptation strategy.
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3.4. Space charge density

The electric charge is the source of the elec-
tric �eld, so the electric �eld at any point in
space can be mathematically related to the charges
present.
The bene�t of space charge density is shown in

Figs. 11�12.
This step is necessary for the resolution of the

Poisson equation by the �nite di�erence method,
the execution procedure of which is given in the
following steps. However, we introduced a third
boundary condition of the potential corresponding
to the critical �eld of the ionization minimum.

3.5. Current density

Figure 13 gives the variations of the current den-
sity as a function of the applied voltage and the
interelectrode distance inside the system.

Fig. 11. Variation of the space charge density be-
tween two electrodes without dielectric.

Fig. 12. Variation of the space charge density in
the cable: (a) in the absence of a cavity, (b) in the
presence of a cavity.

Fig. 13. Variation of electric current density in the
interelectrode space: (a) in the absence of a cavity,
(b) in the presence of a cavity.

This variation is in good agreement with
Townsend's theoretical current�voltage law. We see
that if the distance increases, the current density
decreases.

4. Conclusions

In this work, a numerical technique for simulat-
ing the electric proprieties of HVDC cable has been
presented. The ionized �eld of a unipolar DC cable
is modeled as the ionized �eld of a single cylindri-
cal conductor with the presence of partial discharge
in the dielectric. The discharge is described by the
equation for the density of positive ions of a sin-
gle species and Poisson's equation for the electric
�eld.
The �nite di�erence method used for the resolu-

tion of the problem presents a good approximation
in the determination of the electrical characteris-
tics of the HVDC power transmission cable coupled
to the partial discharges. Very high-voltage cables
are increasingly used to transport electricity over
long distances. However, the more the voltage in-
creases, the less e�cient the insulation of the cables
becomes.
This electrical study is very useful for analyz-

ing the condition of the cable in service. If the
potential di�erence across the cavity is less than
the breakdown voltage, the cable remains in ser-
vice. Otherwise, it is recommended to change the
cable to ensure the proper functioning of the elec-
trical installations. The technique used in practice
is to gradually increase the voltage across the sam-
ple up to the limit voltage, which corresponds in
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the cavity to the breakdown �eld of the gas. As
a result of the dissipation of energy in the cavity,
there is neutralization of charge on the walls of the
latter.
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