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The presented paper focuses on investigating the in�uence of the control points position on the accuracy
of the heat transfer coe�cient selection. In the presented study, the main focus is on determining
the heat transfer coe�cient in a layer separating two bodies. Such a situation occurs, for example,
in solidi�cation problems where a cast is held inside a mold and heat transfer takes place from the
cast to the mold. The authors use swarm intelligence algorithms to the task of determining the heat
transfer coe�cient. In the presented study, two di�erent swarm intelligence algorithms are employed,
i.e., arti�cial bee colony and ant colony optimization. The numerical model is based on the authors'
own implementation of the transient heat transfer solver that uses the �nite element method to solve
the appropriate di�erential equation. The study presents the results of the selection of the heat transfer
coe�cient in the computational domain of one quarter of a square casting inside a square mold. Both
swarm intelligence algorithms were run for sets of 10, 15, and 20 individuals with 2 and 6 iterations.
The study also takes into account possible inaccuracies in reference temperatures in the form of 1%,
2%, and 5% noise. For both algorithms, three di�erent sets of control points were used: one with points
directly on the contact boundaries and two sets with increasing distance from the boundaries. The
results obtained in this work show that the location of control points has an impact on the quality of
the results obtained in the coe�cient selection.
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1. Introduction

A common problem in engineering simulations is
the need to calibrate the model or select the co-
e�cients used in the simulation so that the results
match the experimental results as much as possible.
Traditionally, these types of problems were solved
using gradient optimization methods such as inverse
problems [1]. Even though solving inverse problems
has been mastered for many years, they are still
di�cult to solve. Example applications include de-
termining the vibration damping value in wind tur-
bines [2] or the heat conduction coe�cient in sound-
ing rockets [3].
Due to their di�culty, many techniques have been

developed to solve inverse problems. In addition to
the previously mentioned gradient methods, there
are methods based on statistical techniques such as
linear regression or Bayesian regression [4].
Currently, solutions to inverse problems are also

being sought using arti�cial intelligence methods,
such as neural networks or machine learning. For
example, Ameya et al. [5] used physics-informed

neural networks to solve the inverse problem of su-
personic compressible �ow that arises during the de-
sign of space vehicles. Additionally, there are many
examples of the use of neural networks in computed
tomography image reconstruction [6].

A separate issue is the use of inverse swarm intel-
ligence algorithms in problems such as the arti�cial
bee colony algorithm or the ant colony optimiza-
tion algorithm. The principle of their operation is
based on de�ning a population, i.e., a set of poten-
tial solutions to the problem, an objective function,
update rules specifying how individuals in the pop-
ulation modify their position in the solution space,
and communication rules between individuals when
exchanging information. Early work on describing
this class of algorithms were made by Karaboga et
al., who presented an arti�cial bee colony (ABC)
algorithm in [7]. Currently, there are many works
that use swarm algorithms, for example, [8] or [9].

In the presented work, we would like to deepen
the knowledge on the factors in�uencing the results
obtained in the reconstruction of model coe�cients
from results, in particular by examining the impact
of the arrangement of temperature measurement
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points on the subsequent results. A speci�c example
was the determination of the heat conduction coef-
�cient of the layer separating two areas with dif-
ferent material properties in the simulation of heat
conduction in a cooling casting.

2. Heat transfer model

The casting cooling model is based on the heat
transfer equation

ρc
∂T

∂t
+∇ · (−λ∇T ) = 0, (1)

where ρ is the density, c is the speci�c heat, T is the
temperature, and t is the time, with the assumed
initial temperature �eld T0 at initial time t = 0.
The following boundary conditions are used in the

model: (i) the third type boundary condition, as-
suming heat exchange with the environment, which
is at temperature Tenv with the heat exchange coef-
�cient α; (ii) the fourth type of boundary condition,
describing the heat �ow between two areas Ω1 and
Ω2 with a layer separating these areas (no perfect
contact),

κ =
λp

δ
, (2)

where λp is the heat transfer coe�cient of the sep-
arating layer, and δ is the thickness of this layer.
Equation (1) was solved using �nite element

method (FEM).

3. Swarm intelligence algorithms

3.1. Arti�cial bee colony

The operation of the arti�cial bee colony (ABC)
algorithm is based on mathematical modeling of the
behavior of bee colonies when they search for food.
The execution of the algorithm begins with ini-

tialization, i.e., creating an initial population P ,
consisting of a speci�c number of SN individuals.
Each individual is assigned a potential solution to
the optimization problem xi, where i =, . . . , SN ,
also called a nectar source.
Subsequent phases take place iteratively. During

the search phase, scout bees randomly search for
new nectar sources in the search space. Worker bees
exploit nectar sources in accordance with a given
quality criterion (objective function).
During the selection phase, worker bees inform

observer bees about the best sources based on the
quality of the nectar sources. Observer bees select
the best source among them and recruit worker bees
to further exploit it. The probability of assigning a
bee to a food source, pi, is based on a value of fiti,
which is the value of the objective function.
In the next step, the coordinates of the food

sources are updated.

Fig. 1. Computational area with position of con-
trol points visible.

4. Ant colony optimization

The ant colony optimization (ACO) algorithm is
a metaheuristic inspired by the foraging behavior
of real ants, mainly used to solve the problem of
�nding the best path in a graph. In nature, ants
leave a pheromone trail on their way to food. This
scent fades over time if the road is not frequently
traveled by ants, which tend to choose a shorter
(more optimal) route.
The following rules are used to implement the al-

gorithm. In the �rst phase, an ant k from the set of
ants (k = 1, . . . ,M), whereM is the number of ants,
chooses a path randomly, with the probability af-
fected by values of the heuristic function η and con-
stants that determine the in�uence of pheromones
α, and heuristic values on the ant's choice of the ap-
propriate path β. For the selected path, the value of
the objective function JE is determined. If the cho-
sen path turned out to be better than the previous
one, it is remembered. A single ant k leaves along
the way an amount of pheromone equal to ∆τkij .
The above steps are performed until a speci�c

stopping criterion is met, namely the maximum
number of iterations is reached or a solution of sat-
isfactory quality is found.

5. Results

The task of the calculations was to determine the
value of the thermal conductivity coe�cient κ of
the separating layer of an aluminum alloy casting
from a steel mold. The view of the FEM mesh is
presented in Fig. 1, where the green area is the
area of cast. The sizes of the computational area
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Fig. 2. Absolute error between the true κ value
(1000 W/(m2K)) and the one recovered by the ABC
algorithm under di�erent conditions.

              (a)                                                   (b)

              (c)                                                    (d)

                   

Fig. 3. Absolute error between the true κ value
(1000 W/(m2K)) and the one recovered by the ACO
algorithm under di�erent conditions.

are 0.04 m for mold and 0.02 m for cast. It is as-
sumed that left and bottom sides are the axes of
symmetry, while the top and right sides have the
third type boundary condition imposed on them
(with α = 100 W/(m2 K) and Tenv = 300 K). The
material properties are as follows: density of cast-
ing 2984 kg/m3, of mold 7500 kg/m3, speci�c heat
of casting 1077 J/(kg K), of mold 620 J/(kg K),
heat transfer coe�cient of casting 262 W/(m K),
of mold 40 W/(kg K). The initial temperatures

were T0 = 960 K for cast and T0 = 590 K for
mold. It was assumed that the cast and mold ar-
eas were separated with the boundary condition
of the fourth type with a κ value in the range of
900�1500 W/(m2 K). Reference temperatures were
obtained with κ = 1000 W/(m2K).
The calculations were performed for three di�er-

ent sets of control points: the �rst set with control
points located in �nite element (FE) mesh nodes
2, 3 (cast) and 4, 5 (mold) (the location of nodes
2, 3 is the same as nodes 4, 5), the second set with
nodes 15, 42 (cast) and 70, 115 (mold); and the third
set with nodes 11, 46 (cast) and 112, 73 (mold). The
locations of all control points are presented in Fig. 1.
Both algorithms used population sizes equal to

10, 20, 30 bees/ants and number of iterations equal
to 2 or 6 iterations. Additionally, in each case, noise
of 0%, 1%, 2%, and 5% of reference temperatures
was also considered.
As for the results (presented in Figs. 2 and 3), it

can be observed that ACO gives better results than
ABC algorithm and there is a reduction of error
with increasing number of iterations and population
size for both algorithms.
In terms of the location of the control points, we

observe that usually the �rst set gave a worse result
than the other two sets. The di�erence is not huge,
but noticeable. The average absolute error for the
�rst set was equal to 7.59 (ABC) or 4.42 (ACO),
while the other two sets had error values of 5.82
(ABC, second set), 4.02 (ACO, second set) and 5.68
(ABC, third set), 3.59 (ACO, third set).

6. Conclusions

The paper has shown that the precision of the re-
covered thermal conductivity coe�cient of the sepa-
rating layer is at least satisfactory, regardless of the
used parameters values of the chosen algorithms.
However, with carefully chosen points it is possible
to obtain slightly better results.
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