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Advances in natural language processing highlight the importance of text data preparation with ma-
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1. Introduction

Natural language processing (NLP) is part of arti-
�cial intelligence that integrates computational lin-
guistics and machine learning. It helps machines
interpret, analyze, and generate human language
e�ectively. NLP has a critical role in narrowing the
gap between human communication and computer
understanding. This allows machines to process lan-
guage in meaningful and practical ways, enabling
various applications such as translation, text anal-
ysis, and conversational arti�cial intelligence (AI)
systems [1].
NLP has an important role in modern technology

as it transforms human-computer interaction while
revolutionizing user interfaces. Its applications are
diverse and include virtual assistants like Siri and
Alexa that respond to voice commands, social me-
dia sentiment analysis, automated customer service,
and real-time language translation. These advance-
ments greatly improve the way we interact with ma-
chines in daily life [2].

1.1. Challenges in NLP tasks

Preprocessing in NLP presents challenges, espe-
cially when dealing with diverse and complex text
data. It requires converting raw text into a struc-
tured format and addressing irregularities such as
idioms, slang, and syntax. The process of extracting

meaningful features for machine learning models
adds further complexity. This research aims to im-
prove term frequency�inverse document frequency
(TF-IDF) vectorization, a key feature extraction
method, to capture word signi�cance more e�ec-
tively. The re�nement of TF-IDF improves feature
selection and representation, which supports the ac-
curate interpretation and prediction of human stress
levels from text [3].

1.2. Motivation

This study aims to improve TF-IDF vectoriza-
tion to advance NLP methodologies. E�cient and
accurate feature extraction is essential in text anal-
ysis, but traditional TF-IDF faces challenges with
high dimensionality and irrelevant features. The re-
search optimizes TF-IDF by adjusting hyperparam-
eters and selecting features carefully to extract the
most relevant information and reduce dimensional-
ity. These improvements increase e�ciency and pre-
cision, establishing a new standard for NLP tasks.
The approach demonstrates the importance of tai-
lored adjustments in NLP techniques and shows
how careful re�nements can signi�cantly improve
model performance.

1.3. Objective

This study aims to re�ne and improve the
TF-IDF vectorization process, which serves as a
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key component in NLP text analysis. It optimizes
TF-IDF parameters and feature selection to address
high dimensionality and enhance the relevance and
e�ciency of extracted features. This optimization
creates a more accurate and computationally e�-
cient text representation, allowing NLP models to
achieve greater precision. The study provides a ro-
bust and scalable solution that applies to various
NLP tasks, establishing a new standard in the �eld.

2. Background and related work

This section provides an overview of foundational
and advanced techniques used in NLP, highlighting
the strengths and limitations of existing methods, as
well as recent developments and comparative stud-
ies in the �eld.

2.1. Traditional NLP techniques

In this subsection, we explore the fundamental
techniques traditionally used in NLP, which serve
as the basis for more advanced text processing
methods.

2.1.1. Basic tokenization

Tokenization, as part of NLP, is a process by
which continuous text streams are broken down into
discrete units called tokens. Whitespace and punc-
tuation marks are used in traditional tokenization
methods. Chinese or Japanese, which do not use
spaces to delimit words, often struggle with this
method, even though it is e�ective for many lan-
guages. The traditional tokenization methods may
also fail to segment compound words or handle cases
where punctuation makes up part of the word, such
as �U.S.A.� or e-mail addresses. In addition to its
importance for structuring raw text, tokenization
also has limitations when dealing with more com-
plex linguistic structures [4].

2.1.2. Stop word removal

Stop words are commonly used words in a lan-
guage that are often considered to have little seman-
tic value in text analysis, such as �and,� �the,� and
�is.� Traditional NLP pipelines often include a step
to remove these stop words to reduce the dimen-
sionality of the data and improve computational ef-
�ciency. However, this approach has limitations, as
it assumes that stop words do not contribute to the
meaning of a sentence. In some contexts, stop words
can play a crucial role in the semantic structure,
and their removal might lead to the loss of impor-
tant information. The decision to remove stop words

should be carefully considered based on the speci�c
NLP task at hand [4].

2.1.3. Stemming and lemmatization

Stemming and lemmatization are techniques used
to reduce words to their base or root form. Stem-
ming typically involves removing su�xes from
words to derive their root forms, which may not al-
ways be linguistically accurate (e.g., �running� be-
comes �run�). Lemmatization, on the other hand,
involves reducing words to their canonical form
based on a dictionary lookup, ensuring that the
word's meaning is preserved (e.g., �better� becomes
�good�). In comparison with stemming, lemmatiza-
tion provides a higher level of precision, but it re-
quires more resources. For tasks such as searching
and retrieving information [4], these techniques are
essential for reducing text complexity.

2.2. Advanced NLP techniques

This subsection elaborated on advanced NLP
techniques that have emerged in recent years, of-
fering enhanced capabilities for text understanding
and analysis.

2.2.1. Contextual embeddings

Contextual embeddings represent words in a way
that captures both their semantic meaning and
the context in which they appear. Unlike tradi-
tional word embeddings, which provide a single
vector for each word regardless of context, contex-
tual embeddings, such as those generated by mod-
els like BERT (bidirectional encoder representations
from transformers), provide dynamic representa-
tions that change depending on the surrounding
words. This allows for a more nuanced understand-
ing of language, enabling models to disambiguate
words with multiple meanings (e.g., �bank� in the
context of �nance vs a riverbank). The development
of contextual embeddings has been a signi�cant ad-
vancement in NLP, leading to state-of-the-art per-
formance in a wide range of tasks [4].

2.2.2. Semantic role labeling

Semantic role labeling (SRL) is an advanced NLP
technique that involves assigning labels to words or
phrases in a sentence that indicate their semantic
role in the context of the sentence. For example, in
the sentence �John gave Mary a book,� SRL would
identify �John� as the giver, �Mary� as the recipi-
ent, and �a book� as the object being given. SRL
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provides a deeper understanding of the sentence
structure by identifying the relationships between
the di�erent entities within the sentence. This tech-
nique is particularly useful in tasks that require an
understanding of the underlying meaning of sen-
tences, such as machine translation, information ex-
traction, and question answering [4].

2.3. Limitations of existing methods

Despite the signi�cant advancements in NLP
techniques, several limitations remain. Traditional
methods such as tokenization, stop word removal,
and stemming are rule-based and often fail to
capture the nuances of language. For instance,
tokenization may not correctly handle idiomatic
expressions or phrases where the meaning is not
compositional. Similarly, stop word removal might
strip away contextually signi�cant words, leading
to a loss of information. Stemming and lemmatiza-
tion, while useful for reducing vocabulary size, can
sometimes oversimplify words, leading to ambiguity
in the processed text.
Advanced techniques like contextual embeddings

and semantic role labeling address some of these
issues, but introduce their own set of challenges.
Contextual embeddings require substantial compu-
tational resources and large amounts of training
data, which may not be feasible for all applications.
Moreover, while SRL provides a deeper understand-
ing of sentence structure, it is still an area of active
research, and models often struggle with complex or
ambiguous sentences. Furthermore, both contextual
embeddings and SRL are largely dependent on the
quality of the training data, and their e�ectiveness
can diminish when applied to domains or languages
that were not well represented in the training cor-
pus [4].

2.4. Related work on text preprocessing

In recent years, there has been substantial re-
search focused on evaluating and comparing various
text preprocessing methods in NLP. These studies
typically aim to understand the impact of di�erent
preprocessing techniques on downstream NLP tasks
such as text classi�cation, machine translation, and
sentiment analysis. K. Al Sharou et al. [5] (2021)
investigate the role of noise in natural language pro-
cessing and its impact on text preprocessing. Their
work highlights the challenges posed by noisy data,
such as misspellings, slang, and informal language,
which are common in user-generated content. The
study emphasizes the importance of robust prepro-
cessing techniques to mitigate the e�ects of noise
on downstream NLP tasks. However, the study is
primarily focused on noise, which limits its scope in
addressing other preprocessing challenges like to-
kenization or stop word removal [5]. G. Angiani et

al. [6] (2016) conduct a comparative analysis of var-
ious preprocessing techniques for sentiment anal-
ysis on Twitter data. The study evaluates meth-
ods such as tokenization, stop word removal, and
stemming, focusing on their impact on the accu-
racy of sentiment classi�cation. The �ndings sug-
gest that di�erent preprocessing strategies can sig-
ni�cantly a�ect model performance, particularly in
short-text environments like Twitter. However, the
study's focus on short-text data limits its generaliz-
ability to longer or more complex text forms, which
may require di�erent preprocessing approaches [6].
M.A. Alonso and C. Gómez-Rodríguez [7] (2021)
explore the use of parsing techniques for named en-
tity recognition (NER) in text preprocessing. Their
study demonstrates that parsing can enhance the
accuracy of NER by providing a more structured
understanding of sentence syntax. However, the in-
creased computational complexity associated with
parsing can be a limitation, particularly for large
datasets or real-time applications where process-
ing speed is critical. This research contributes to
the broader understanding of how advanced syntac-
tic analysis can improve traditional NLP tasks [7].
M. Arief and M.B.M. Deris [8] (2021) examine the
impact of text preprocessing on sentiment clas-
si�cation in product reviews. Their study evalu-
ates various preprocessing techniques, such as to-
kenization and stop word removal, to determine
their e�ect on the accuracy of sentiment analysis
models. The research highlights that appropriate
preprocessing can signi�cantly enhance model per-
formance, especially in domain-speci�c contexts like
e-commerce. However, the study's �ndings are pri-
marily relevant to product reviews and may not
extend to other domains without further adapta-
tion [8]. K. Amarasinghe and M. Manic [9] (2015)
focus on optimizing stop word selection for text
mining in the critical infrastructure domain. Their
research proposes methods for identifying and re-
moving stop words that do not contribute mean-
ingfully to text analysis, thereby improving the ef-
�ciency of NLP models. The study is particularly
relevant for applications where domain-speci�c vo-
cabulary is crucial, such as in critical infrastruc-
ture. However, its narrow focus on this domain
may limit the applicability of the proposed meth-
ods to other areas of NLP [9]. M.M. Rahman et
al. [10] (2023) conduct a comparative study on
tokenization schemes for cross-lingual transfer in
NLP. Their research evaluates di�erent tokenization
approaches, including segmentation-based models
and character-level models, to determine their ef-
fectiveness in low-resource languages. The study
�nds that while segmentation-based models per-
form well in tasks like part-of-speech (POS) tagging
and NER, character-level models excel in depen-
dency parsing tasks. However, the focus on low-
resource languages may limit the applicability of
the �ndings to more widely used languages [10].
M. Anandarajan and C. Hill [11] (2019) provide
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TABLE IA summary of related work on text preprocessing.

Authors Year Journal name Object Limitation

Al-Khafaji et al. 2017 Journal of Computer

Engineering

e�cient algorithms for preprocess-
ing and stemming of tweets in a
sentiment analysis system

limited to sentiment analysis on so-
cial media data

Al Sharou et al. 2021 RANLP Conference

Proceedings

understanding noise in NLP and
its impact on text preprocessing

primarily focuses on noise and does
not generalize to all preprocessing
methods

Angiani et al. 2016 KDWeb Workshop

Proceedings

comparison of preprocessing tech-
niques for sentiment analysis on
Twitter data

limited to Twitter and short-text
data

Alonso et al. 2021 Applied Sciences using parsing for NER in prepro-
cessing

parsing complexity increases com-
putational overhead

Arief et al. 2021 IEEE Conference

Proceedings

impact of text preprocessing on
sentiment classi�cation in product
reviews

evaluation limited to product re-
views

Amarasinghe et al. 2015 Resilience Week

Conference

optimal stop word selection for
text mining in critical infrastruc-
ture domain

speci�c to critical infrastructure
domain

Rahman et al. 2023 Papers with Code

(ArXiv)

comparative analysis of tokeniza-
tion schemes in cross-lingual trans-
fer for NLP

focused on low-resource languages;
may not generalize to all languages

Anandarajan et al. 2019 Practical Text

Analytics

review of text preprocessing tech-
niques in NLP

general review, lacking speci�c ex-
perimental data

Aliwy 2012 IJ Information

& Education Tech

tokenization as preprocessing for
Arabic tagging system

limited to Arabic language pro-
cessing

Albalawi et al. 2020 Frontiers in AI using topic modeling methods for
short-text data: A comparative
analysis

speci�c to short-text data, may not
generalize to long texts

a comprehensive review of text preprocessing tech-
niques in their book �Practical Text Analytics.� The
authors cover a wide range of preprocessing meth-
ods, including tokenization, stemming, and stop
word removal, and discuss their impact on various
NLP tasks. While the book o�ers valuable insights
into the practical applications of these techniques, it
primarily serves as a general overview and lacks the
speci�c experimental data needed to assess the ef-
fectiveness of each method in di�erent contexts [11].
A.H. Aliwy [12] (2012) investigates tokenization as a
preprocessing step for Arabic tagging systems. The
study highlights the unique challenges posed by the
Arabic language, such as its complex morphology
and lack of standardized orthography. By develop-
ing a tailored tokenization approach, the study im-
proves the accuracy of Arabic NLP tasks. However,
the methods proposed are highly speci�c to Arabic
and may not be easily adaptable to other languages
or scripts, limiting their broader applicability in
multilingual NLP environments [12]. R. Albalawi
et al. [13] (2020) explore the use of topic model-
ing methods for short-text data in a comparative
analysis. Their study assesses various preprocess-
ing techniques and their impact on the accuracy of
topic models when applied to short texts, such as
social media posts. The research �nds that while
some preprocessing steps, like stop word removal,
improve model performance, others may introduce
noise or lose important context. The focus on short-
text data, however, means the �ndings may not

generalize well to longer texts, which require dif-
ferent preprocessing strategies [13].
A summary of related work on text preprocessing

has been illustrated in Table I [5�14].

3. Methodology

Our methodology integrates a sophisticated text
preprocessing routine with an advanced approach
to feature extraction and selection, tailored for opti-
mal performance in text analysis models. The initial
stage of text preprocessing is meticulously crafted to
clean and normalize the textual data. This process,
encapsulated in the text process function, involves
several key steps.

3.1. Text preprocessing steps

Our text preprocessing method, encapsulated in
the text process function, is meticulously designed
to re�ne raw text data into a structured and ana-
lyzable format. This process involves a series of sys-
tematic steps to clean and normalize text, ensuring
it is primed for e�ective analysis in NLP models.
The steps to be distinguished are:

(i) Bracket replacement: The function begins by
replacing all types of brackets in the text
with spaces. This step simpli�es the textual
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structure, removing potential parsing com-
plexities associated with bracketed content.

(ii) URL removal: Next, URLs are identi�ed and
removed from the text. This is achieved by
splitting the text into words and �ltering out
any word that is recognized as a URL based
on its scheme. This step ensures that external
links do not interfere with textual analysis.

(iii) Escape character removal: The function then
removes escape characters, particularly tar-
geting the �@� signs followed by alphanumeric
characters. This is particularly relevant for
cleaning data sourced from social media or
similar platforms.

(iv) HTML tag stripping: In this step, any HTML
tags embedded in the text are removed. This
is crucial for texts sourced from the web, as it
strips the content down to its textual essence,
excluding any web formatting elements.

(v) Character and number �ltering: The function
�lters the text to include only alphabetic char-
acters and numbers, removing any special
characters or symbols. This step normalizes
the text, focusing the analysis on linguistically
relevant elements.

(vi) Case normalization: All text is converted to
lowercase, ensuring uniformity in the dataset.
This step is vital for consistent processing, as
it eliminates variations due to capitalization.

(vii) Word stripping and tokenization: The text is
then split into individual words, and each
word is stripped of leading and trailing spaces.
Following this, the text undergoes tokeniza-
tion, breaking it down into individual tokens
(words).

(viii) Stop word removal: The function �lters out
stop words from the tokens. Stop words, com-
monly used words in the language that o�er
little value in text analysis, are removed to
focus on more meaningful words.

(xi) Lemmatisation: Finally, each word is lemma-
tized, converting it to its base or dictionary
form. This step is crucial for grouping, along
with the di�erent in�ected forms of the word,
enabling the model to treat them as a single
item.

3.2. Advanced feature extraction: Customized
TF-IDF and `SelectKBest' methodology

In our approach, we optimize the text data pro-
cessing using a tailored TF-IDF Vectorizer, set-
ting speci�c parameters `min_df', `max_df', and
`ngram_range' to enhance term relevance and con-
text capture. Post-vectorization, the SelectKBest
method with chi-squared analysis e�ciently distils

the feature set to the top 1000, balancing dimen-
sionality reduction with informative value. These
features, transformed into a DataFrame, are then
combined with other preprocessed data, streamlin-
ing our feature set for improved model performance.
The speci�cs of this process are detailed in the sub-
sequent algorithm, i.e., Enhanced-TFIDF-Feature-
Extraction.
Algorithm 1: Enhanced-TFIDF-Feature-

Extraction (Cleaned_text, label, Parameters);

Inputs: Cleaned_text � preprocessed text data,
label � target labels, Parameters � MIN_DF,
MAX_DF, N_GRAMS;

Output: FeatureEnhancedDF � DataFrame with
enhanced features;

1. if Parameters not set then:

2. set MIN_DF to 3 (or as required)

3. set MAX_DF to 0.8

4. set N_GRAMS to (1, 2) for bi-grams

5. end if

6. initialize tf as TfidfVectorizer
with min_df=MIN_DF, max_df=MAX_DF,
ngram_range=N_GRAMS,
sublinear_tf=True

7. tf_df←tf.fit_transform(Cleaned_text)

8. initialize selector as SelectKBest
with chi2, k=1000 (or as required)

9. tf_df_selected←
selector.fit_transform(tf_df, label)

10. mask←get support mask from selector

11. selected_feature_names←extract
feature names using mask from
tf.get_feature_names_out()

12. convert tf_df_selected to
DataFrame with columns as
selected_feature_names

13. FeatureEnhancedDF←DataFrame of
tf_df_selected

14. return FeatureEnhancedDF

4. Experimental setup

All implementations were done in the Kaggle en-
vironment. In order to implement the algorithm,
the Python programming language, TensorFlow,
NumPy, Pandas and Matplotlib libraries were used.
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Fig. 1. Data distribution.

4.1. Dataset description

In our research, we analyze the �Human Stress
Prediction� dataset from Kaggle, designed to fa-
cilitate the prediction of human stress levels. No-
tably, this dataset exhibits a relatively balanced
class distribution � a crucial factor for ensuring
unbiased and e�ective stress level predictions. Such
a balance is particularly advantageous in machine
learning, as it enhances the model's ability to learn
and predict accurately across diverse stress cate-
gories. This equilibrium in the class distribution
underscores the dataset's suitability for evaluating
our enhanced feature extraction method, promising
a comprehensive assessment across all stress cate-
gories. The distribution of data labels is illustrated
in Fig. 1.

4.2. Hyper-parameters

The hyperparameters considered during the eval-
uation of models for K-fold method are: k_folds =
5, n_repeats = 3, and random_state = 42. The
k_folds hyperparameter is set to 5, which deter-
mines that the dataset is divided into 5 splits
for cross-validation. This means that the model is
trained and tested 5 times, each time using a di�er-
ent fold as the test set, while the remaining 4 folds
are used for training. The number of repeats is set
to 3, which means the cross-validation process is re-
peated three times, enhancing the robustness of the
model evaluation by averaging the results over mul-
tiple iterations. The random_state is set to 42 to
ensure the reproducibility of the results by control-
ling the randomness in the fold creation process. It
should be noted that the proposed method employs
the following hyperparameters:

� Minimum document frequency (MIN_DF) is
set to 3 in the T�dfVectorizer, meaning that a
term must appear in at least three documents

to be included in the feature set. This hyper-
parameter is crucial for �ltering out rare terms
that are unlikely to contribute meaningful in-
formation to the model.

� Maximum document frequency (MAX_DF),
con�gured at 0.8 in the T�dfVectorizer, en-
sures that terms appearing in more than 80%
of the documents are excluded. This helps to
prevent very common terms from dispropor-
tionately in�uence on the feature set.

� N-gram range (N_GRAMS) is set to (1, 2),
which directs the T�dfVectorizer to consider
both unigrams (single words) and bigrams
(two-word combinations). This setting en-
hances the model's ability to capture contex-
tual information within the text.

� Number of features selected (k). Within the
SelectKBest method, k is set to 1000. This
means that the top 1000 features are selected
based on their chi-squared statistic, e�ectively
reducing the dimensionality of the dataset by
retaining only the most relevant features.

4.3. Evaluation metrics

Evaluating the e�cacy of deep learning models
in classi�cation tasks demands a multifaceted ap-
proach. Confusion matrices stand as a cornerstone
tool, providing a detailed map of the model perfor-
mance on known test data. This map, populated
with True Positives (TPs), True Negatives (TNs),
False Positives (FPs), and False Negatives (FNs),
unveils speci�c error patterns, o�ering valuable in-
sights into strengths and weaknesses. To better un-
derstand the subject, various performance metrics
are employed, each o�ering a unique perspective
(see Sect. 4.3.1�4.3.7).

4.3.1. Accuracy

Accuracy is one of the most straightforward
and commonly used evaluation metrics in machine
learning and classi�cation tasks. It represents the
ratio of correctly predicted instances to the total
number of instances in the dataset. In mathemati-
cal terms, accuracy is de�ned as

Accuracy = TP + TNTP+ TN+ FP + FN, (1)

where TP (True Positive) are correctly predicted
positive instances; TN (True Negative) � cor-
rectly predicted negative instances; FP (False Posi-
tive) � incorrectly predicted positive instances; FN
(False Negative) � incorrectly predicted negative
instances.
While accuracy is useful for balanced datasets,

it can be misleading for imbalanced datasets where
one class signi�cantly outnumbers the other. In such
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cases, accuracy might give a high value even if the
model is merely predicting the majority class.

4.3.2. Precision

Precision measures the proportion of correctly
predicted positive instances out of all instances that
were predicted as positive. It answers the question:
�Of all the instances classi�ed as positive, how many
were actually correct?� Precision is de�ned as

precision =
TP

TP + FP
. (2)

Precision is particularly useful when the cost of
false positives is high, such as in spam detection or
medical diagnosis, where predicting a non-existent
condition as present can have severe consequences.

4.3.3. Recall

Recall (also known as sensitivity or True Positive
rate) measures the proportion of correctly predicted
positive instances out of all actual positive instances
in the dataset. It answers the question: �Of all the
actual positive instances, how many were correctly
identi�ed?� Recall is de�ned as

recall =
TP

TP + FN
. (3)

Recall is crucial in situations where missing a pos-
itive instance (False Negative) has a higher cost,
such as in cancer detection, where failing to iden-
tify a true case could be life-threatening.

4.3.4. G-means

G-means (geometric mean) is a metric that con-
siders both the True Positive Rate (recall) and the
True Negative Rate (speci�city). It is particularly
useful in imbalanced datasets because it balances
the performance of the model across both classes.
G-means is de�ned as

G−means = recall× specificity, (4)

where speci�city is the True Negative Rate which is
equal to speci�city. G-means provides a more bal-
anced evaluation in cases where one class is signi�-
cantly underrepresented.

4.3.5. F1 score

Micro F1 score is the harmonic mean of preci-
sion and recall, calculated by considering the Total
True Positives, False Positives, and False Negatives
across all classes. Micro F1 score is particularly ef-
fective when you have imbalanced classes or when
each instance is equally important, regardless of its
class. The formula for F1 score is

micro F1 =
2×micro precision×micro recall

micro precision + micro recall
.

(5)

In the micro version, this metric aggregates the
contributions of all classes to compute the average
score, treating each instance equally.

4.3.6. Matthews correlation coe�cient (MCC)

The Matthews correlation coe�cient (MCC) is a
more comprehensive metric that takes into account
True Positives, True Negatives, False Positives, and
False Negatives. It is considered a balanced met-
ric even in the case of class imbalance, providing
a single score that measures the quality of binary
(two-class) classi�cations. MCC is de�ned as

MCC=
TP× TN− FP× FN√

(TP+FP)(TP+FN)(TN+FP)(TN+FN)
.

(6)

MCC returns a value between −1 and 1, where
1 indicates perfect prediction, 0 indicates no bet-
ter than random prediction, and −1 indicates total
disagreement between the prediction and the actual
classi�cation.
Each of these metrics provides a di�erent per-

spective on the performance of a machine learn-
ing model. Accuracy is useful for balanced datasets,
while precision and recall are crucial when the
cost of False Positives or False Negatives is high.
G-means and micro F1 score help evaluate mod-
els on imbalanced datasets, and MCC provides a
balanced assessment that is useful in both bal-
anced and imbalanced scenarios. Understanding
these metrics allows practitioners to choose the
most appropriate measure for their speci�c problem
and dataset.

4.3.7. Area under the curve (AUC)

Area under the curve (AUC) evaluates a classi�-
cation model's performance by calculating the area
under its receiver operating characteristic (ROC)
curve. The ROC curve plots the True Positive Rate
(TPR) against the False Positive Rate (FPR) across
di�erent thresholds, where

TPR =
TP

TP + FN
, (7)

FPR =
FP

FP + TN
. (8)

AUC, which ranges from 0 to 1, quanti�es the
model's ability to distinguish between classes, with
higher values indicating better performance. In
mathematical terms, AUC can be computed as

AUC =

∫ 1

0

dx ROC(x), (9)
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Fig. 2. Conventional method for accuracy.

Fig. 3. Conventional method for AUC.

Fig. 4. Conventional method for F1 score.

where ROC(x) represents the ROC curve function.
An AUC of 0.5 indicates no discriminative ability
(random guessing), while an AUC of 1 indicates
perfect classi�cation. AUC is particularly useful for
imbalanced datasets, o�ering a balanced evaluation
across all thresholds.

Fig. 5. Conventional method for G-means.

Fig. 6. Conventional method for precision.

Fig. 7. Conventional method for recall.

5. Results

The experimentation with the enhanced prepro-
cessing algorithm (EPA) yielded promising results
in improving the quality of textual data for machine
learning and deep learning models. Through the
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Fig. 8. Proposed text preprocessing method in

terms of accuracy.

Fig. 9. Proposed text preprocessing method in

terms of AUC.

Fig. 10. Proposed text preprocessing method in

terms of F1 score.

application of advanced tokenization techniques,
custom text preprocessing methodologies, sophisti-
cated feature extraction strategies, tailored TF-IDF
approaches, and optimized model selection meth-
ods, EPA e�ectively enhanced the representation
of textual data. The results demonstrated aunskip

Fig. 11. Proposed text preprocessing method in

terms of G-means.

Fig. 12. Proposed text preprocessing method in

terms of precision.

Fig. 13. Proposed text preprocessing method in

terms of recall.

signi�cant increase in model performance and ac-
curacy when compared to traditional preprocess-
ing techniques. Speci�cally, EPA led to improved
classi�cation and prediction outcomes across var-
ious benchmark datasets, showcasing its e�ective-
ness in addressing the nuanced challenges posed by
the diverse and complex nature of language.
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Figure 2�13 presents the �ndings from the com-
parative analysis, demonstrating the e�cacy and
enhancement of the recorded audio both before and
after applying the proposed method. According to
the majority of these �gures, the data were de-
rived based on the settings outlined earlier for the
models.
These results highlight the potential of EPA in

advancing the capabilities of NLP systems and fur-
ther underscore the importance of thorough prepro-
cessing in achieving optimal model performance.

6. Future work

This section explores potential enhancements and
expansions of the proposed preprocessing method,
including the integration of deep learning tech-
niques, the development of hybrid approaches, and
the application of these advancements to a broader
range of NLP tasks and real-world applications.

6.1. Potential enhancements to the preprocessing
method

To further improve the proposed text prepro-
cessing method, one potential enhancement focuses
on re�ning the tokenization process. Although cur-
rent approaches are e�ective, they often face chal-
lenges with languages that lack clear word bound-
aries or involve complex morphological structures.
Future work can develop more advanced tokeniza-
tion algorithms that utilize morphological analysis
and context-aware segmentation to better address
the nuances of such languages. Improvements in
stop-word removal can also be achieved by creat-
ing adaptive stop-word lists that adjust dynamically
based on the speci�c context or text domain. This
approach prevents the loss of critical information
that may occur when generic stop-word lists are ap-
plied to diverse datasets. Additionally, integrating
syntactic and semantic analysis into preprocessing
can enable more informed and contextually relevant
transformations of text data.

6.2. Incorporation of deep learning techniques

The integration of deep learning techniques into
text preprocessing o�ers exciting opportunities for
enhancing the robustness and adaptability of NLP
systems. Neural networks, particularly those based
on transformers, have demonstrated remarkable ca-
pabilities in understanding complex linguistic pat-
terns and nuances. By incorporating deep learning
models into the preprocessing pipeline, it becomes
possible to develop context-sensitive preprocessing
steps that adapt to the unique characteristics of the
input data. For example, using deep learning models

to generate context-aware embeddings during pre-
processing could signi�cantly improve the quality of
downstream tasks such as text classi�cation, trans-
lation, and summarization. Furthermore, unsuper-
vised and semi-supervised deep learning approaches
could be employed to automatically learn optimal
preprocessing strategies from large volumes of unla-
beled data, reducing the need for manually crafted
preprocessing rules and making the system more
adaptable to new and evolving domains.

6.3. Hybrid approaches

Hybrid approaches that integrate traditional
rule-based methods with advanced machine learn-
ing techniques o�er a promising direction for fu-
ture research in text preprocessing. These meth-
ods combine the strengths of both paradigms: the
interpretability and simplicity of rule-based meth-
ods and the �exibility and learning capacity of ma-
chine learning models. For example, a hybrid system
can use rule-based tokenization as the initial step
and then apply a machine-learning model to re�ne
the tokenization based on context. Machine learn-
ing can also adjust or generate rules automatically
by analyzing patterns in the data. This approach
enhances the accuracy of preprocessing and enables
the system to evolve and improve as it processes
new data. Hybrid systems are particularly valuable
in specialized domains that require both precision
and adaptability.

6.4. Expansion to other NLP tasks and broader
applications

While the current research has focused on spe-
ci�c NLP tasks, there is signi�cant potential to ex-
pand the proposed preprocessing methods to other
areas such as named entity recognition (NER), sen-
timent analysis, and machine translation. Each of
these tasks has unique challenges that could ben-
e�t from tailored preprocessing strategies. For ex-
ample, NER might require preprocessing that pre-
serves named entities while reducing noise, whereas
sentiment analysis could bene�t from preprocessing
that emphasizes the emotional tone of the text. Fur-
thermore, broader applications of these preprocess-
ing techniques could extend beyond traditional NLP
tasks to areas such as information retrieval, rec-
ommendation systems, and conversational AI. The
impact of these advancements could be profound,
enabling more accurate and context-aware systems
that better understand and respond to human lan-
guage across various applications and industries.
Future research could also explore the ethical im-
plications of these technologies, ensuring that they
are developed and deployed in ways that are fair,
transparent, and bene�cial to society as a whole.
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7. Conclusions

Preprocessing plays a critical role in NLP by im-
proving the performance of machine learning and
deep learning models. Traditional methods often
struggle to manage the complexity of language,
leading to suboptimal results. This paper intro-
duces the enhanced preprocessing algorithm (EPA),
a novel method designed to improve text data
quality before training. EPA uses advanced tok-
enization, custom preprocessing techniques, re�ned
TF-IDF methods, and optimized feature extrac-
tion and model selection. It o�ers a comprehensive
solution for creating robust and semantically rich
text representations, allowing researchers and prac-
titioners to achieve better performance and accu-
racy in NLP tasks.
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