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A new model of a spin- 1
2
quantum kicked rotor coupled with a highly inhomogeneous magnetic �eld is

proposed. The model is mapped into the appropriate tight-binding equations, and then the problem of
localization is considered. The introduced tight-binding model is veri�ed by calculating the localization
length for the appropriate quasi-energy states. In particular, it is shown that the functional form of the
spin-dependent term in kicking potential is exclusively responsible for the growth of the localization
length with an increase in the magnitude of the magnetic �eld. The growth is more pronounced if the
inhomogeneity of the magnetic �eld is greater. Thus, quasi-extended states appear as a consequence
of strongly conspicuous inhomogeneity, and they exhibit nonstandard localization properties. Their ex-
istence is also shown by calculating the appropriate inverse participation ratio and pair-correlations.
Therefore, some kind of �localization�delocalization� transition is possible here. This has been demon-
strated as well by following the time evolution of the wave packet in the angular momentum space,
assuming increasing inhomogeneity. For extremely large inhomogeneity, dynamical localization is de-
stroyed. The model proposed here can serve as an assessment simulator for the induced electric dipole
moment in a hydrogen-like atom, assuming the existence of anisotropy.

topics: quantum chaos, kicked rotor, inhomogeneous magnetic �eld, dynamical localization

1. Introduction

Quantum mechanical periodically driven sys-
tems, most often represented by the kicked ro-
tor (KR), have been lengthily examined regarding
chaos and quantum chaos (see for example [1�5]). It
has been registered that unbounded di�usion as a
characteristic of deterministic chaos in classical sys-
tems is suppressed in the quantum ones. This phe-
nomenon is known as dynamical localization. The
appropriate mechanism is similar to the Anderson
localization in disordered solids [6]. Thus, for large
kick strengths, the e�ects such as quantum reso-
nance and dynamical localization are established.
More precisely, dynamical localization means local-
ization in momentum space, while Anderson local-
ization implies localization in a spatially disordered
medium. Thus, the physics of Anderson localization
is highly dependent on the dimensions of the sys-
tems. While for 1D and 2D the mentioned similar-
ity is considered established (see for example [7]),
the 3D case is particularly interesting, especially in

connection with localization�delocalization transi-
tions. Examinations of this similarity still attract
attention [8, 9].
The quantum kicked rotor (QKR) for a spin- 12

particle was introduced by Scharf in [10]. There,
the occurring dynamical localization was studied in
the resonant regime. Further, the QKR model aug-
mented by a spin- 12 in a homogeneous and inhomo-
geneous magnetic �eld was examined in [11, 12]. At
that time, a very interesting problem was the im-
portance of time-reversal symmetry in QKR models
with dynamical localization in relation to the local-
ization length (LOC) changes [13, 14]. Thus, it was
shown that the breaking of the conventional time-
reversal (anti-unitary) symmetry by magnetic �eld
has no in�uence on LOC changes.
In our times, interest in KR exists due to

its recent experimental realizations in atom op-
tics [15, 16], especially among the group of au-
thors of works [17�20]. Moreover, it seems that, for
now, the most important application of the quan-
tum kicked rotor can be in molecular physics for
rotational excitations of diatomic molecules. It is
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con�rmed by the appropriate experimental re-
sults [21, 22]. More recently, theoretical KR has also
been proposed for application in attosecond spec-
troscopy [23].
In particular, assuming that dynamical localiza-

tion can be related to Anderson localization of dis-
ordered systems, through a mapping of the Floquet
eigenvalue problem (time periodic problem for KR)
on a tight-binding problem with a potential periodic
in space, the LOC changes of QKR can be very in-
teresting in solid state physics as well. Therefore,
we propose here the appropriate model of spin- 12
QKR in a highly inhomogeneous magnetic �eld, and
we consider its mapping to the appropriate tight-
binding equations. Then, the localization problem
will be analyzed within the framework of this sec-
ond approach.
Nevertheless, the most interesting problem will

be to consider whether magnetic �eld inhomogene-
ity in general can cause transitions from local-
ized to quasi-extended states. The spreading of the
wave packet in the angular momentum space is ex-
pected, so some kind of �localization�delocalization�
transition seems possible here in the ordinary one-
dimensional QKR [8]. This will also be considered
as an important problem in this paper.
The organization of the rest of the paper is as

follows. In Sect. 2, our model of the spin- 12 QKR in
a highly inhomogeneous magnetic �eld and the ap-
propriate tight-binding model are given. In Sect. 3,
the results are presented, and �nally, the conclusion
is given in Sect. 4.

2. Model

A simple KR model suitable for the physical per-
formance of the KR is proposed in [11, 12]. A spin- 12
electron is in an impenetrable ring located in the
x�y plane. It simulates a rotor while the kicking
electric �eld is along the x-axis. The kicking mag-
netic �eld is also assumed along the same axis, mak-
ing the magnetic �eld inhomogeneous across the
ring.
The appropriate Schrödinger equation in the ve-

locity gauge is

i
∂

∂t

(
Ψ1

Ψ2

)
=

[
− τ

2

∂2

∂θ2
1+ k cos(θ)

∞∑
n′=−∞

δ(t−n′)1

+H cos(nθ)σx

∞∑
n′=−∞

δ(t−n′)

](
Ψ1

Ψ2

)
, (1)

where τ and k are the standard parameters of a
spinless QKR [6], H corresponds to the magnitude
of the θ-dependent magnetic �eld, 1 is the (2 × 2)
unit matrix, and σx is the Pauli spin matrix. Here,
we assume integer n ≥ 1. Since the appropriate
Hamiltonian is periodic in time, the spinor in (1)
has the form(
Ψ1

Ψ2

)
= e− iωt 1√

2π

N∑
m=−N

e imθ

(
u1−
m

u2−
m

)
, (2)

where ω is the quasi-energy. In order to study the
quantum behavior of the model, we must solve the
eigenvalue problem

N∑
m=−N

e− i τ
2 n

2

(
⟨nAm⟩ ⟨n iBm⟩
⟨n iBm⟩ ⟨nAm⟩

)(
u1−
m

u2−
m

)
=

e− iω

(
u1−
m

u2−
m

)
, (3)

where

A = e− ik cos(θ) cos(H cos(nθ)) (4)

and

B = −e− ik cos(θ) sin(H cos(nθ)). (5)

Then, under the appropriate orthogonal transfor-
mation

O

(
⟨nAm⟩ ⟨n iBm⟩
⟨n iBm⟩ ⟨nAm⟩

)
Õ, (6)

where

O =
1√
2

(
1 1

1 −1

)
(7)

and Õ is the transposed matrix, two independent
eigenvalues problems are obtained

N∑
m=−N

(
e− i τ

2 n
2

F q
nm − e− iωδnm

)
wq−

m = 0, (8)

where

F q
nm =

1

2π

∫ 2π

0

dθ e i (m−n)θ e− i (k cos(θ)±H cos(nθ))

(9)

and

wq−
m =

u1−
m

+
−u2−

m√
2

. (10)

In (8)�(10), index q = 1 implies sign (+) and q = 2
sign (−), respectively. Integral (9) can be solved an-
alytically, and the corresponding solution by default
r = m− n is

F q
r = J0(H)Jr(k)(−1)r ir +

∞∑
s=2p>0

Js(H)
[
Jr+sn(k) + Jr−s n(k)

]
(−1)r ir+s(n+1) ±

∞∑
s=2p+1>0

(−1)r+sn+1Js(H)

×
[
W 1

r+sn(k) + (−1)nW 1
r−s n(k) + i

(
W 2

r+sn(k) + (−1)nW 2
r−s n(k)

)]
ir+s(n+1), (11)

where J are Bessel functions of the �rst kind. Functions W 1 and W 2 in (9) are determined as
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

W 1
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W 1
l = 2

π cos
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nπ
2

)[ (−1)jnJ0(k)
l δl,(2j+1)n +
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π cos
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(−1)mJ(2m+1)n+l(k)

2m+1

]
for n = 2p and l = 2i+ 1, (12)

and

W 2
l = 0 for n = 2p,

W 2
l = − 2

π sin
(
nπ
2

)[∑∞
m=m1

J(2m+1)n−l(k)

2m+1 +
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J(2m+1)n+l(k)

2m+1

]
for n = 2p+ 1 and l = 2i,

W 2
l = 2

π sin
(
nπ
2

)[nJ0(k)
l δl,(2j+1)n +
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m=m1

J(2m+1)n−l(k)

2m+1 −
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m=m2

J(2m+1)n+l(k)

2m+1

]
for n = 2p+ 1 and l = 2i+ 1. (13)

Parameters m1 and m2 in (12) and (13) are ob-
tained as the �rst integers for which the following
relations are satis�ed:

1. n odd and l odd or n even and l even,
therefore for s = 1, 2, 3, . . . , one has

2s+ l

n
= . . . , 2m1 + 1, . . . ,

2s− l

n
= . . . , 2m2 + 1, . . . ;

2. n odd and l even or n even and l odd,
therefore for s = 0, 1, 2, 3, . . . , one has

2s+ 1 + l

n
= . . . , 2m1 + 1, . . . ,

2s+ 1− l

n
= . . . , 2m2 + 1, . . . .

Functions W 1 and W 2 have the following prop-
erties

W 1
l (−k) = (−1)lW 1

l (k), (14)

W 1
−l(k) = (−1)lW 1

l (k), (15)

W 2
l (−k) = (−1)l+1W 2

l (k), (16)

and

W 2
−l(k) = (−1)lW 2

l (k). (17)

The solution of the integral (9) and previous an-
alytical formulas obtained on the basis of extensive
mathematics seem very complicated. To make ev-
erything more convincing, we give some of the test
results concerning the solutions of the integral (9)
in the Appendix.
It should be pointed out that the case for n = 1

is speci�c. Then, W 1
l = 0 and W 2

l = El. Let us
emphasize that in [12], the appropriate analytical

solution for n = 1 was obtained in a di�erent
way. Thus, a systematic step-by-step comparison
in both derivations led to the following two key
relations

� for s = 2p

∞∑
s=−∞

Js(H)Jr+s(k) =
Jr(k +H) + Jr(k −H)

2
,

(18)

and

� for s = 2p+ 1

∓
∞∑

s=−∞
Js(H)Er+s(k) = ±Er(k+H)− Er(k−H)

2
,

(19)

where

Er(z) =
1

π

π∫
0

dθ sin(rθ − z sin(θ)) (20)

is the Weber function [24] with properties

Er(−z) = (−1)r+1Er(z) (21)

and

E−r(z) = (−1)rEr(z). (22)

Thus, it can be shown that F q
r also has the follow-

ing simple and compact form

F q
r = (− i)r

[
Jr(k+H) + Jr(k−H)

2

± i
Er(k+H)− Er(k−H)

2

]
. (23)

In particular, we also checked that the matrix ele-
ments in (8) obtained in both ways are in complete
agreement.
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It turns out that the unitary matrix in (8) is the
band matrix for n ≥ 1 with b ∼ k + H, where b
is the band half-width. Therefore, outside the band
matrix, elements decay exponentially. Thus, it is to
be expected that by solving the eigenvalue problem
(8), exponentially localized states appear [25].

Previously, it was mentioned that there is an anal-
ogy between the dynamical localization of the QKR
and Anderson localization in disordered solids.
Thus, on that basis, it is possible to map the
QKR problem on the tight-binding model. Then,
the characteristics of quasi-energy states are further
investigated within this model. There are two di�er-
ent mapping methods. The �rst one, suggested by
Gremel, Prange, and Fishman [6], gives two cou-
pled tight-binding equations. Note that for H = 0,
the values of the parameter k in such an approach
must be k < π, which is the disadvantage of this
method. A di�erent mapping was proposed by She-
pelyansky [26, 27], and that procedure is appropri-
ate for greater values of the parameter k. Here, we
will generalize Shepelyansky's mapping procedure
to include spin and then study localization by means
of transfer matrices. Thus, the appropriate deriva-
tion leads to the following general results for tight-
binding equations

b∑
r=−b

[
Xr sin

(
φl−r

π

2

)
± Yr cos

(
φl−r

π

2

)]
wq−

l+r=0.

(24)
Assuming from now on the pseudo-random transfer
matrix calculation, φl in (24) is

φl =
ω − τ l2/2

2
. (25)

In particular, we have
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(H
2

)
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2

)
+

∞∑
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π

2

)
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2

)
×
[
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(k
2

)
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2
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, (26)

and further for odd n values

Yr =

∞∑
s=2p+1

cos
(
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π

2

)
Js

(H
2

)
×
[
W 2

r+sn

(k
2

)
+ (−1)nW 2

r−s n

(k
2
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, (27)

while for even n values

Yr = −
∞∑

s=2p+1>0

sin
(
(n+ 1)s

π

2

)
Js(

H

2
)

×
[
W 1

r+sn

(k
2

)
+ (−1)nW 1

r−s n

(k
2

)]
. (28)

We note that the case n = 1 is speci�c so that sim-
ple and compact formulas are also valid, i.e.,

Xr =
Jr(

k+H
2 ) + Jr(

k−H
2 )

2
(29)

and

Yr =
Er(

k+H
2 ) + Er(

k−H
2 )

2
. (30)

3. Results

In order to estimate dynamical localization in
our model, we will apply the pseudo-random trans-
fer matrix method [3], assuming the tight-binding
equations (24). Thus, Fig. 1 shows the dependence
of the appropriate transfer matrix results ⟨LOC⟩,
obtained by averaging over ten di�erent initial con-
ditions in each of the calculations, on the magni-
tude of the magnetic �eld H for k = 10 and for
n = 1, 2, and 3. The main feature is the anomalous
and continuous growth of ⟨LOC⟩ with an increase
in H as well as with the degree of inhomogeneity
of the magnetic �eld. More precisely, the best �t
suggests polynomial (of the second degree) depen-
dence on H for greater inhomogeneity. For example,
for the curve `b' in Fig. 1, we have

⟨LOC⟩ = 18.18182 + 3.64848H + 0.87879H2.
(31)

It is a di�erent form of ⟨LOC⟩ dependence than for
the spinless QKR [26, 27]. We also note that the ran-
dom transfer matrix gives a slightly slower growth
of ⟨LOC⟩ with H.
Figures 2�3 show examples of dynamical local-

ization for some quasi-energy states and for the
given values of model parameters. These results
are obtained by solving the eigenvalue problem (8).
The corresponding LOC estimates are also given.
The parity operator [23] now has the unique form
I = Ro

xR
s
x, where Rx is a rotation by π about the

x-axis and Ro
x, and Rs

x are the orbital and spin
parts, respectively. Thus, the quasi-energy states
can be either even or odd. It is evident that ex-
ponential localization is noticeable in all examples.
Note that the odd state in Fig. 2 is symmetrical
with respect to coordinate origin in m = 0. Then,
we have mod(w1−

0 ) = 0 and ln(mod(w1−
0 )) → −∞.

In this way, the odd state can be immediately rec-
ognized in computations. We always have one peak

Fig. 1. Pseudo-random transfer matrix results:
⟨LOC⟩ as a function of H for k = 10 and n = 1
(curve a), n = 2 (curve b), and n = 3 (curve c).
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Fig. 2. Dynamical localization in angular momen-
tum space for n = 1, τ = 1, k = 10, and H = 10.
Results ln(mod(w1−

m )) as a function of m for the
chosen odd state are obtained by solving (28). The
estimated LOC = 66.

Fig. 3. Dynamical localization in angular momen-
tum space for n = 2, τ = 1, k = 10, and H = 6.
Results ln(mod(w1−

m )) as a function of m for the
chosen even state are obtained by solving (28). The
estimated LOC = 57.

symmetric with respect to the coordinate origin. If
the peak is centered near the coordinate origin at
m0, an exponential tail is considered for m > m0

or due to symmetry for −m < −m0. Let us note
that the asymptotic decay rate of the quasi-energy
eigenfunctions here has a form

w1−
m ∼ C w1−

m0
exp

(
− m−m0

LOC

)
, (32)

where C is a constant. The unique value of ln(C)
is chosen so that the transfer matrix result ⟨LOC⟩
�ts the appropriate individual results for LOC for
di�erent quasi-energy states. It was also numer-
ically veri�ed for the appropriate spinless tight-
binding model [26, 27]. Thus, ⟨LOC⟩ calculated by
the transfer matrix method is a satisfactory esti-
mate of localization length for the given values of
model parameters as mean. It also gives credibility
to the tight-binding model proposed here.

Fig. 4. Quasi-extended even state in angular mo-
mentum space for n = 50, τ = 1, k = 10, and
H = 6. Results ln(mod(w1−

m )) as a function of m
are obtained by solving (28).

Fig. 5. Quasi-extended even state in angular mo-
mentum space for n = 100, τ = 1, k = 10, and
H = 6. Results ln(mod(w1−

m )) as a function of m
are obtained by solving (28).

With an increase in n, the spreading of the wave
packet in the angular momentum space becomes
more intense. For su�ciently large n, dynamical
localization still exists, but the LOC exceeds the
half-width of the wave packet, as shown in Fig. 4.
Therefore, we will denote those speci�c states as
quasi-extended states. Of course, here, the magni-
tude of the magnetic �eld is considered constant. It
is evident that LOC for quasi-extended states in-
creases with increasing inhomogeneity. We empha-
size that the transfer matrix is not applicable, as-
suming quasi-extended states. The minimal positive
Lyapunov exponent is then in the range of numer-
ical noise, and the uncertainty of the �nal results
is unacceptable. In particular, Fig. 5 shows the re-
sults for n = 100. Here, the quasi-extended state has
an unusual form. Such a form begins to appear for
n ≳ 85. Thus, this �oscillatory� form means that dy-
namical localization (and exponential localization)
is destroyed.
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Fig. 6. Distributions of pair-correlations Cm for
r = 1 assuming 800 samples: (a) n = 1 and H = 10,
(b) n = 2 and H = 6, (c) n = 50 and H = 6. (d)
Simulated appropriate extended state. The other
parameters are k = 10, τ = 1, and sign (+).

The di�erence between the quasi-extended states
and quasi-energy states with the standard localiza-
tion properties can be seen by calculating the pair-
correlations

Cm = ln
(
w1−

m

)
ln(w1−

m+r

)
. (33)

Thus, for r = 1 and m = 0, 1, 2, . . . , N − 1, the
appropriate histogram is shown in Fig. 6. The dif-
ference in the distributions of Cm for the quasi-
extended state, marked with the letter `c', and those
with standard localization, marked with the letters
`a' and `b', for small n is clearly visible. We em-
phasize that quasi-extended states always have such
prominent peaks in the initial part of the histogram.
It means that the vast majority of pairs ln(w1−

m )
separated by a certain distance r have close values
of Cm, which is a sign of �delocalization.� Then,
we also simulated the appropriate extended state in
a simple way. Namely, assuming random numbers
xm ∈ [0, 1], we consider the following function

ym = c1xm + c2 + ⟨ln
(
w1−

m

)
⟩, (34)

where ⟨ln(w1−
m )⟩ is the corresponding mean value

of ln(w1−
m ) and c1, c2 are estimated constants, in

order to obtain a more complete agreement with
the sizes ln(w1−

m ). In this way, the considered quasi-
extended state and its suitable extended state can
be compared. The calculated pair-correlations Cm

for (34) are shown in Fig. 6, marked with the letter
`d'. The agreement between curve c and curve d is
noticeable. Thus, �delocalization� and nonstandard
localization properties of quasi-extended states are
con�rmed. Our check with other appropriate data
shows that the results are similar to those in Fig. 6.
It can also be seen that characteristic peaks for
quasi-extended states appear for n > 10. Similar
results are obtained for r = 2. We emphasize that
the comparison of the mean distribution for stan-
dard quasi-extended states (10 < n < 85) with

Fig. 7. Inverse participation ratio ξ according to
n. Other parameters are k = 10, H = 6, τ = 1, and
sign (+).

Fig. 8. The average values of w1−
m according to n.

Other parameters are k = 10, H = 6, τ = 1, and
sign (+).

the one for n = 100 does not give anything spe-
cial. The �delocalization� is only slightly less pro-
nounced. Thus, the corresponding distribution for
n = 100 is practically indistinguishable, from the
point of view of �delocalization�, from those for stan-
dard quasi-extended states.

In order to further estimate the appearance of
quasi-extended states, we will also calculate the in-
verse participation ratio [28, 29]

ξ =
1

N + 1

∑
m(w1−

m )2∑
m(w1−

m )4
, (35)

assuming m ∈ [0, N ]. Therefore, ξ → 0 indicates
localization. The results for the appropriated range
of n are shown in Fig. 7. Then, for the initial val-
ues n, linear growth of ξ is noticeable, which is ex-
pected since it corresponds to the previously dis-
cussed increase in LOC. In particular, we note that
for n > 10 it is evident that ξ oscillates around
the value ξ ∼ 0.12. It is a sign of the presence of
quasi-extended states. Thus, the signi�cant values
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Fig. 9. Scaled kinetic energy (divided by 100) in
time corresponding to (a) quantum case, (b) clas-
sical case for n = 1. Other parameters are k = 10,
H = 6, τ = 1, and sign (+). Shown up to t = 2400.

Fig. 10. Scaled kinetic energy in time correspond-
ing to (a) quantum-spinless case, (c) classical case.
Other parameters are k = 10, H = 6, τ = 1, and
sign (+). Results are shown up to t = 800.

of w1−
m appear now in the whole range of m. Specif-

ically, their distribution depends both on n and the
selected quasi-energy state. As a consequence, the
oscillations appear. As an additional argument, we
note that the presence of quasi-extended states for
n > 10 is also obvious when calculating the average
value ⟨w1−

m ⟩ as a function of n (see Fig. 8). Then, for
�tting in this range, we can assume ⟨w1−

m ⟩ ∼ 0.02
as a sign for the existence of quasi-extended states.

The classical KR assuming a fully developed
chaos shows a linear growth of kinetic energy. It
is also well known that the quantum e�ects tend to
suppress this di�usion due to the mechanism of dy-
namical localization [1]. Thus, we assume here the
wave packet, initially located at 0 site in angular
momentum space, and we will follow its time evolu-
tion for the di�erent values of n, keeping the other
model parameters in the evolution operator the
same. Figure 9 shows the results for n = 1. It can

Fig. 11. Intensity of the wave packet in angular
momentum space: (a) n = 20, (b) spinless, raised
for +0.06. Other parameters are k = 10, H = 6,
τ = 1, and sign (+).

be seen that at the beginning, with some minor de-
viations, there is agreement between classical and
quantum growth of kinetic energy. After that, the
suppression of di�usion begins. Here, we emphasize
that the a curve in Fig. 9 does not change with the
increase in size of the numerical basis. Also, the �nal
form of the wave packet, at t = 6000, is not depen-
dent on the basis size. The deviation between clas-
sical and quantum initial growth becomes more and
more pronounced with a further increase in n. Then,
it is evident that there is no longer any similar-
ity between the quantum and classical growth. For
n = 20, assuming quasi-extended states, it should
be pointed out that the sign of �delocalization� as-
sumes

Energydelockin ≫ Energyspinlesskin , (36)

where Energyspinlesskin is the kinetic energy for the cor-
responding spinless QKR (see Fig. 10). Note that
in Fig. 10 only a and c curves have the appropriate
agreement for the �rst values of t [1]. Nevertheless,
�delocalization� can also be seen by comparing the
width of the corresponding �nal wave packet with
the spinless one. Namely, the width of the spinless
wave packet is much smaller (see Fig. 11).

In particular, we will examine the similarity be-
tween the quantum and classical initial growth of
the kinetic energy noticeable in Figs. 9 and 10 and
mentioned previously for n = 1. Thus, we will com-
pare the following functions

y1(θ) = k cos(θ) +H
∣∣ cos(nθ)∣∣ (37)

and

y2(θ) =

(
k +

H

2

)
cos(θ), (38)

for the values of the parameters k = 10 and H = 6
and for di�erent values of n. The function (37) cor-
responds to the exponent in the evolution oper-
ator supposing spin and inhomogeneous magnetic
�eld, while (38) corresponds to the exponent for
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Fig. 12. Scaled kinetic energy in time correspond-
ing to (a) quantum case for n = 1, (b) quantum�
spinless case for k′ = k + H

2
, and (c) classical case.

Other parameters are k = 10, H = 6, τ = 1, and
sign (+). Results are shown up to t = 300.

the appropriate spinless evolution operator, i.e.,
assuming the ordinary QKR with the parameter
k′ = k + H

2 . Thus, we emphasize that for n = 1,
the functions (37) and (38) are in quite satisfactory
agreement, while for n > 1, the di�erence becomes
bigger and bigger with a further increase in n. For
n = 1, in the initial t interval the appropriate kinetic
energies given by a and b curves (which correspond
to (37) and (38), respectively) are in good agree-
ment with the results shown in Fig. 12. However, k′

is greater than k, and that is why b curve somewhat
overcomes and cuts classical kinetic energy given by
c curve, which is also shown in Fig. 12. Thus, a quite
good agreement between b and c curves is obtained
for the initial values of t. Considering that curve b is
a good approximation for curve a, this explains the
similarity between the quantum and classical initial
growth of the kinetic energy in Figs. 9 and 10.

4. Conclusions

In conclusion, we can say that with the pro-
posed functional form in the kicking potential corre-
sponding to a highly inhomogeneous magnetic �eld,
we have obtained the anomalous and continuous
growth of the ⟨LOC⟩ for an increasing value of H.
It is more pronounced if the inhomogeneity of the
magnetic �eld is greater. All transfer matrix calcu-
lations indicate a polynomial of quadratic degree as
the optimal approximation for the ⟨LOC⟩ depen-
dence on H for greater inhomogeneity, which is dif-
ferent from the appropriate well-known behavior for
the spinless QKR [26, 27]. In particular, we empha-
size that the tight-binding model (24) has also been
introduced here. It has been veri�ed by calculating
LOC for the quasi-energy states obtained by solving
the eigenvalue problem (28).

Further, as a result of the strongly conspicu-
ous inhomogeneity of the magnetic �eld, quasi-
extended states occur. This is also con�rmed by
calculating the inverse participation ratio depend-
ing on inhomogeneity as well as pair-correlations.
We emphasize that they could change known
characteristics of QKR. For example, some kind
of �localization�delocalization� transition appears
now. It was shown as well by the following time evo-
lution of the appropriate wave packet in the angular
momentum space assuming increasing inhomogene-
ity. Thus, we emphasize that for extremely large
inhomogeneity, dynamical localization is destroyed.
The laser electric �eld as a �kick� induces an elec-

tric dipole moment in the hydrogen-like atom [30].
The accompanying interaction between the induced
dipole moment and the electric �eld gives rise to
potential energy, U , for the atom given by

U = −E · ⃗⃗αE = −µi ·E, (39)

where ⃗⃗α is the atomic polarizability tensor, E the
electric �eld, and µi the induced dipole moment.
Atom shape depends on several factors, including
the angular momentum of electrons and the electro-
static forces between atomic particles. Then, assum-
ing that the hydrogen-like atom is not completely
spherical, the polarizability tensor is anisotropic.
Thus, we will show that the proposed model can
serve as an assessment simulator for the induced
dipole moment. Furthermore, we assume that the
inhomogeneity of the magnetic �eld in the model is
the cause of the anisotropy.
For quasi-energy states, we have

∆m∆θ ≳ 1, (40)

where ∆m ∼ 2 · LOC, which depends on n and
min∆θ ∼ ϵ, where ϵ is small enough. Thus, less LOC
indicates greater anisotropy but in the angular mo-
mentum space. Otherwise, extended states can be
considered there as isotropic. Here, we will assume
that ϵ re�ects the e�ect of anisotropy in θ−space so
that the following corrected formula is obtained

µi ·E = α
(
1± ϵ

2

)
E2, (41)

where α is the scalar atomic polarizability and the
second term in parentheses is the simpli�ed e�ect
of anisotropy. Higher anisotropy means higher ϵ,
and conversely, lower anisotropy means lesser ϵ. In
general, assuming a su�ciently large n, for quasi-
extended states, ∆m → ∞ and ϵ → 0, i.e., there
is no more anisotropy. In that case, the comparison
can be made with an isotropic noise situation and
dynamical localization, can be destroyed [16].

Appendix

Test results for the integral (29) are the following:
1. n = 1, k = 10, H = 6, sign(+), r = 1

Real part = 0.126336212089194

Imag part = −0.012176923818877
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2. n = 2, k = 10, H = 6, sign(+), r = 551

Real part = 0.000024606756124

Imag part = 0.000000000000000

3. n = 3, k = 10 H = 6, sign(+), r = 6

Real part = −0.052632923106889

Imag part = −0.071482397531063
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