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Excitation of Waves in a Dispersive Medium.

Example of Flow of a Bubbly Liquid
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The excitation of wave motion by an external source and the interaction of modes inherent to a �ow
in a dispersive medium are considered. Dispersion is caused by the presence of gaseous bubbles in a
liquid. A large variety of steady excited waveforms is possible when the exciting wave is also steady and
propagates at a constant velocity. The velocities of the exciter and forced waves may be di�erent. This
leads to a variety of non-stationary excitations.
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1. Introduction

Dispersion as a physical phenomenon speci�es
the dependence of phase velocity on frequency. The
physical reasons of dispersion are spatial and tem-
poral inhomogeneities of di�erent kinds, that is, the
presence of boundaries, strati�cation of a medium,
thermodynamic relaxation [1, 2]. The molecular
structure and �nite time of all relaxation processes
are the general reasons for dispersion of small-scale
waves. The dispersion of acoustic waves is a less
common e�ect compared to the strong dispersion
of light in optical media. Among acoustical me-
dia with strong dispersion, liquids involving sand
or gaseous bubbles are of great importance. Trav-
eling waves that have attained a stable form in the
course of propagation are called stationary waves.
Dispersion destroys the initial waveform and by it-
self can never support a stationary wave since any
harmonic component in the initial spectrum prop-
agates with its own velocity. When the e�ects of
dispersion and nonlinearity balance each other, sta-
tionary waveforms traveling with di�erent constant
velocities may appear.
Waves in a liquid with gaseous bubbles are

well-studied. Gaseous inclusions essentially increase
the compressibility and thus reduce the speed of
sound in a medium and have a key impact on
the nonlinear properties of a medium. The non-
linear e�ects of a �ow can exceed, by orders
of magnitude, the nonlinear e�ects characterizing
pure phases [2, 3]. This makes nonlinear distor-
tion of sound and corresponding nonlinear phe-
nomena essential even for moderate magnitudes

of perturbations. Analytical models describing the
propagation of �nite-magnitude sound in a bub-
bly liquid vary from the simplest to fairly com-
plex [2, 4�7]. They take into account thermody-
namic processes in the bubble and liquid, the shape
of the bubble during oscillations, gas composition,
phase transitions of a vapor, and other phenomena.
The character of sound propagation in a gassy liquid
depends strongly on the ratio of the bubbles radii,
the average distance between the bubbles (this in
turn is determined by the volume fraction of the
gaseous phase), and the characteristic wavelength
of the primary wave [8, 9]. In this study, we use the
simplest model, aiming to focus only on the disper-
sive and nonlinear properties of a �ow.
Preliminary remarks about the excitation of

waves are necessary. Despite the fact that the theory
of inhomogeneous wave equations is well-developed,
especially in the �eld of linear dynamics (e.g., [10]),
interest in the dynamics of perturbations forced by
wave exciters has grown in the last decades. �Wave
resonance� is important in the process of excitation
of waves by sources moving with a speed close to
the eigen velocity of sound, that is, up to the veloc-
ity of perturbations in unforced oscillations with-
out the impact of e�ects connected with nonlinear-
ity and dispersion [11]. This phenomenon resembles
mechanical resonance. Simple evaluations that ex-
plain the phenomenon are as follows [12, 13]: Since
wave resonance is possible only with the eigen wave
propagating in the same direction as the exciter,
the simple inhomogeneous equation of the �rst or-
der may be used as a starting point,
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It does not account for nonlinear and dissipative
e�ects and describes the excitation of the wave per-
turbation U in a wave with the eigen velocity c0
by the primary steady perturbation f propagating
with the speed c. Its solution, satisfying the bound-
ary condition U(t, x=0) = 0, i.e.,

U =
f
(
t−x

c

)
− f

(
t− x

c0

)
1− c20

c2

, (2)

contains uncertainty of the type 0
0 if c → c0. Eval-

uating the limiting value, one arrives at

U =
x

2c0

∂

∂t
f

(
t− x

c0

)
. (3)

An excited perturbation increases linearly with the
distance traveled by the wave x. Wave resonance
concerns di�erent kinds of waves, including surface
waves that may be excited by wind or by a pres-
sure wave [14], Newtonian �ows, and �ows di�er-
ent from Newtonian. The analytical description of
resonant and non-resonant interactions in connec-
tion with the Newtonian �ows and external exciters,
such as laser beams, was reviewed by Rudenko and
Hedberg [12].

Authors of studies [15, 16] indicated the exter-
nal force caused by the stimulated Mandelshtam�
Brillouin scattering (SMBS) as an option. The elec-
tric �eld consists of a laser pump wave of magnitude
Ep and a Stokes wave of magnitude Es, which ap-
pears in the course of scattering of the laser pump-
ing wave by sound of a frequency ω, which equals
the di�erence between the pumping frequency and
the Stokes wave frequency. The volume force due to
SMBS contributes to the momentum equation [17].
Scattering is the most e�ective if the pump and
Stokes waves propagate in the opposite direction,
that is, during backward scattering. The leading-
order averaged force takes the form

Φ =
Y ω

16π c20ρ0
EpEs sin

(
ω
(
t−x

c

))
, (4)

where Y is the coe�cient of optical�acoustic cou-
pling, U denotes the velocity, and ρ0 is the equilib-
rium density of a medium. The harmonic force is a
particular case of Brillouin scattering. As for wave�
wave excitation in dispersive �ows � as far as the
author knows, it has not been studied. The stan-
dalone problem is the interaction of modes inherent
to a �ow, that is, speci�ed by means of perturba-
tions that satisfy the system of conservation equa-
tions. The joint impact of nonlinearity and disper-
sion leads to stationary waveforms (including soli-
tons) that may propagate with various speed. In
this case, the wave or non-wave mode inherent to a
�ow applies as the exciter.

The study is organized as follows. The conserva-
tion equations describing the �uid dynamic of gassy
liquid are reminded in Sect. 2. Excitation of sound
by wave exciters is considered in Sect. 3. Section 3.2
is devoted to the interaction of modes inherent to
a �ow (i.e., internal interaction). For this purpose,

decomposition of the conservation equations is un-
dertaken, which leads to the coupling of a weakly
nonlinear system of equations for the interacting
modes [18]. Section 3.2 considers the exact solution
to the Korteweg�De Vries equation [4] as an inter-
nal exciter, and the non-stationary excitation is dis-
cussed in Sect. 4.

2. Conservation equations and unforced

wave dynamics

One-dimensional motion (along axis OX) of the
mixture, which consists of compressible liquid in-
cluding identical spherical bubbles, is considered.
All bubbles contain an ideal gas, at equilibrium they
are of the same radii, and they are well separated
and oscillate as spheres. Heat and mass transfer be-
tween the liquid and gas phases and viscous and
thermal losses are not taken into account. The bub-
bly liquid is an acoustic medium, which is treated
as a homogeneous continuum due to comparatively
large characteristic wavelength. The pressure in the
mixture is associated with the pressure in the liquid
phase [4, 19]. Quantities related to gas or liquid, are
denoted by the indices g or l, respectively, pertur-
bations are primed, and unperturbed quantities are
marked with an additional zero. The density of the
mixture, ρ, relates to the densities of the gas and
liquid in the following manner

ρ =
ρgρl

α0
ρg0

ρ0
ρl +

(
1− α0

ρg0

ρ0

)
ρg

, (5)

where α0 is the initial volume fraction of gas in the
mixture. The wave motion of incompressible liquids,
including bubbles, was originally studied by vanWi-
jngaarden [4]. The equations for the conservation of
momentum, energy, and mass of a mixture take the
forms
∂v

∂t
+ v

∂v

∂x
+

1

ρ

∂p′

∂x
= 0,

∂p′

∂t
− c2l

∂ρ′l
∂t

− c2l (γl − 1)

ρl0
ρ′l
∂ρ′l
∂t

= 0,

∂ρ′

∂t
+

∂(vρ′)

∂x
= 0, (6)

where v, p denote the velocity and pressure of the
mixture. The second equation in (6) follows from
the continuity and energy equations for a pure liq-

uid, where γl =
Cp,l

CV,l

ρl0

pl0
(∂pl

∂ρl
)T=const, and Cp and CV

denote the heat capacities at constant pressure and
density, respectively. Mass of gas inside a spherical
bubble of a radius R remains constant and it is dis-
turbed evenly in the bubble's volume, so that

R3ρg = R3
0ρg0, (7)

and there is no energy exchange between the bub-
bles and the surrounding liquid, i.e.,

pgρ
−γg
g = pg0 ρ

−γg

g0 , (8)
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where γg =
Cp,g

CV,g
. The leading-order form of the

Rayleigh�Plesset equation, which accounts for com-
pressibility of a liquid with �nite speed of sound cl,
completes the system [19, 20]

R
∂2R

∂t2
+

3

2

(
∂R
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)2

− 2

c2l

(
∂R

∂t

)2

=
p′g − p′l

ρl
. (9)

In dimensionless variables

vd =
v

c
, pd =

p′

c2ρ0
, ρd =

ρ′

ρ0
, xd =

x

λ
, td =

tc

λ
,

(10)

equation (6) involving (7)�(9) may be readily re-
arranged in the leading-order system that contains
quadratic nonlinear terms on its right as [21]
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(11)

Here, λ denotes the characteristic scale of pertur-
bation, and c is the speed of sound of an in�nitely
small magnitude in the bubbly liquid [4]

1

c2
=

(1− α0)
2

c2l
+

α0(1− α0)ρl0
γgpg0

. (12)

In the following formulas, the upper indices of di-
mensionless quantities will be dropped. Nonlinear
and dispersive terms of the same order are consid-
ered. This ensures the possibility of a balance be-
tween nonlinearity and dispersion in the course of
forced wave excitation. The analysis relies on the
de�nition of modes in the small-magnitude �ow in
accordance to the three roots of the dispersion equa-
tion, i.e., two acoustic ones, specifying sound pro-
gressive in the positive and negative directions of an
axis OX (marked by indices 1 and 2, respectively),
and the non-wave type of motion, which is charac-
terized by the stationary isobaric variation of tem-
perature and zero velocity, called the entropy mode.
They may be determined as links of speci�c per-
turbations of velocity, pressure, and density. Weak
nonlinearity brings corrections to linear relations in
wave modes [18, 21]. In particular, the links speci-
fying the �rst wave mode with the eigen velocity c
are as follows

v1 = ρ1 +
1

2
D
∂2ρ1
∂x2

+
(ε
2
− 1

)
ρ21,

p1 = ρ1 +D
∂2ρ1
∂x2

+ (ε− 1) ρ21,

(13)

with

D =
α0(1−α0)R

2
0ρ

2
l0c

4

3(γg pg0)2λ2
(14)

being a dimensionless parameter responsible for the
dispersive properties of wave motion, which are en-
hanced for waves with short wave lengths. Weak
dispersion relates to D ≪ 1. The parameter of non-
linearity in a bubbly liquid

ε =
(1−α0)c

2(γl+1)

2c2l
+

c4α0(1−α0)
2ρ2l0(γg+1)

2(γgpg0)2 (15)

measures nonlinear distortion of a waveform in
�nite-magnitude �ows [2]. The leading-order equa-
tion governing the perturbation of the density in a
wave that propagates in the positive direction of the
OX axis takes the form
∂ρ1
∂t

+
∂ρ1
∂x

+ ερ1
∂ρ1
∂x

+
D

2

∂3ρ1
∂x3

= 0. (16)

This is the famous Korteweg�De Vries equation
(KdV), which has been discussed in details in con-
nection with �ow of a bubbly liquid [4, 6, 7] but has
found application in many other important phys-
ical phenomena. Equation (16) imposes an intense
rightwards propagating sound as compared to other
internal modes of the �ow. It contains a quadrati-
cally nonlinear term proportional to the parameter
of nonlinearity ε and a term responsible for disper-
sion, proportional to D. The dimensionless eigen
velocity of the wave equals 1.

3. Simple cases and excitation of

the stationary wave

The external wave source F propagating with the
speed C may be readily included in the right-hand
part of the dynamic equation. The left-hand part
relies on the wave equation for the density pertur-
bation in the excited �rst acoustic mode (16). Seek-
ing a solution to the equation

∂ρ1
∂t

+
∂ρ1
∂x

+ ερ1
∂ρ1
∂x

+
D

2

∂3ρ1
∂x3

= F (t−x/C),
(17)

depending only on two variables τ = t−x/C (re-
tarded time) and x (this variable is �slow�, express-
ing the slow variance of the pro�le with distance),
we arrive at the leading-order equation

∂ρ1
∂x

+
C − 1− ερ1

C

∂ρ1
∂τ

− D

2C3

∂3ρ1
∂τ3

= F (τ). (18)

The general remark is that if the force is localized
in space, then

∂

∂x

∞∫
−∞

dτ ρ1 = −
∞∫

−∞

dτ
C − 1− ε ρ1

C

∂ρ1
∂τ

+
D

2C3

∞∫
−∞

dτ
∂3ρ1
∂τ3

+

∞∫
−∞

dτ F (τ) =

∞∫
−∞

dτ F (τ),

(19)
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i.e.,
∫∞
−∞ dτ ρ1 does not remain constant as in the

course of free oscillations and may constantly de-
crease or increase with distance from the trans-
ducer. If the boundary condition is zero at x = 0,
then

∞∫
−∞

dτ ρ1 = x

∞∫
−∞

dτ F (τ). (20)

In the case of C ̸=1, insigni�cant dispersion and non-
linear e�ects yield the dynamic equation

∂ρ1
∂x

+
C − 1

C

∂ρ1
∂τ

= F (τ) (21)

with the solution

ρ1 = − C

C − 1

∫ t−
(C−1)

C x

t

dz F (z), (22)

if C ̸= 1. The case C = 1 leads to the solution grow-
ing with the distance from a transducer,

ρ1 = xF (τ). (23)

This reveals the resonant character of the interac-
tion if the exciter and exciting wave velocities coin-
cide in non-dispersive �ow. Dispersion brings spe-
cial features in resonant excitation. Equation (18),
describing the stationary waveforms ρ1(τ), is read-
ily integrated with the result

ε

2
ρ21 + (1−C)ρ1 +

D

2C2

∂2ρ1
∂τ2

= −C

∫
dτ F (τ).

(24)

3.1. Harmonic excitation

We associate the source with the harmonic wave
F (τ) = A sin(τ). The case with D = 0, C = 1 is
readily analyzed. In particular, the exact solution
corresponding to the integration constant 2A/ε is

ρ1 = 2

√
A

ε
cos

(τ
2

)
. (25)

Also, with ε = 0 and C = 1, and by restricting to
the expansion of the same integration constant, the
explicit solution is obtained

ρ1 = −16A

D
cos

(τ
2

)
, (26)

satisfying the same boundary conditions

ρ1(−π) = ρ1(π) = 0. (27)

With the use of variables

ρ̃1 =
C2ε

D
ρ1, G1 =

2C2(1−C)

D
, Ã =

2C5εA

D2
,

(28)

(24) can be expressed as

ρ̃21 +G1ρ̃1 +
∂2ρ̃1
∂τ2

= Ã cos(τ) +Q, (29)

where Q is an integration constant.

Figure 1 shows solutions to (29) with boundary

conditions (27) for di�erent values of Ã and G1.

The case of Ã = 0 corresponds to the stationary
waveforms without external excitation.
There is a variety of excitation of stationary wave-

forms with speeds C di�erent from 1.

3.2. Excitation of the stationary wave by
steady-form wave inherent to a �ow

The equation governing the perturbation of the
density in the second mode with an account of the
interaction with the �rst wave mode was obtained
by Perelomova and Pelc-Garska [18]

∂ρ2
∂t

− ∂ρ2
∂x

− ερ2
∂ρ2
∂x

− D

2

∂3ρ2
∂x3

= F (x, t) =

D(4−3ε)

4
ρ1

∂3ρ1
∂x3

. (30)

The right-hand side of (30) re�ects two causes of the
interaction of internal modes, namely nonlinearity
and dispersion. The acoustic source is of the order
of the square Mach number and it is proportional
to the dispersion parameter. In contrast, an exter-
nal exciter might have a much larger magnitude.
Stationary excitation in the �eld of the �rst mode
is possible when the �rst mode is stationary and
propagates with the constant speed C, which may
be di�erent from 1 � hence, the source F is a func-
tion of τ . This is possible due to the joint impact of
dispersion and nonlinearity. Now, (30) is converted
as
C + 1 + ε ρ2

C

∂ρ2
∂τ

+
D

2C3

∂3ρ2
∂τ3

= F (τ) =

D(3ε− 4)

4C3
ρ1

∂3ρ1
∂τ3

(31)

and may be readily integrated into the result

ε

2
ρ22 +

(
1 + C

)
ρ2 +

D

2C2

∂2ρ2
∂τ2

= C

∫
dτ F (τ) =

D(3ε− 4)

4C2

[
ρ1

∂2ρ1
∂τ2

− 1

2

(
∂ρ1
∂τ

)2
]
+Q, (32)

where Q is an integration constant. As internal ex-
citers, we may consider exact solutions to the KdV
equation in the form of acoustic solitons

ρ1 = ρ1,1(τ) =
3D

ε (1 + cosh(Cτ))
+

C − 1−D/2

ε
,

ρ1 = ρ1,2(τ) =
3

cosh2
(
C
√

ε
2D τ

) +
C − 1− ε

ε (33)

and the internal forces related to them, F1, F2, re-
spectively. Note that C may di�er from 1 and may
take negative values. The �rst source mode is de
facto determined by the links of speci�c perturba-
tions (13). Variety of C yields di�erent limits of
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Fig. 1. Solutions to (29) for di�erent values of Ã (0, 0.5, 1, marked by numbers) and G1 (0 in panel (a, d),
−1 in panel (b, e), 1 in panel (c, f)). Upper row: zero integration constant Q, lower row: Q = 2.

density perturbation if τ → ±∞. In the terms of

dimensionless variable ρ̃2 = C2ε
D ρ2, (32) takes the

form

ρ̃22 +G2ρ̃2 +
∂2ρ̃2
∂τ2

=
2C5ε

D2

∫
dτ F (τ) =

C3ε(3ε− 4)

2D

[
ρ1

∂2ρ1
∂τ2

− 1

2

(
∂ρ1
∂τ

)2
]
+Q,

G2 =
2C2(1 + C)

D
. (34)

Interestingly, (34) describes a large variety of in-
teractions. In particular, if C=1+D/2 and F=F1,
(34) takes the form

ρ̃22+
(D+2)2(D+4)

4D
ρ̃2+

∂2ρ̃2
∂τ2

=
9D(D+2)5(3ε−4)

1024ε

×
(
cosh

( (D+2)τ

2

)
− 3

)
cosh−6

( (D+2)τ

4

)
+Q.

(35)

If C = −1 and F = F1, this leads to

ρ̃22 +
∂2ρ̃2
∂τ2

=
3(3ε− 4)

64ε

×
(
3(5D−4)− 8(D+1) cosh(τ)+(D+4) cosh(2τ)

)
× cosh−6

(τ
2

)
+Q. (36)

The case of C = 1 and F = F1 brings us to

ρ̃22 +
4

D
ρ̃2 +

∂2ρ̃2
∂τ2

=
3D(3ε− 4)

64ε

×
(
8 cosh(τ)− cosh(2τ)− 15

)
cosh−6

(τ
2

)
+Q.

(37)

Figure 2 illustrates the case of excitation by
the force F1 propagating with the speed C = −1
(see (36)) for di�erent boundary conditions and in-
tegration constants. Usually, the parameter of non-
linearity in the presence of bubbles far exceeds the
parameter of nonlinearity of the pure phases. For
simple evaluations, we may use the following data:
ρl0 = 103 kg/m3, pg0 = 105 Pa, γg = 1.4, γl = 7,
cl = 1500 m/s. The values of the initial volume
fractions of gas in the mixture, i.e., α0 = 10−3,
α0 = 10−4, and α0 = 10−5, a�ect and set the values
of ε = 1064, ε = 4562, and ε = 1392, respectively.
Hence, in the evaluations of the right-hand side of
(36), a limited expression describing the source (if
ε → ∞) is used

9(3(5D−4)−8(D+1) cosh(τ) + (D+4) cosh(2τ))

64

× cosh−6
(τ
2

)
+Q.

(38)

Figure 2 shows the numerical solutions of (36) with
the right-hand side (38) for some boundary condi-
tions and integration constants Q.
The parameter D is small compared to unity,

which at the same time indicates the small value
of the characteristic inverse duration of perturba-
tion, ω = 2πc/λ. Evaluations � in accordance
to (14) and the listed equilibrium parameters �
yield ω ≪ 66 kHz for α0 = 10−3, ω ≪ 82 kHz
for α0 = 10−4, and ω ≪ 173 kHz for α0 = 10−5.
All sources considered in this section are even func-
tions. Therefore, the example ensures relation: even
excited perturbations for even boundary conditions.
Uneven boundary conditions would lead to uneven
excited perturbations.
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4. Non-stationary resonant and

non-resonant excitation

4.1. Excitation with zero and non-zero detunings

When using ρ̃1, Ã from (28) and θ = t−x, (17) in
the case of an impulsive exciter takes the form

∂ρ1
∂x

+Dρ1
∂ρ1
∂θ

− D

2

∂3ρ1
∂θ3

=
D

2
Ã exp(−(θ + δx)2),

(39)

where δ = (1− 1
C ) denotes dimensionless detuning.

The results of the numerical evaluation of forced
oscillations are shown in Fig. 3. All evaluations were
made with the help of Wolfram Mathematica. The
initial perturbation at z = 0 is zero, ρ̃(θ, 0) = 0,
and the boundary conditions are considered zero at
θ = ±1000. Positive and negative detunings of the
same absolute value yield indistinguishable curves.
The maximum magnitude in the course of excita-

tion in Newtonian �ows reveals beating if the detun-
ing δ di�ers from zero [12, 22]. The period of these
beatings depends on δ. The maximum magnitude

Fig. 2. (a) Solutions to (36) for D = 0.1, integra-
tion constant Q = 10 and di�erent boundary con-
ditions: ρ̃2(−3) = ρ̃2(3) = 0 (line 1), dρ̃2(−3)

dτ
=

dρ̃2(3)
dτ

= 0 (line 2), ρ̃2(−3) = ρ̃2(3) = 1 (line 3). (b)
Solutions to (36) for D = 0.1, Q = 25 and di�er-
ent boundary conditions: ρ̃2(−1) = ρ̃2(1) = 0 (1),
dρ̃2(−1)

dτ
= dρ̃2(1)

dτ
= 0 (2), ρ̃2(−1) = ρ̃2(1) = 2 (3).

Fig. 3. Maximum absolute value of ρ1 = D
ε
ρ̃1

over θ varying from −1000 to 1000 as a function
of z in accordance to the numerical solution of (39)
for di�erent values of δ (0, ±0.1, ±0.2, marked by
numbers). The case shown is for D = 0.1, ε = 100,
A = 0.01.

in the dispersive �ow increases in a continuous man-
ner with x and tends to some limiting value. Zero
detuning corresponds to resonant excitation. In this
case, the linear growth of the maximum perturba-
tion magnitude with distance agrees with (23).

4.2. Resonant excitation of the stationary wave
by the entropy mode

The standalone case is the excitation of the en-
tropy mode by sound. The leading-order dynamic
equation governing the excess density of the en-
tropy mode in the �eld of the �rst dominant wave
mode has been derived by Perelomova and Pelc-
Garska [18]

∂ρ3
∂t

= −D(ε− 2)ρ1
∂3ρ1
∂x3

. (40)

Dispersion has an impact only on the source right-
hand part of (40). In fact, (40) imposes a variety of
non-resonant interactions. It is readily integrated by
assuming ρ1(x− Ct) and the onset of excitation at
t = 0. As a result, one obtains

ρ3 =
D(ε− 2)

C

[
ρ1

∂2ρ1
∂x2

− 1

2

(
∂ρ1
∂x

)2
] ∣∣∣∣∣

x−Ct

x

. (41)

For any C ̸= 0, a perturbation consists of two parts:
one moving with the speed C, the other � station-
ary. The ideal resonant interaction are possible if
C → 0. In this case, ρ3 increases in�nitely with
time

lim
C→0

ρ3 = −D(ε− 2)tρ1
∂3ρ1
∂x3

= D(ε− 2)tϕ(x).

(42)

The limiting expressions of ϕ1 and ϕ2 relating to
ρ1,1 and ρ1,2 when C → 0 (see (33)) take the re-
spective forms
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ϕ1 =
9
(
cosh(x)− 5

)
tanh3

(
x
4

)
8ε2 cosh4

(
x
4

) , (43)

ϕ2 =
3
√
ε
(
1− 5ε+ (ε+ 1) cosh

(√
2εx

) )
2
√
2 cosh7

(√
ε
2x

)
×
[
sinh

(
3

√
ε

2
x

)
− 11 sinh

(√
ε

2
x

)]
. (44)

Since the exemplary perturbations in the density
ρ1 are even functions of x, an excited perturba-
tion in density is an odd function of x. This en-
sures equal areas with positive and negative pertur-
bations, making zero average perturbation in the
density ρ3 and zero average perturbation of tem-
perature associated with the entropy mode, T ′

3 =
−ρ3T0/ρ0.

5. Conclusions

The main goal of this study is to draw attention
to the phenomenon of the excitation of waves in a
weakly nonlinear dispersive �uid �ow. In this study,
dispersion specifying wave processes in a bubbly liq-
uid is considered. Free perturbations in a �ow are
described by the KdV equation (16). This partial
di�erential equation serves also as a mathematical
model of waves on shallow water surfaces and has
numerous connections to physical problems. It de-
scribes the evolution of one-dimensional long inter-
nal waves in the ocean with strati�cation of mass
density, acoustic plasmic waves, and waves in a crys-
tal lattice. In particular, the leading-order dynamic
equation for the displacement of an atom, u, in the
one-dimensional lattice consisting of atoms of equal
mass M takes the form of the linearized KdV equa-
tion
∂u

∂x
=

a2

24c30

∂3u

∂τ3
, (45)

where a denotes the distance between atoms in
equilibrium, and c0 = a

√
κ/M designates the low-

frequency sound speed. (The elastic interaction be-
tween closest neighbors is assumed, so that the force
acting at atom number n is given by the formula
−κ(2u(n)−u(n−1)−u(n+1))) Forced oscillations
are described by the inhomogeneous KdV equation.
As far as the author knows, neither external (i.e,
caused by some external force) nor internal (caused
by mode inherent to a �ow) excitations have been
considered in the previous studies. Rudenko and
Hedberg [12] were the �rst to determine and dis-
cuss resonant excitation of waves by external wave
exciters in connection with di�erent kinds of non-
linearity (modular, quadratic, and quadratically-
cubic) and Newtonian attenuation. The resonant
interactions take place if the velocity of exciter co-
incides with the velocity of an excited wave. In
the �ow without attenuation, this leads to the lin-
ear growth of magnitudes of perturbations of the

excited wave with the distance in the boundary ex-
citation. Newtonian attenuation prevents this en-
largement. Pure dispersion does not lead to attenu-
ation of macroscopic energy. That is why the linear
growth of the magnitude of the excited perturba-
tions coincides with the formula (23).
Indeed, non-resonant and resonant interactions

are also various in the �ow with dispersion. The
mode inherent to a �ow may act as a stationary ex-
citer, which is made possible due to the joint impact
of nonlinearity and dispersion. This study considers
also the resonant interactions of wave and entropy
modes inherent to a �ow, which occurs if an ex-
citer represents stationary waveform with a speed
approaching zero (Sect. 4.2). We do not consider the
non-resonant excitation of the entropy mode in the
�eld of intense harmonic sound. This kind of excita-
tion was earlier discussed by Perelomova and Pelc-
Garska in [18]. The initial points and simplifying
conditions were the same as in the present study. In
particular, the interaction reduces the density of the
mixture and hence causes enlargement of bubbles.
The reason for that is the nonlinear interaction of
the entropy and sound modes, which may take place
without di�usion and is not connected with the in-
crease in the bubble mass. This phenomenon recalls
isobaric acoustic heating in Newtonian �ows that is
followed by a decrease in the �uid density. The ef-
�ciency of the nonlinear generation of the entropy
mode is proportional to the squared acoustic pres-
sure and to the radius of a bubble R0. This agrees
with the features of the dynamics in the course of
recti�ed di�usion [23], but re�ects a di�erent reason
for this phenomenon.
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