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The metastable crystallization phase of Fe-based alloys remains a popular topic in alloy research. The
α-Mn type metastable phase was observed during the crystallization of Fe80Zr10B10 amorphous alloy.
Fe80Zr10B10 amorphous alloy ribbons prepared by melt spinning were annealed at different anneal-
ing temperatures and times. Different annealing temperatures indicated that there were large differ-
ences in the crystallization phase constitution. Different annealing times indicated that the α-Mn type
metastable phase preferentially nucleated relative to the α-Fe phase. A long annealing time resulted in
the precipitation of α-Fe and ZrB phases. As the annealing time increased, saturation magnetization
(Ms) of the alloy increased gradually (from 75.48 to 122.74 A m2/kg), and coercivity (Hc) of the alloy
increased dramatically (from 0.17 to 15.16 kA/m).
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1. Introduction

Amorphous alloys are common thermodynami-
cally metastable materials [1]. After high-pressure,
radiation, or high-temperature heat treatment,
the amorphous phase tends to transform into
a metastable phase or equilibrium phase with lower
energy. During the crystallization of the amorphous
alloy, the atoms rearrange. To produce a new phase
from the amorphous phase, it is necessary to form
a nuclear embryo of the new phase. This process re-
quires a large amount of energy. When there is in-
sufficient energy, the process is relatively slow, and
a new metastable phase is produced. The precip-
itation of primary metastable phases during crys-
tallization has been widely reported in Zr-based al-
loys [2, 3], Mg-based alloys [4], and Al-based al-
loys [5].

Crystallization of Fe-based amorphous alloys has
been an important research topic that has been ex-
tensively investigated over the past several decades.
Different types of metastable crystallization phases
are formed during primary crystallization, such as
Fe23B6 type [6–11], α-Mn type (χ) [12–16], cubic
quasiperiodic (CQ) [17], Fe12Si2ZrB type [18, 19],
and β-Mn type phases [20–22]. FeZrB system alloys
represent an important research direction for Fe-
based alloys, and the crystallization phases of FeZrB
alloys have been reported in several studies [23–30].

Different heat-treatment conditions can di-
rectly affect the composition of the crystallization
phases [31–33]. Both the annealing temperature

and time are key factors. The research on the
crystallization of FeZrB alloy has mostly focused
on the effect of heat treatment temperature, and
only a few studies have been reported on the ef-
fect of annealing time on the crystalline phase of
FeZrB amorphous alloys. In this study, the influ-
ence of heat treatment conditions (annealing tem-
perature and time) on the microstructural evolution
and magnetic properties of Fe80Zr10B10 alloy was
investigated.

2. Experimental

An ingot of Fe80Zr10B10 alloy with nominal com-
position was prepared by arc melting a mixture
of high-purity elements (99.98 wt% Fe, 99.97 wt%
Co, 99.92 wt% Zr, 99.99 wt% B). The ingot was
remelted four times with magnetic stirring under
high-purity argon. Amorphous ribbons were pre-
pared from the ingots by single-roller melt spinning
at a copper-wheel rate of 38 m/s and annealed at
500, 600, 700, and 800◦C for 20 min in a vacuum.
The alloy was also annealed at 600◦C for 1, 3, 10,
20, 60, and 120 min.

Structural characterization of the alloys was
determined by X-ray diffraction (XRD)(D/Max
2500/PC, Cu Kα, λ = 1.5406 Å) and transmis-
sion electron microscopy (TEM)(FEI Talos F200).
Magnetic hysteresis loops were measured using a vi-
brating sample magnetometer (VSM)(Lake Shore
M7407).
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3. Results and discussion

Figure 1 shows the XRD patterns of the
Fe80Zr10B10 alloy annealed at different tempera-
tures. No crystalline diffraction peaks were observed
for the alloy annealed at 500◦C, indicating that the
alloy was still in an amorphous state.

When the annealing temperature was 600◦C,
a metastable α-Mn type (χ) phase and a small
amount of α-Fe were observed. The lattice constant
of the bcc metastable χ phase is a = 0.881 nm,
which is close to that of the α-Mn type phase pre-
cipitated from Fe80Nb10B10 (a = 0.8846 nm) [34]
and from Fe76Si15B6Nb3 amorphous alloys (a =
0.882 nm) [35]. A further increase in annealing
temperature led to the disappearance of the χ-
phase and the transformation into both the un-
known metastable and the α-Fe phases. When the
annealing temperature was 800◦C, the metastable
unknown phase disappeared, and α-Fe, Fe3Zr, and
other phases were observed. The crystallization was
as follows
amorphous→ residual amorphous+χ+α-Fe→

residual amorphous+α-Fe+unknown phase→

α−Fe + Fe3Zr + ZrB2 + ZrFe2. (1)

Figure 2 shows the XRD patterns of Fe80Zr10B10

alloy annealed at 600◦C for different annealing
times. When the annealing time was 1 min and
3 min, no crystalline diffraction peaks were ob-
served. When the annealing time was 10 min, the
characteristic peaks demonstrated that the α-Mn
type phase precipitated from the amorphous ma-
trix, and the primary crystallization phase was only
the α-Mn type phase. When the annealing time
was 20 min, a small amount of the α-Fe was ob-
served in addition to the α-Mn type phase. With
an increase in annealing time, the crystallization
volume fraction of α-Fe phase increased. During the
crystallization, the α-Mn type phase preferentially

Fig. 1. XRD patterns of Fe80Zr10B10 alloy an-
nealed at different temperatures.

Fig. 2. XRD patterns of Fe80Zr10B10 alloy an-
nealed at 600◦C for different annealing time.

Fig. 3. (a) TEM image and SAED pattern (insert)
and (b) HRTEM image of Fe80Zr10B10 alloy after
annealing at 600◦C for 10 min.

nucleated relative to the α-Fe phase. Similar results
have been obtained in the previous study [36]. Both
stable and metastable phases may precipitate from
the amorphous matrix, however, the final crystalline
phase depends on the nucleation and growth kinet-
ics of different phases. During the crystallization,
the resistance to steady-state crystalline phase pre-
cipitation from the amorphous phase is very large,
and the alloy system will seek another transfor-
mation process with a relatively small transforma-
tion resistance. That is, a metastable crystalline
phase is formed through non-equilibrium transfor-
mation, and the structure of the metastable crys-
talline phase is relatively close to that of the amor-
phous parent phase [22]. With the increase of an-
nealing time, α-Mn precipitated to saturation, and
then the α-Fe phase precipitated from the remain-
ing amorphous phase.

Figure 3 shows the TEM image, the correspond-
ing selected area electron diffraction (SAED), and
high-resolution transmission electron microscopy
(HRTEM) image of the alloy annealed at 600◦C
for 10 min. The irregularly-shaped nanocrystals
were surrounded by the remaining amorphous ma-
trix (Fig. 3a). From HRTEM images (Fig. 3b), the
calculated d-spacings were 0.236 nm and 0.210 nm,
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Fig. 4. (a) TEM image and (b–d) HRTEM images
of Fe80Zr10B10 alloy after annealing at 600◦C for
60 min.

Fig. 5. Magnetic hysteresis loops of Fe80Zr10B10

alloy annealed at 600◦C for different annealing
times.

which correspond to the (321) plane and the (330)
plane of the α-Mn type phase, respectively. No other
phase was observed. The SAED pattern (insert in
Fig. 3a) and HRTEM image (Fig. 3b) showed evi-
dence of only the α-Mn type phase.

Figure 4 shows the TEM (a) and HRTEM (b–d)
images of the alloys annealed at 600◦C for 60 min.
When the annealing time was 60 min (Fig. 4a),
many grains of irregular shape were observed that
were not uniform in size. The high-resolution im-
age (Fig. 4b–d) and the corresponding diffraction
pattern after fast Fourier transform (FFT) conver-
sion (right-hand corner) were shown. Figure 4b in-
dicated that the corresponding grain was an α-Mn
type phase grain with a crystal band axis of [311].

TABLE I

Saturation magnetization (Ms) and coercivity (Hc)
of Fe80Zr10B10 alloy annealed at 600◦C for different
annealing times.

Time [min] Ms [A m2/kg] Hc [kA/m]
1 75.48 0.17

3 81.40 0.41

10 99.91 6.66

20 101.34 6.94

60 117.46 9.82

120 122.74 15.16

Figure 4c indicated that the corresponding grain
was an α-Fe phase grain, and the crystal band
axis was [111]. Figure 4d indicated that the cor-
responding grain was a ZrB phase grain, and the
crystal band axis was [110], which was not ob-
served in XRD. Compared with the TEM image
of the alloy annealed for 10 min (Fig. 3a), the
increase in annealing time significantly increased
the size of grains. Furthermore, a long annealing
time resulted in the precipitation of α-Fe and ZrB
phases.

Figure 5 shows the magnetic hysteresis loops of
Fe80Zr10B10 alloys annealed at 600◦C for different
annealing times. The amplification regions of hys-
teresis loops are shown in the insert. When the an-
nealing times were 1 min and 3 min, the hysteresis
loop showed obvious soft magnetic characteristics,
which was due to their amorphous structure. With
increasing annealing time, the area of the hysteresis
loop gradually increased.

Table I lists the values of saturation magnetiza-
tion (Ms) and coercivity (Hc) of Fe80Zr10B10alloys
annealed at 600◦C for different annealing times. As
the annealing time increased, theMs of the alloy in-
creased gradually (from 75.48 to 122.74 A m2/kg),
and theHc of the alloy increased dramatically (from
0.17 to 15.16 kA/m). Note that Ms increased grad-
ually due to the increase in the degree of crys-
tallization. When the annealing times were 1 min
and 3 min, no crystalline diffraction peaks were ob-
served, and the values of Hc were small. When the
annealing times were 10 min and 20 min, almost
only the α-Mn type phase precipitated, and the val-
ues of Hc significantly increased. When the anneal-
ing times were 60 min and 120 min, Hc continued
to increase. The value of Hc reached 15.16 kA/m
after 120 min.

4. Conclusions

Fe80Zr10B10 amorphous alloy ribbons prepared
by melt spinning were annealed at different anneal-
ing temperatures and times. Both annealing tem-
perature and time have a significant influence on
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the structure of the alloy. The crystallization of
the Fe80Zr10B10 amorphous alloy followed the or-
der shown in (1). Both the α-Mn type (χ) and un-
known phase are metastable phases. When the an-
nealing time was 10 min, only the α-Mn type phase
existed. With the increase of annealing time, the
α-Fe phase precipitated gradually, and the crys-
tallization volume fraction of the α-Fe phase in-
creased. TEM showed that the ZrB phase was also
observed at the annealing time of 60 min, along with
the α-Mn type and α-Fe phases. With increasing
the annealing time, the area of the hysteresis loop
gradually increased. Also, Ms of the alloy increased
gradually (from 75.48 to 122.74 A m2/kg), and the
Hc of the alloy increased dramatically (from 0.17
to 15.16 kA/m).
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