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We study the quench dynamics of superconducting pairing correlations in the double quantum dot
system coupled to superconducting and normal metallic electrodes. The quantum dots are initially
isolated from each other, and the subsequent dynamics are induced by the sudden switching on hopping
between them. We focus on the time-dependence of the real and imaginary parts of dots pairing potential
and the role of the hopping amplitude and on-site Coulomb correlations. For relatively small hopping
values, the evolution of the pairing potential is suppressed due to a strong single-occupation blockade.
As the hopping amplitude increases, the pairing potential is dynamically redistributed between the
dots and can eventually assume values of opposite signs. This effect is enhanced by the presence of
strong on-site Coulomb interactions. The discussed numerical results are obtained by means of the
time-dependent numerical renormalization group approach.
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1. Introduction

The dynamical and transport properties of nanos-
tructures hybridized with superconductors are cur-
rently under extensive theoretical and experimen-
tal investigations [1–3]. Such systems can provide
important applications in the area of modern nano-
electronics, quantum computing, as well as informa-
tion processing and storage [4]. Research in this field
is also important from a fundamental point of view
and brings new ways to explore and test contem-
porary problems of basic science and, in particular
the quantum theory of condensed matter. Advanta-
geously, artificial systems based on quantum dots
allow to study various interactions and competi-
tion between superconducting and electronic corre-
lations in a precise and controllable manner. An im-
portant effect present in quantum dots proximi-
tized by a superconductor is the formation of An-
dreev bound states (ABS) [5]. Several recent works
have explored the dynamical aspect of this phe-
nomenon [6–8] and in this article, we extend those
studies focusing on the dynamics of superconduct-
ing correlations mediated by interdot hopping be-
tween two interacting quantum dots.

2. Model and method

The system (Fig. 1) consists of two quantum dots
(QD1,QD2) arranged serially between the super-
conducting (S) and normal (N) leads. The total
Hamiltonian can be expressed by

Ĥ = ĤN + ĤS + Ĥmix + ĤDQD, (1)
where

ĤN =
∑
k

εNkσ ĉ
†
Nkσ ĉNkσ (2)

describes the electrons in normal metallic lead, and
the superconducting electrode is given in the BCS-
form
ĤS =

∑
qσ

εSq ĉ
†
Sqσ ĉSqσ+

∑
q

[
∆ ĉ†Sq↑ĉ

†
S−q↓ + h.c.

]
.

(3)
Here, ĉNkσ (ĉSqσ) stands for the annihilation op-
erator of the electrons in normal N (superconduct-
ing S) lead, with the momentum k (q), the energy
εNk (Sq), and the spin σ=↑, ↓. The pairing potential
∆ is assumed to be real and is considered the largest
energy scale in the problem. The double quantum
dot part is described by

ĤDQD =
∑

σ,j=1,2

[
εjσ ĉ

†
jσ ĉjσ + U ĉ†j↑ĉj↑ĉ

†
j↓ĉj↓

]
+
∑
σ

[
υ(t) ĉ†1σ ĉ2σ + h.c.

]
(4)

with the energies denoted by εjσ, the on-site
Coulomb interaction by U , and υ(t) being a time-
dependent interdot hopping. Finally, the following
term describes tunneling between leads and corre-
sponding dots

Hmix=
∑
qσ

[
VSq ĉ

†
Sqσ ĉ1σ + h.c.

]
+
∑
kσ

[
VNk ĉ

†
Nkσ ĉ2σ + h.c.

]
, (5)
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Fig. 1. Schematic of a serial double quantum dot
system between superconducting (S) and normal
(N) leads with couplings ΓS and ΓN , respectively.
Considered quench is performed by abruptly switch-
ing on the hopping υ.

where VSq(Nk) is the tunneling amplitude between
QD1(2) and lead S (N). The lead–dot couplings
are then given by Γα=2π

∑
k |Vαk|2δ(ω−εαk),

where α = N,S.
The dynamical behavior of the system was

evaluated by employing the numerical renor-
malization group method [9–12] and its time-
dependent extension (tNRG) [13–15]. The con-
duction band of normal lead is logarithmically
discretized and then mapped to a semi-infinite
1D tight binding chain. Subsequently, diagonal-
ization is performed in an iterative fashion. This
procedure finds the complete many-body eigen-
bases of the initial and final Hamiltonians Ĥ0

and Ĥ, respectively,
∑
nse |nse〉D0 D

0 〈nse| = 1̂ and∑
nse |nse〉D D〈nse| = 1̂, where s labels the dis-

carded (D) eigenstates at an iteration n, and e de-
notes the environmental subspace [13].

Calculations of time-dependent expectation val-
ues were performed in the frequency domain. The
frequency dependence is expressed as

O(ω) =

XX′ 6=KK∑
n

∑
n′

∑
ss′e

X〈ns e|wn′ ρ̂0n′ |ns′e〉X
′

× X′
〈ns′e|Ô|ns e〉X δ

(
ω + EXns − EX

′

ns′
)
. (6)

Here, ρ̂0n′ denotes the contribution to the ini-
tial density matrix from the n′-th iteration with
weight wn′ .

In the last step of the procedure, we perform
a Fourier transformation into the time domain,
O(t) =

∫∞
−∞ dωO(ω)e− iωt [16]. The discretization

parameter in calculations was set to Λ = 2 and we
kept NK = 2000 states.

3. Results

We consider a quantum quench that modifies the
initial Hamiltonian in a step-like fashion Ĥ0 → Ĥ,
in which a hopping term between two initially sep-
arated quantum dots is suddenly switched on,

υ(t) =

{
0 fort ≤ 0,

υ fort > 0.
(7)

We also assume the simple case of both QDs half-
filled, ε1/2 = −U/2, which suppresses the charge
dynamics and allows us to focus only on the time-
evolution of pairing correlations. The temperature
in calculations is set to T = 0.

Fig. 2. (a, b) The real part of the individual on-dot
pairings 〈cj↓(t)cj↑(t)〉 and (c) the imaginary part
of the interdot pairing 〈c1↓(t)c2↑(t)〉 as a function
of time. The results are obtained for indicated val-
ues of υ/ΓS , while U/ΓS = 0.2, ε = −U/2 and
ΓN/ΓS = 0.1.

Figure 2 shows the time evolution of the real and
imaginary parts of the pairing correlations following
the proposed quench protocol. Generally, the char-
acteristic features of these functions have a relation
to differential conductance and can indicate excita-
tion energies and in-gap bound states. A detailed
analysis of this correspondence was performed in
the earlier work, to which reference is made [8].
The curves are evaluated for different υ values in
the final Hamiltonian. For all cases presented, ini-
tially only QD1 is in contact with the supercon-
ducting lead. At time t ≤ 0, this is manifested
as the maximum absolute value of pairing poten-
tial, Re[〈c1↓c1↑〉] = −0.5, while QD2 is not affected
by superconducting correlations, Re〈c2↓c2↑〉 = 0.
At t = 0, the finite value of hopping coupling υ (as
indicated in the legend in Fig. 2) is switched on and
we observe the subsequent time evolution of pair-
ing potentials. At short times, all three functions
are dominated by oscillations, strongly dependent
on the strength of the coupling to superconductor
ΓS . The redistribution of the real part of the pair-
ing potential between the dots is revealed. As the
higher values of the υ hopping are evaluated, we
observe then that in the long time limit, the pair-
ing potential of both dots is evening up. However,
when υ/ΓS > 0.5, the dynamics expose additional
long-time oscillations that are only found in the
real parts. Moreover, in this regime, the real part
of the paring potential on QD2 also assumes posi-
tive values.
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Fig. 3. The real part of the individual on-dot pairings 〈cj↓(t)cj↑(t)〉 as a function of time and hopping coupling
υ. The results are obtained for indicated values of U/ΓS (a–f), while ε = −U/2 and ΓN/ΓS = 0.1.

To inspect this effect in more details, we plot the
relevant time dependencies on a longer time scale
and for a wide range of hopping υ. Additionally, we
consider the role of the intradot Coulomb interac-
tions U . Figure 3 presents the results obtained for
three different values of U . Here we note that the in-
fluence of the Coulomb interaction is only revealed
in the real part of pairing potential, while the imag-
inary part of interdot potential remains unaffected
and therefore we do not show it.

In all considered sets of parameters, the pairing
potential on QD1 remains negative and, depend-
ing on the amplitude of υ, is reduced after the
quench. In turn, the pairing potential on QD2 is
evolving to a new finite value. For relatively small
values of hopping υ/ΓS < 0.1, the pairing poten-
tial remains intact on QD1 and does not develop
on QD2 due to the presence of a strong block-
ade in the single occupation regime. In the limit
of 0.1 < υ/ΓS < 0.5, the pairing potential tends
to evolve toward an even distribution between both
dots. Furthermore, for substantial values of the hop-
ping amplitude υ/ΓS > 0.5, we predict that the
pairing potential of QD2 can acquire a positive sign.
For the case U/ΓS = 0.2, in a long time limit, a pos-
itive value of the pairing potential on QD2 is only
predicted when υ ≈ ΓS . However, as U is enhanced,
this tendency is predicted for a wide range of hop-
pings values where υ/ΓS > 0.5. This dynamical be-
havior reveals another interesting and non-trivial
competition between Coulomb and superconduct-
ing correlations and the corresponding dynamics in
strongly interacting nanoscopic systems.

4. Conclusions

In summary, we analyzed the dynamics of super-
conducting correlations in a hybrid double quantum
dot system after sudden switching on of the inter-
dot hopping coupling. The presented results can be
of great importance for understanding how in-gap
bound states are formed and modified in complex
hybrid nanostructures induced by sudden pertur-
bation of the system. We have specifically focused
on switching on the hopping interaction between
two quantum dots and shown that in the regime of
small amplitudes, the dynamics for superconducting
correlations can be blocked. For the intermediate
regime, the time evolution tends toward an even dis-
tribution of the pairing potential between the dots.
However, when the hopping parameter is consider-
able, the time-dependence reveals additional oscilla-
tions and the system needs more time to achieve the
long-time limit, while the pairing potentials of both
dots may assume opposite signs. Finally, we show
that Coulomb interactions enhance this effect.
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