ACTA PHYSICA POLONICA A No. 2 Vol. 143

Proceedings of the 20th National Conference on Superconductivity “New Phases, Concepts and Advances”

Pairing Mechanism at Finite Temperatures
in Bosonic Systems

A. KRZYWICKA AND T.P. POLAK*

Adam Mickiewicz University of Poznan, Faculty of Physics, Umultowska 85, 61-614 Poznan,
Poland
*e-mail:

Doi: 10.12693/APhysPolA.143.157 tppolak@amu.edu.pl

The pure Bose-Hubbard model, a staple of optical lattice-related research that describes bosonic con-
densation, is examined at finite temperatures. Advanced analytical methods are used, most importantly
path integrals and quantum rotors. A first-order trace approximation is commonly applied while in-
tegrating over bosonic fields to obtain a phase-only model. Here, a second-order trace approximation
is considered instead. This extension leads to an effective phase model with two types of superfluid,
i.e., standard Bose—Einstein condensation and additional temperature-driven bosonic pair condensa-
tion. This effective model is further treated with a self-consistent harmonic approximation in order to
compare the two superfluids. This analysis shows that the pairing mechanism strengthens the conden-
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sate phase at finite temperatures.
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1. Introduction

The quantum phase transition between the two
ground states of the Bose-Hubbard (BH) model,
i.e., the superfluid (SF) state and the Mott insula-
tor (MI) state, is a staple of the study of strongly-
correlated systems in low temperatures [1-5], par-
ticularly on optical lattices. The transition to the
normal state is also observed at finite tempera-
tures [4-7].

Atom pairs have been observed in the depletion
of an equilibrium interacting Bose gas by Tenart
et al. [8], who used helium 4 and combined long
time-of-flight (TOF) with three-dimensional detec-
tion method.

Many-body correlations (MBCs) are always
present in optical lattice systems, even when only
the standard Hamiltonian is used to analyze exper-
imental data [9-11]. In the BH model with density-
induced tunnelling, MBCs lead to bosonic pair con-
densation [12]. However, MBCs are not the only
possible source of bosonic pairing.

We carry out a path integral analysis of the
Bose-Hubbard model, using the U(1) quantum ro-
tor method [3]. The usual strategy in quantum rotor
approaches is to reach a phase-only effective model
and perform Gaussian integration. The next step
is the series expansion of the Green’s function of
the effective model. This expansion is usually ap-
proximated to first-order terms only. We show that
temperature-driven pair condensation is anticipated
by this model, provided terms of higher order are
also preserved.
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The self-consistent harmonic approximation [13]
is applied to the effective phase model. The order
parameters are calculated to map the transitions
between the normal phase and two others: single-
particle Bose-Einstein condensate (BEC) and pair
condensate. Introducing the density of states allows
us to analyse and compare the properties of this
model in different geometries, although here we fo-
cus on a simple cubic lattice. The methods used pro-
vide a natural way to analyze effective many-body
correlations.

2. Methods

The Hamiltonian of the Bose-Hubbard model is

H = g an (TLZ*].) — Z tija;raj — ‘U,an,

d (4,4) i (1)
with on-site repulsion U > 0, chemical potential p,
hopping integral ¢,; = ¢, and annihilation a; (cre-
ation aj) operator of a particle at j-th site. The path
integral partition function and the effective action

are, respectively,
Z= /{DdDa} e~Slaal

and

S:Z/Bdrai(T)
Yo

The Hubbard—Stratonovich and gauge transfor-
mations allow us to integrate over bosonic fields,
bringing us to a phase-only model with the follow-
ing partition function

(2)

da; (1)
or

B
+ [drH(r). (3)
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where
Gl=G'-T=G,'(1-TGy), (5)
_ o
Gyl = (87’ + #) iz, (6)
T =t e~ i (pi(T)=p;i (7)) (7)

The trace can be approximated to the second order
as

Tr[In (G71)] = =Tr|In(Go) | ~ T [ (TGo) ]
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Further, Gy is expanded as the sum of two compo-
nents, i.e., the bosonic Gy and the imaginary time-
dependent G(7), which after Fourier transform are

2(zt+p
Gozbg:¥7 (9)

—iwy + [
BZ R (10)

These transformations lead to an effective phase
model with

/dTZ(

+ / dr |—-J Z cos(gaij)—J/ Z cos(2p4;5)

0 (4,9 (i,7)

i

(11)

and exact expressions for the two coefficients

J 2 (at+3U+p)

t U (12)
J ot | 2(zt+3U+n) Lz

t U U 2sinh® (18 (3U+n))’

(13)
The interaction terms represent two different or-
dered phases, with two order parameters, namely
¥, = (cos(p;)) (single) and Wy, = (cos(2¢;))
(pair). The imaginary time-dependent part of J
disappears in the zero temperature limit.
The self-consistent harmonic approximation is
applied, With the trial function

S0l = /dT UZ(

0p;

K 2
Ty >
(i)
(14)

ar (22,(%( ))2+i‘;]¢i(7)> +Tr[1n (G—l)] ]
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According to the variational principle for free en-
ergy, one reads

fgf:fo+%<8—so>. (15)

Minimising F by requiring that SF =0 yields the
eponymous self-consistent equation for K

Je 2P K =0, (16)
where D;; = (7). Summing over nearest neigh-
bours and introducing the density of states allows
us to obtain an analytical expression for D;;

- ()

(17)

The single and pair order parameters
¥ = (cos(pi)) = e 20, (18)
Wy = (cos(2¢;)) = e72<‘p?>, (19)

can also be calculated. The use of the density of
states allows us to analyse their properties and crit-
ical behaviour both analytically and numerically,
in various geometries. The following results have
been generated for a three-dimensional simple cubic
lattice.
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Fig. 1. The single ¥; and pair ¥» order parame-
ters on a simple cubic lattice for ¢/U = 0.085. (a)
Model without pair term. (b) Model with pair term.
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3. Results

Figure 1 shows a comparison of the temperature
dependence of order parameters in two models: (i)
single order parameter in the standard phase model,
without a pair term,

/ 1 0
Pi
SM_O/dT Uzij<37

2
) oo
(i,9)

(20)
and (ii) single and pair condensate order parameters
in the full version (11). The single hopping is t/U =
0.085 and the chemical potential is /U = 1.5. The
temperature is T/ = T/U = 1/(BU).

In the extended phase model, the pair condensate
is generated by imaginary time dynamics. Similar
to pairing generated by density-induced tunnelling
(DIT) [12], the presence of the cos(2¢;;) pair term
in (11) strengthens the condensate phase, mean-
ing the superfluid survives in higher temperatures.
However, in this case, there is no phase separation;
the critical temperature is the same for single and
pair condensates.

Figure 2 shows the entropy

OF

5= "ar

with and without the cos(2¢;;) term. The compari-

son is presented for two values of the single hopping,
t/U = 0.015 and t/U = 0.085.

(21)
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Fig. 2. Dependence of entropy on temperature on

a simple cubic lattice in the single model (20) and
in the single + pair model (11) for (a) ¢/U = 0.015;
(b) t/U = 0.085.
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4. Conclusions

The results shown in this work are obtained by
a quantum rotor path integral analysis of the Bose—
Hubbard model. The standard procedure is to ob-
tain phase-only effective models, perform Gaussian
integration, and series expansion of the result of this
integration. We expand on this procedure by includ-
ing higher-order terms in the effective action after
the series expansion. We show that temperature-
driven pair condensation is anticipated by one of the
second-order terms in this model. This finite tem-
perature pair condensation is driven by imaginary
time dynamics.

In addition to generating pair condensation,
bosonic pairing also strengthens the superfluid
phase, which means it survives at higher temper-
atures.
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