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A theoretical investigation of the spin- and charge transport properties of the ferromagnetic
metal/insulator/heavy fermion Rashba metal tunnel junction is presented. The electron dynamics in
the entire system are described within a single-particle effective Hamiltonian. The dependence of the
spin current polarization and the low-bias spin-resolved conductance spectra on the macroscopic param-
eters of the system are studied. We consider an infinite two-dimensional system with periodic boundary
conditions imposed along the transverse direction of the junction. We observed that strong spin current
polarization amplification and spin current filtering are induced by Rashba spin–orbit coupling in the
presence of a large effective masses difference between ferromagnetic metal and heavy fermion Rashba
material. The spin-dependent scattering problem is solved analytically within the effective mass ap-
proximation in combination with the spin density matrix formalism.
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1. Introduction

Electronic transport in low-dimensional systems
with Rashba-type spin–orbit interaction (RSO) has
attracted a lot of attention due to the promising
properties of spin states whose dynamics may be
controlled effectively by an externally applied elec-
tric field [1–5]. The classic example is the Datta–
Das proposal of the ballistic spin field effect tran-
sistor, where the spin precession length is controlled
by varying RSO strength in a semiconductor re-
gion, driving the charge current between two fer-
romagnetic contacts [6]. One of the central themes
of spintronics research is thus the study of the inter-
play between spin- and charge transport in various
heterostructures [7–12]. At this stage, the large tun-
neling magnetoresistance observed in magnetic tun-
nel junctions (MTJs) garnered much attention due
to possible applications in nanotechnology, partic-
ularly in the fabrication of random access memo-
ries and next-generation magnetic field sensors [13].
The fundamental property of an MTJ is that the
tunneling current depends on the relative orienta-
tion of the magnetizations of the two ferromagnetic
contacts. This phenomenon is referred to as tunnel-
ing magnetoresistance (TMR). TMR is related to
spin-dependent tunneling (SDT). The SDT reflects
an imbalance in the electric current carried by up-
and down-spin electrons tunneling through the po-
tential barrier, separating ferromagnetic electrodes.

The origin of SDT can be explained by the fact
that the tunneling probability depends on the Fermi
wave vector. As is well known, in ferromagnetic
metals electronic bands are exchange-split, which
gives different Fermi wave vectors for up- and
down-spin electrons. As a consequence, a tunnel-
ing probability becomes spin-dependent. The SDT
effect has been studied extensively in various con-
texts. The tunneling anisotropic magnetoresistance
effect in ferroelectric tunnel junctions with ferro-
magnetic and normal metal electrodes separated by
a ferroelectric barrier of finite thickness has been
studied, including both Rashba and Dresselhaus
spin–orbit coupling [14]. The possibility to control
the resistance through ferroelectric polarization of
the barrier and through magnetization configura-
tion of the electrodes has been demonstrated in
a frame of the model of multiferroic tunnel junc-
tion, which explicitly includes the spin-dependent
screening potential [15]. The charge and spin trans-
port through a junction composed of an ordinary
two-dimensional metal and a non-centrosymmetric
two-dimensional semiconductor with RSO have
been studied using the free electron approxima-
tion and scattering method [16]. A complete de-
scription of tunneling transport and interface prop-
erties of Schottky diodes in the non-linear recti-
fying regime has been recently performed experi-
mentally [17]. Direct and phonon-assisted interband
tunneling transport have been studied theoretically
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based on the self-consistent solution of Poisson’s
and Schrödinger’s equations within effective mass
approximation [18]. The double junction systems
of ferromagnet/superconductor/ferromagnet have
been studied within the one-band approxima-
tion [19, 20]. Many theoretical investigations have
shown that both charge and spin transport in hy-
brid structures between the Rashba system and
various materials such as metals [21–23], ferromag-
nets [24–27], and superconductors [28] are affected
by the strength of RSO.

Heavy fermion materials (HFMs) play an impor-
tant role in current scientific research, acting as
prototypical materials for non-Fermi liquid behav-
ior, unconventional superconductivity, and quan-
tum criticality [29]. The actual interaction between
conduction electrons and localized f -magnetic mo-
ments in HFM is still not completely understood
and is a topic of ongoing experimental and theo-
retical investigations. HFMs belong to the group
of strongly correlated electron systems. In HFM,
the non-perturbative growth of the interaction leads
to quasi-electrons with masses up to thousands of
times the bare electron mass, i.e., the electrons
are dramatically slowed by the interactions. Heavy
fermion behavior has been found in a wide vari-
ety of states, including superconducting, metallic,
insulating, and magnetic states. Typical examples
are CeCu6, CeAl3, CeCu2Si2, YbAl3, UBe13, and
UPt3. At high temperatures, HFM exhibit a large
saturated resistivity, induced by incoherent spin-flip
scattering of the conduction electrons on the local
f -moments. This scattering becomes increasingly
elastic as the temperature is lowered. In the case
of HFM, the development of coherence manifests it-
self by a rapid reduction in resistivity. The localized
magnetic moments become screened by the spins
of the conduction sea and ultimately form a spin-
less scattering center at low temperatures. This
is the regime of asymptotic freedom [30]. Heavy
fermion materials are strongly correlated systems,
and a comprehensive description of the electron dy-
namics in such materials needs to use some Kondo
lattice-type Hamiltonian [31]. However, in the first
approximation, we employ a single-particle Hamil-
tonian as in the case of semiconductors or metals,
but with a larger effective mass. One should note
that above the characteristic coherence tempera-
ture Tcoh, HFMs behave like normal metals. Com-
pared to a normal metal, however, HFMs at higher
temperatures have a high scattering rate due to the
large density of local magnetic moments (at least
one f -electron per unit cell), which cause incoherent
Kondo scattering [32]. Additionally, coherent heavy-
electron propagation is readily destroyed by sub-
stitutional impurities and the influence of thermal
fluctuations of the local spins.

In this paper, we investigate theoretically
spin and particle currents through the tun-
nel junction composed of ferromagnetic metal
(FM)/insulator/heavy fermion Rashba metal

Fig. 1. Schematic of the FM/HFRM tunnel junc-
tion. HFRM is applied by the electric field E per-
pendicular to the plane of the system. The electric
field is the source of Rashba spin–orbit coupling.

(HFRM) within the effective mass approximation.
In particular, we study the conditions under which
the junction acts as the spin current amplifier and
the spin current valve. The interference effects be-
tween spin-resolved energy eigenstates in every part
of the system are neglected, taking into account the
electron dynamics in the HFRM material within
the effective single-particle treatment. Due to the
presence of a magnetization vector, along which the
electrons spins are aligned, the FM electrode is the
source of well-defined spin-polarized currents. The
initial polarization of the currents can be strength-
ened or suppressed due to the Rashba spin–orbit
interaction occurring in the drain electrode, where
the effective electron mass is larger compared to
the free electron mass. As we will see, some effects
are amplified due to this difference. At this point,
one should note that the d-electrons in transition
metals have a much larger effective mass than the
free electron mass, and such materials may also be
considered as the source of a large mass difference
between two parts of the junction.

2. Model

The junction is represented by s two-dimensional
system, where semi-infinite FM occupies the x < 0
region and semi-infinite HFRM occupies the x > 0
region, and an insulating layer separating the two
regions is situated at x = 0. The potential barrier
of the insulating interface is taken in the form of
the Dirac delta function, which is appropriate for
modeling an extremely thin insulating layer. The
geometry of the system is shown in Fig. 1.

It is convenient for further analysis to intro-
duce atomic units: a0 = 4πε0~2

mee2
as the unit of

length, Eh = mee
4

(4πε0)2~2 as the unit of energy, and
α0 = e2/4πε0 as the unit of Rashba coupling con-
stant [33]. We note that the electron charge used
in these definitions is e = 1.60218 × 10−19 C and
ε0 = 8.85419 × 10−12 F/m. In atomic units, the
Hamiltonian of the system reads

Ĥ = γδ(x) +

{
ĤFM if x < 0

ĤHFRM if x ≥ 0
, (1)
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where

ĤFM = − 1

2M1
(∂2x + ∂2y) +∆m · σ,

ĤHFRM = − 1

2M2
(∂2x + ∂2y)− iα(σx∂y − σy∂x).

(2)
Here ∆ is the spin-splitting energy in the ferromag-
netic material, γ is the effective strength of the po-
tential barrier, and σ’s are the Pauli matrices. The
unit vector
m =

[
sin(Θ) cos(φ), sin(Θ) sin(φ), cos(Θ)

]
(3)

indicates the direction of the magnetization of FM,
M1 ≡ MFM/me, M2 ≡ MHFRM/me are effective
masses in units of free electron mass me, and α is
given in units of α0 = 1.43996 eV nm. The energy
bands of corresponding parts of the system are given
in Fig. 2. The notation used is defined below.

Fig. 2. Energy dispersion along the fixed direction
in 2D space of the wavevector k as a function of
k = |k| for (a) FM and (b) HFRM materials. Ar-
rows indicate the spin states, given by (4) and (10),
respectively. The energy of the incident electron and
the Fermi level are measured from the bottom of the
minority carriers dispersion in FM. If the FM and
HFRM materials are connected, the Fermi level is
the same for both parts of the junction. The pa-
rameter ∆ is the built-in energy splitting between
majority and minority carriers spin states in the FM
material (exchange energy). For HFRM, the energy
shift E0 = eVg is controlled by an external gate.

2.1. The FM eigenstates

The Hamiltonian of the ferromagnetic part of the
junction has the form of the sum of two terms de-
pendent on the spatial and spin variables, respec-
tively. Thus, the eigenstates of the Hamiltonian
ĤFM can be represented as a product of spatial- and
spin-part. The diagonalization of exchange coupling
operator ∆m · σ gives eigenstates having the form
of two-component spinors

χ(↑) =

[
c

s

]
, χ(↓) =

[
−s∗

c∗

]
, (4)

where

c = e− iφ/2 cos

(
Θ

2

)
, s = e iφ/2 sin

(
Θ

2

)
.

(5)
The spinors correspond to the eigenvalues ±1, re-
spectively. Looking for eigenstates of ĤFM in the
form

e ikyy e ikxxχ(↑), e ikyy e ikxxχ(↓), (6)
we obtain corresponding energy dispersion relations

E±(k) =
k2

2M1
±∆, (7)

where k =
√
k2x + k2y. Solving the above equations

with respect to k, for E > ∆, one obtains two mag-
nitudes of the wave vector corresponding to minor-
ity and majority carriers with the same energy,

k↑↓(E) =
√
2M1

(
E ∓∆

)
. (8)

For energies satisfying the condition −∆ ≤ E ≤ ∆,
we obtain one solution,

k↓(E) =
√

2M1

(
E +∆

)
. (9)

We will consider in this paper only the energy range
with two solutions given in (8).

2.2. The HFRM eigenstates

Assuming translational symmetry in both spatial
directions, the eigenstates to the spin–orbit opera-
tor α (σxpy−σypx) can be found as the k-dependent
spinors, known as Rashba spinors, which can be
written in the forms

ξ(1)(kx, ky) =
1√

1 + |z|2

[
1

− iz

]
,

ξ(2)(kx, ky) =
1√

1 + |z|2

[
1

iz

]
,

(10)
where

z =
α

|α|
kx + iky

k
. (11)

We note that when kx, ky are real, then |z| = 1.
However, the wave function of the transmitted elec-
trons may also include an evanescent wave contribu-
tion. Evanescent waves correspond to complex com-
ponents kx of the Bloch wavevector k, correspond-
ing to transmitted electrons. Since kx =

√
k2 − k2y,

where ky is limited only by the magnitude of the
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Fermi vector of incident electrons, the component
ky may exceed the magnitude of the Bloch wavevec-
tor of transmitted electrons that leads to complex
solutions for kx. The complex components of the
wave vector k lead to the evanescent waves that do
not contribute directly to the spin- or charge cur-
rent for a sufficiently large distance from the scat-
tering region. The complex kx must be, however,
taken into account for the correct calculation of the
transmission coefficients satisfying appropriate lin-
ear systems (see Appendix A).

Looking for the eigenstates to the Hamiltonian
ĤHFRM in the form
e ikyy e ikxx ξ(1)(kx, ky), e ikyy e ikxx ξ(2)(kx, ky),

(12)
we obtain, respectively, two energy dispersion rela-
tions

E±(k) =
k2

2M2
± |α|k − E0, (13)

where E0 = eVg is energy shift that is defined by
an external gate. The magnitudes of the wave vec-
tors corresponding to the branches ±, for fixed en-
ergy E > −E0, read

k1(2) =

√
2M2

(
E+E0

)
+
(
M2α

)2 ∓M2|α|.
(14)

For the energy range − 1
2M2α

2−E0 < E < −E0,
one obtains

k±2 = ±
√
2M2

(
E+E0

)
+
(
M2α

)2
+M2|α|.

(15)

We will consider in further calculations only the
case E > −E0. Note that the solutions for semi-
infinite contacts are the same as long as we do not
impose specific boundary conditions.

2.3. Scattering problem

In the ferromagnetic material, the scattering of
incident waves associated with majority-spin and
minority-spin electrons may be treated as processes
occurring in two independent spin channels. We de-
note these channels as spin-up (↑) if the electron
spin is parallel to the vector m and as spin-down
(↓) if the electron spin is antiparallel to the magne-
tization vector. For the channel (↑), the solution to
the Schrödinger equation of the entire system reads

ψ↑(y, x) = e ikyy

 e ik
↑
xx χ(↑) + r↑p e

− ik↑xx χ(↑) + r↑a e
− ik↓xx χ(↓), x ≤ 0

t↑1 e
ik1xx ξ(1)(k1x, ky) + t↑2 e

ik2xx ξ(2)(k2x, ky), x ≥ 0.
(16)

Similarly, for the channel (↓), we have

ψ↓(y, x) = e ikyy

 e ik
↓
xx χ(↓) + r↓p e

− ik↓xx χ(↓) + r↓a e
− ik↑xx χ(↑), x ≤ 0

t↓1 e ik1xx ξ(1)(k1x, ky) + t↓2 e
ik2xx ξ(2)(k2x, ky), x ≥ 0,

(17)

where k↑↓x =
√

(k↑↓)2 − k2y, and kix =
√
k2i − k2y,

for i = 1, 2. For a given Fermi wave vector cor-
responding to the channel (↑) or (↓) of the inci-
dent wave, we obtain, respectively, the limitation
on the ky component of the Bloch wave vector
for transmitted wave, −k↑(E) ≤ ky ≤ k↑(E) or
−k↓(E) ≤ ky ≤ k↓(E). By imposing, separately
for the spin-up and spin-down channel, following
boundary conditions at the interface [34]

ψ↑↓(y, 0−) = ψ↑↓(y, 0+), (18)

1

M1
∂xψ

↑↓(y, x)
∣∣∣
x=0−

=

(
1

M2
−2iασy

)
∂xψ

↑↓(y, x)
∣∣∣
x=0+

−2γψ↑↓(y, 0),

(19)

we obtain four linear equations for reflection
and transmission coefficients r↑↓p (E, ky), r↑↓a (E, ky),
t↑↓1 (E, ky), t

↑↓
2 (E, ky). The systems of equations are

given in Appendix A.

3. Spin current and particle current

In the investigation of spin-dependent transport
properties, it is convenient to introduce the con-
cept of spin current and particle current densities.
The former is defined as the expectation value of
the spin current operator, and the latter simply as
the expectation value of the velocity operator. The
related current density, in this case, is referred to
as the particle current or the charge current if the
velocity operator is multiplied by the elementary
charge. The spin current operator is commonly de-
fined as the product of the velocity operator and the
spin operator [35]. According to the general quan-
tum mechanical principle, the x-component of the
velocity operator (in a.u.) can be obtained as

v̂x = i
[
Ĥ, x

]
=

{ px
M1

if x < 0

px
M2
− ασy if x ≥ 0,

(20)

where px = − i∂x. The x-component of the spin cur-
rent operator takes the form

ĵs =
1

2
(v̂xσ + σv̂x). (21)
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The x-component of the particle current operator
reads

ĵp = v̂x. (22)
The current densities can be obtained as expecta-
tion values of relevant hermitian operators. The av-
eraging can be performed using the density matrix
approach, which is a more suitable method for sys-
tems in which the interference effects between the
electron states are suppressed. Using independent
spin channels approximation, we adopt, in fact, this
assumption for the FMmaterial. On the other hand,
the well-known fact is that at high temperatures,
heavy-fermion compounds exhibit a large saturated
resistivity induced by incoherent scattering of the
conduction electrons on local magnetic moments.
In addition, coherent heavy-electron propagation is
readily destroyed by substitutional impurities and
thermal fluctuations of the local spins.

The scattering takes place in two independent
channels, defined by two spin states of the initial
incident electrons. We note that the approach based
on the concept of two noninteracting spin channels
is commonly accepted in the studies of quantum
transport in various systems. For spin-independent
processes, this spin degeneracy leads to a multipli-
cation of final results, such as transmission, con-
ductance, current, etc., by factor 2. However, when
the process is spin-dependent, the simple rescaling
of results is not justified. In such cases, every spin
channel gives, in general, a different contribution to
the final result. As a consequence, instead of multi-
plication by 2, the summation over two spin degrees
of freedom must be performed. To this end, it is
more convenient to use the density matrix formal-
ism, in which this incoherent summation over spin
channels may be naturally included. Moreover, the
assumption on the presence of decoherence mecha-
nisms discussed above may also be taken into ac-
count easily by neglecting off-diagonal elements in
the relevant density matrix. It should be noted here
that the calculational procedure described below is
fully equivalent to the direct calculation of currents,
separately for both channels, from the definition

jx = 1
2

[
ψ†(v̂xψ) + (v̂xψ)

†ψ
]
, (23)

which reduces to the well-known expression for
problems without spin–orbit coupling (v̂x = px/M)

jx = i
2M

[
(∇xψ)†ψ − ψ†(∇xψ)

]
. (24)

However, in order to make all calculations more
compact and clear, we use the density matrix ap-
proach. In order to construct a spin density matrix
for incident electrons, we can introduce the follow-
ing four-dimensional spin–orbital basis set

Φ
(1)
in =

[
e ik

↑
xxχ(↑)

0

]
, Φ

(2)
in =

[
e ik

↓
xxχ(↓)

0

]
,

Φ
(3)
in =

[
0

e ik
↑
xxχ(↑)

]
, Φ

(4)
in =

[
0

e ik
↓
xxχ(↓)

]
,

(25)

where two upper components correspond to the up
channel, and two lower components correspond to
the down channel. As a consequence, relevant ma-
trices describing the scattering process have four-
dimensional representations. We introduce this con-
struction in order to consider two separate cases,
given together by (16) and (17). We note that in
the channel up, only the spin state χ(↑) appears, and
similarly, in the channel down, the spin state χ(↓).
The states Φ(2)

in ,Φ
(3)
in are required, however, to make

the basis set complete. As a consequence, the gen-
eral state of the incident electron in the four-
dimensional channel-spin representation (25) reads

Ψin(y, x) = e ikyy
(
e iα1Φ

(1)
in + e iα4Φ

(4)
in

)
, (26)

where α1, α4 are arbitrary phases. Assuming the
existence of some randomization mechanism for
phases α1 and α4, making the superposition in (26)
incoherent, and in consequence, giving two indepen-
dent scattering channels, the state (26) in the ba-
sis (25) may be described by the diagonal density
matrix

[ρ̂in] =

[
ρ↑in 0

0 ρ↓in

]
,

ρ↑in =

[
1 0

0 0

]
, ρ↓in =

[
0 0

0 1

]
.

(27)
One can easily find that the velocity operator v̂x in
the basis (25) has the matrix representation

[v̂in] =

[
v̂in 0

0 v̂in

]
, v̂in =

[
v̂in1 0

0 v̂in2

]
, (28)

where

v̂in1 =
k↑x
M1

, v̂in2 =
k↓x
M1

. (29)

In a similar way, for the transmitted electrons, the
wave function can be represented as a linear combi-
nation of the following four-component functions,

Φ
(1)
tra =

[
e ik1xxξ(1)

0

]
, Φ

(2)
tra =

[
e ik2xxξ(2)

0

]
,

Φ
(3)
tra =

[
0

e ik1xxξ(1)

]
, Φ

(4)
tra =

[
0

e ik2xxξ(2)

]
.

(30)
The wave function of the transmitted electrons has
the general form

Ψtra(y, x) = e ikyy
[
e iβ1

(
t↑1Φ

(1)
tra+t

↑
2Φ

(2)
tra

)
+ e iβ4

(
t↓1Φ

(3)
tra+t

↓
2Φ

(4)
tra

)]
,

(31)
where random phases β1 and β4 have again
been introduced formally to decouple both chan-
nels. We note that for transmitted electrons,
intra-channel coherent superpositions of different
Rashba states lead to off-diagonal matrix elements
in corresponding diagonal blocks of the density
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matrix. The off-diagonal terms include the factor
exp(i(k1x−k∗2x)x) that leads to x-dependent weekly
oscillating terms in the transmitted currents for
propagating modes (both k1x, k2x — real). On the
other hand, the evanescent modes (one or two of
k1x, k2x — complex) do not contribute to the cur-
rent. Since interference effects are supposed to be
rather weak due to the reasons given earlier, we can
neglect off-diagonal terms in general, taking in the
first approximation of the density operator in the
diagonal form. Finally, the corresponding density
matrix reads

[ρ̂tra] =

[
ρ↑tra 0

0 ρ↓tra

]
,

ρ↑tra =

[
|t↑1|2 0

0 |t↑2|2

]
, ρ↓tra =

[
|t↓1|2 0

0 |t↓2|2

]
.

(32)
The velocity matrix in the basis (30) takes the form

[v̂tra] =

[
v̂tra 0

0 v̂tra

]
, v̂tra =

[
v̂tra1 0

0 v̂tra2

]
,

(33)
where

v̂tra1 =
Re(k1x)

M2
+ 2α

Re(z1)

1 + |z1|2
,

v̂tra2 =
Re(k2x)

M2
− 2α

Re(z2)

1 + |z2|2
.

(34)
In the same manner, the density matrix for reflected
electrons eigenstates may be constructed. This is
not, however, necessary to construct this matrix ex-
plicitly because the reflected electrons eigenstates
are not independent of transmitted electrons eigen-
states, and moreover, we investigate the effects re-
lated to the transmission.

We note that from a technical point of view, it
is more convenient to consider a finite-width sys-
tem with periodic boundary conditions instead of
an infinite 2D system. Introducing periodic bound-
ary conditions along the y-direction, we obtain dis-
crete values

kny =
2π

W
n, n = 0,±1,±2, . . . , (35)

where W is the width of the junction. As well
known, averaging of any observable is equivalent
to calculating the trace of the product of the den-
sity operator and relevant observable, taken in the
same representation. The (E,n)-resolved spin cur-
rent and particle current are obtained by taking the
following traces,
js(E,n) = Tr([ρ][js]), (36)

jp(E,n) = Tr([ρ][jp]), (37)
where [js] and [jp] are four-dimensional matrices
obtained directly from (21) and (22) using rele-
vant matrix representations for velocity operator
and spin operators (see Appendix B). Applying

the definitions given above to the incident elec-
trons, we obtain analytical expressions for the spin
current

jins (E,n) =
k↑x(E,n)− k↓x(E,n)

M1
m (38)

and for the particle current

jinp (E,n) =
k↑x(E,n) + k↓x(E,n)

M1
. (39)

The energy-resolved currents are obtained by sum-
mation over discrete transverse modes, numbered
by the index n,

js(E) =

N∑
n=−N

js(E,n), (40)

jp(E) =

N∑
n=−N

jp(E,n), (41)

where N = min
(
Int(k

↑↓W
2π )

)
. Note that the direc-

tion of the vector js for the incident electrons is the
direction of the magnetization vectorm. In turn, its
magnitude is proportional to the difference of kx-
components of Fermi vectors for the majority and
minority carriers. For transmitted electrons, the di-
rection of js is, in general, changed relatively to
m due to the Rashba spin–orbit interaction. In the
presence of interference effects between plane waves
corresponding to different Bloch vectors k1,k2, the
spin polarization vector performs continuous pre-
cession along the transport direction, like in the
Datta–Das spin effect transistor. However, in the
present approach, the interference effects are absent
for the reasons discussed earlier, and the vector js
has a constant direction and magnitude that de-
pends only on the initial conditions. From the spin-
tronics point of view, a key question is how large
is the spin current normalized to the total particle
current. The efficiency of spin polarization is char-
acterized by the ratio of the spin current to the par-
ticle current [36], i.e.,

Pi(E) =
js,i(E)

jp(E)
(i = x, y, z). (42)

For a fixed transverse mode, the spin polarization
vector for incident electrons reads

P in =
k↑x − k↓x
k↑x + k↓x

m. (43)

The obtained result is a generalization of the
spin polarization of the conductance formula cor-
responding to a 1D ferromagnet/metal tunnel junc-
tion [33]. We see that the magnitude of P is inde-
pendent of the magnetization direction, and in the
absence of the exchange splitting (k↑x = k↓x), the po-
larization becomes zero. The summation over trans-
verse modes does not change these properties.

4. Low-bias conductance

To obtain the conductance, we first calculate
the transmission coefficient using relevant scatter-
ing amplitudes. The transmission coefficient from
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the left lead to the right lead is given as TLR =
|jtrap |/|jinp |, where current densities are calculated
for a given transverse mode. Taking into account
two spin channels separately, we can write

T ↑n(E) =
|t↑1|2v̂tra1 + |t↑2|2v̂tra2

v̂in1
, (44)

T ↓n(E) =
|t↓1|2v̂tra1 + |t↓2|2v̂tra2

v̂in2
, (45)

where the index n denotes the transverse mode, pa-
rameterized by the value of ky with periodic bound-
ary conditions. Assuming that the bias voltage VLR
is very weak (TLR ≈ TRL), the electric current I
from the left lead to the right lead is given as

I =
e

h

∞∫
−∞

dE
∑
n

[
T ↑n(E) + T ↓n(E)

]
×
[
f(E−EF−eVLR)− f(E−EF)

]
,

(46)
where f(·) is the Fermi distribution function. The
summation over transverse modes can be trans-
formed into the integration over the angle ϑ =
sin−1(ky/kF), according to

∑
n

kny −→
W

2π

kF∫
−kF

dky =
WkF
2π

π/2∫
−π/2

dϑ cos(ϑ),

Tn(E) −→ T (E, ϑ),
(47)

where kF = k↑ or kF = k↓. Finally, we obtain

I =
We

4π2~

∞∫
−∞

dE

π/2∫
−π/2

dϑ cos(ϑ)

×
[
k↑(E)T ↑(E, ϑ) + k↓(E)T ↓(E, ϑ)

]
×
[
f(E−EF−eVLR)− f(E−EF)

]
.

(48)
Using the approximation f(E−EF − eVLR) −
f(E−EF) ≈ eVLR δ(E−EF), valid in the zero-bias
limit and in the low-temperature limit, we obtain
the conductance per unit width of the junction
G = W−1dI/dVLR. The total conductance G can
be expressed as the sum of two spin-resolved com-
ponents, corresponding to two spin-channels of in-
cident electrons,

G = G(↑) +G(↓), (49)
where

G(↑) =
e2

2π h

π/2∫
−π/2

dϑ cos(ϑ)k↑(EF)T
↑(EF, ϑ),

G(↓) =
e2

2π h

π/2∫
−π/2

dϑ cos(ϑ)k↓(EF)T
↓(EF, ϑ),

(50)
where EF is the equilibrium Fermi level of the
junction.

5. Results and discussion

We theoretically studied transport-related issues
in terms of the spin current and the charge cur-
rent through the two-dimensional tunnel junction,
composed of ferromagnetic metal and heavy fermion
Rashba metal, separated by the thin insulating bar-
rier. The problem has been investigated in a frame-
work of effective mass approximation in combina-
tion with density matrix formalism. The spin states
have been investigated as devoid of phase coherence
due to several mechanisms of decoherence discussed
in previous sections. We focused on the analysis
of the measure of the spin polarization of the spin
current, the particle current dependence, as well as
the low-bias conductance dependence on the system
characteristic parameters. The measure of the spin

Fig. 3. The magnitude P of the spin current po-
larization vector (see (42)) for transmitted electrons
(solid lines) and incident electrons (black dashed
line), for several effective masses M2 and magne-
tization directions of FM, given by angles Θ and
φ. Polarization P is given as a function of Rashba
coupling constant α (in units of α0). The colour
curves mean: M2 = 1 (yellow), M2 = 10 (blue),
M2 = 100 (green), and M2 = 1000 (red) (in units
of me). Calculations performed with parameters:
E = 4, E0 = 0,∆ = 1, γ = 2 (in atomic units).
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Fig. 4. Conductance G (in units of e2/h) per unit width of the junction as function of gate voltage Vg: (a),
(b) M2 = 10; (c), (d) M2 = 100, for several values of Rashba coupling constant α (in atomic units) with fixed
parameters: EF = 4,∆ = 1, γ = 2, and orientation of the magnetization vector given by angles (Θ , φ).

current polarization is referred to as the efficiency
of the spin current polarization, i.e., the quotient of
the spin current to the total particle current. Ac-
cording to the definition, this is a vector quantity
that is related to the three spin components of the
spin current operator. We examined the dependence
of the magnitude of this vector on the model param-
eters for an infinite two-dimensional system with pe-
riodic boundary conditions. The total conductance
and spin-resolved conductances are studied in the
linear response regime.

Figure 3 presents the dependence of the mag-
nitude P of the spin current polarization vector,
defined in (42). The dependence of P on Rashba
spin–orbit coupling constant α is demonstrated for
increasing effective masses of the electron in the
HFRM material. Two orientations of the initial
spin-polarization vector, defined in (43) are con-
sidered: the orientation perpendicular to the plane
of the system and the in-plane orientation, which
are given in Fig. 3a and Fig. 3b, respectively. We
can see that the spin polarization of the current
strongly depends on the effective masses difference
between the HFRM and FM parts of the junction.

In the latter, the effective electron mass is fixed on
the value corresponding to the free electron mass
(M1 = me). For fixed α, the polarization increases
with M2 monotonically. For large M2, the polariza-
tion rapidly increases with α and discloses satura-
tion, approaching the maximal value P = 1. We can
see that the polarization of the spin current in the
case of the in-plane orientation of the magnetization
vector (Θ = π/2, φ = π/2) exceeds the polarization
corresponding to the case of the out-of-plane orien-
tation of the magnetization (Θ = 0, φ-arbitrary) for
every value of α.

Figure 4 presents conductance spectra corre-
sponding to the linear response regime. The spec-
tra are grouped according to the increasing effec-
tive mass M2, different orientations of the magne-
tization vector in the FM, and several α-values in
the HFRM. The spectra are plotted as a function
of the ratio E0/EF. In an experimental realization,
energy shift E0 = eVg is obtained by applying the
gate voltage Vg. We can see that the conductance is
higher when the magnetization vector of the FM
lead lies in the plane of the junction, i.e., when
it is parallel to the Rashba magnetic field in the
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Fig. 5. The total conductance G and spin-resolved conductances G(↑) and G(↓) per unit width of the junction
as functions of Rashba coupling α (in atomic units): (a), (b)M2 = 10; (c),(d)M2 = 100. The model parameters:
EF = 4,∆ = 1, γ = 2.

HFRM lead. In general, numerical simulations per-
formed for various orientations of the magnetization
indicate that the parallel alignment of the polariza-
tion vector is the optimal configuration for the high-
est conductance. For the effective mass M2 = 10,
the conductance increases with Vg for a wide range
of α. However, for M2 = 100, the conductance de-
creases with growing Vg when α & 0.1. In general,
the conductance becomes lower as M2 increases.
As a consequence, the electric current is suppressed
by the high difference in effective masses between
FM and HFRM leads. However, as we have seen,
the spin current normalized to the particle current
becomes enhanced in this limit. One should note
here that the conductance (resistance) is correlated
strongly with Rashba spin–orbit coupling, modu-
lated by the external electric field. By switching be-
tween low (high) α, we can obtain low (high) re-
sistance of the system. Moreover, the conductance
(resistance) difference between states with low and
high α may be tuned up by the gate voltage Vg.

Figure 5 presents the α-dependence of total con-
ductance G and spin-resolved conductances G(↑)

and G(↓) in the linear response limit. We can see

that the dependence of the conductance on Rashba
spin–orbit coupling α is strongly correlated with
the orientation of the magnetization vector of the
FM material. In the case of out-of-plane orienta-
tion perpendicular to the plane of the junction,
the difference between G(↑) and G(↓) is approxi-
mately constant. As we can see in Fig. 5a and c,
both components give slightly different contribu-
tions to the total conductance. However, in the
case of the in-plane orientation of the magnetiza-
tion vector (Θ = π/2, φ = π/4), the component
G(↓) decreases to zero with growing α, while the
component G(↑) increases. Finally, for sufficiently
high Rashba coupling, the total conductance con-
tains only one spin component. Thus, the junction
acts as a spin valve, transmitting only one com-
ponent of the spin-polarized current. The effect is
larger for larger mass differences between both parts
of the junction. As we can see in panels (b) and
(d) in Fig. 5, the G(↓) component is completely fil-
tered out for α & 0.6 and α & 0.3 for M2 = 10
and M2 = 100, respectively. By changing the α
sign, the components G(↑) and G(↓) exchange their
roles.
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6. Conclusions

In summary, we have investigated some new as-
pects related to spin current and charge current in
the two-dimensional tunnel device containing ferro-
magnetic metal as the source electrode and heavy
fermion material with Rashba spin–orbit interaction
as the drain electrode. We have observed a few pe-
culiar features, important from the point of view of
spintronics applications, emerging in the behavior of
the spin current polarization and the low-bias con-
ductance. The spin current polarization amplifica-
tion and spin-resolved conductance have been stud-

ied for several sets of macroscopic parameters of the
system. In particular, effective filtering of spin cur-
rents with opposite spin polarizations was observed
as a result of the Rashba spin–orbit coupling occur-
ring in the drain electrode for the system with the
in-plane orientation of magnetization in the source
electrode.

Appendix A: Scattering coefficients

The scattering amplitudes corresponding to
transmitted and reflected electrons satisfy the sys-
tem of linear equations


c −s∗ −1 −1
s c∗ iz1 − iz2

− ik↑x
M1

c
ik↓x
M1

s∗
[
ik1x
M2

(2αM2z1−1) + 2γ
] [

− ik2x
M2

(2αM2z2+1) + 2γ
]

− ik↑x
M1

s − ik↓x
M1

c∗ −
[
k1x
M2

(z1−2αM2) + 2iγz1

] [
k2x
M2

(z2+2αM2) + 2iγz2

]



r↑p

r↑a

t̃↑1

t̃↑2

 =


−c
−s

− ik↑x
M1

c

− ik↑x
M1

s


(51)

for the channel (↑) and
−s∗ c −1 −1
c∗ s iz1 − iz2

ik↓x
M1

s∗ − ik↑x
M1

c
[
ik1x
M2

(2αM2z1−1) + 2γ
] [

− ik2x
M2

(2αM2z2+1) + 2γ
]

− ik↓x
M1

c∗ − ik↑x
M1

s −
[
k1x
M2

(z1−2αM2) + 2iγz1

] [
k2x
M2

(z2+2αM2) + 2iγz2

]



r↓p

r↓a

t̃↓1

t̃↓2

 =


s∗

−c∗

ik↓x
M1

s∗

− ik↓x
M1

c∗


(52)

for the channel (↓). The transmission coefficients t↑↓i = t̃↑↓i
√
1 + |zi|2 for i = 1, 2.

Appendix B: Spin matrices
in channel-spin representation

The spin matrices corresponding to incident elec-
trons in the representation (25) read

[σin
1 ] =

[
σin
1 0

0 σin
1

]
,

[σin
2 ] =

[
σin
2 0

0 σin
2

]
,

[σin
3 ] =

[
σin
3 0

0 σin
3

]
,

(53)
where

σin
1 =

[
sin(ϑ) cos(ϕ) 0

0 − sin(ϑ) cos(ϕ)

]
,

σin
2 =

[
sin(ϑ) sin(ϕ) 0

0 − sin(ϑ) sin(ϕ)

]
,

σin
3 =

[
cos(ϑ) 0

0 − cos(ϑ)

]
.

(54)

For transmitted electrons, the spin matrices in
the representation (30) take forms

[σtra
1 ] =

[
σtra
1 0

0 σtr
1

]
,

[σtra
2 ] =

[
σtra
2 0

0 σtr
2

]
,

[σtra
3 ] =

[
σtra
3 0

0 σtr
3

]
,

(55)
where

σtra
1 =

[
2

1+|z1|2 Im(z1) 0

0 − 2
1+|z2|2 Im(z2)

]
,

σtra
2 =

[
− 2

1+|z1|2 Re(z1) 0

0 2
1+|z2|2 Re(z2)

]
,

σtra
3 =

 1−|z1|2
1+|z1|2 0

0 1−|z2|2
1+|z2|2

 .
(56)
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