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The formalism within the Boltzmann-Bloch transport equation proposed in the first
part of the paper for treating the. spin-fluctuation resistivity, g, of anisotrcpic magnetic
systems is applied to uniaxial and cubic ferromagnetic metals. In the uniaxial case the for-
mulae for ¢ and dp/dT are calculated in the first ordgr approximation and the influence
of anisotropic fluctuations, following from the generalized Landau theory appropriate
for uniaxial crystals, on anisotropy in ¢ and do/dT is shown and discussed. The anisotropic
magnetic fluctuations are also shown to create an anisotropy of p in cubic materials. In
this case the anisotropic effects manifest themselves in the next order approximation within
the Landau theory and the Boltzmann-Bloch equation approach,

PACS numbers: 72.15.Eb, 75.10.—b

1. Introduction

In the first part of this paper? [1] an appropriate formalism within the Boltzmann-Bloch
transport equation was proposed for treating the spin-fluctuation (s-f) resistivity, o, of
anisotropic magnetic systems, in particular, ferromagnetic metals. Such an approach was
needed because of the recent interest of experimentalists in anisotropic effects which occur
in the conduction electron scatterings within the temperature region encompassing the
critical temperature [2, 3]. Also recently, experimentalists and theoreticians have focussed
their attention on anisotropy in critical X-ray scattering (see, e.g., [4]).

Most of the previous theoretical papers concerned with the s-f resistivity have been
devoted to isotropic models in the close vicinity of the critical temperature (see, e.g.,
references in [1]), where the magnetic and band structure anisotropy is not essential and
the temperature behaviour of g, or rather dg/dT, is governed by the appropriate critical
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indices. However, most experiments are still carried out outside this hardly accessible
region and the details of magnetic interactions and band structure become important
in the interpretation of these results [5]. In order to include these details in the theoretical
description, besides the solution of the Boltzmann-Bloch equation in the anisotropic case,
an appropriate spin-spin correlation function is needed. In the first approximation to
uniaxial systems this may be the correlation function derived in [6] on the grounds of
the Landau theory supplemented with anisotropic fluctuation terms. However, in order
to describe the experimental results for ¢ in a qualitatively correct manner, this function
should be modified like the standard Ornstein-Zernike function [1] and, additionally, the
magnetocrystalline anisotropy effects should be included. These generalizations of the
correlation function derived in [6] are made in the present paper, and the function applied
to calculate the s-f resistivity and its temperature derivative on the grounds of the approach
proposed in [1]. The results are illustrated for reasonable values of the parameters of model
materials. Some of these results has been already reported [7, 8]. In particular, this is an
effect of the anisotropy in the s-f resistivity which arises from the anisotropic fluctuations [6].
In our opinion, the anisotropy in the s-f resistivity that occurs in uniaxial ferromagnetic
metals and alloys [9, 2] may be, at least partly, a consequence of the anisotropic fluctua-
tions, following, in turn, from the departure of the lattice from the cubic symmetry and
the existence of the magnetic anisotropy.

As for cubic crystals there has been neither experimental nor theoretical evidence for
the existence of an anisotropy in the s-f resistivity. Also an anisotropy of the magnetic
fluctuations has never been studied. In the present paper we attempt to answer the basic
questions as to the existence of such anisotropic effects in cubic ferromagnetic metals,
too, on the basis of simple theoretical arguments.

The outline of the paper is as follows. The consequences of the approach of [1] in the
application to anisotropic systems are discussed in general terms in Section 2. In Section 3
the explicit expressions for the s-f resistivity and its temperature derivative are calculated
and illustrated in diagrams. Section 3 is devoted to the anisotropic corrections in cubic
ferromagnets. Finally, in the last Section, the results are summarized.

2. Formulation of the problem

The problem of the s-f resistivity, studied again in [1] for isotropic systems but from
a more general standpoint, is as follows: the conduction electrons described in the free-
-electron approximation are scattered on magnetic fluctuations of the localized magnetic
moments ugS,(R) (v = x, y, z) being periodically arrayed in a lattice. In the present paper,
as in the considerations of [1], we assume the electron energy in the form
&, = (YDh.4 .k K, where 4 ,, is k-independent (summation convention will be used over
repeated Greek indices denoting components). The exact form of the Hamiltonian describ-
ing the interactions within the magnetic system, s, is not essential at this stage of the
considerations. The interaction between these two systems is specified as in [1] in the
simplest form, i.e., as the isotropic contact exchange interaction between the localized
magnetic moments and the moments of the conduction electrons. Then, the kernel of the
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Boltzmanu-Bloch equation — being proportional to the scattering cross-section — is given
in the metallic limit (e > kgT) by

Q(k, 'y = (e, — ep) P(k, k')(ey — £p), (2.1a)
Pk, k') = (A—zfg) Esfgil—) I'(R, T)e  i*~F¥IR (2.1b)
v

R

where G is the interaction constant and .4 the number of the magnetic ions in the volume
V = AV, of the crystal. The basic quantity in Egs. (2.1) is I'(R, T), which — according
to (1.2.2) — stands for the sum of the diagonal components of the tensor of the magnetic
correlations

IR, T) = [S(S+ D] ((S(R)S,(0)> — <5, (R)) <S,(0))). (2:2)

Let us summarize in a passage these results of the general approach of [1] which
will be useful in our further discussion. The conductivity tensor follows immediately from
the expression for the electric current

I, =~ i3J‘dk5(8;3_8F)¢(k)vﬂ(k)’ (2.3)
4n” ‘

where v,(k) is a component of the electron velocity. The function ¢(k) — assumed in the
form of an expansion ¢(k) = Y b,¢,(k) in spherical harmonics known, in turn, from the

symmetry considerations — is determined through the coefficients b; which have to satisfy
the set of linear equations

> Cyb;+D; =0 (2.4)
L, J
with D; = ¢E, | dko(e,—er)@p (kv (k). The inner products C;; = (¢;, Ceh ;) with the collision
operator C are expressed through the kernel Q(k, k') and defined by (1.3.7). For lattices
of arbitrary symmetry the first harmonic is ¢ (k) = A(ep)k,n,, where A,(ep) is the nor-
malization constant and the z,’s stand for the components of the unit vector pointing in the
direction of the applied electric field E. The next harmonic that contributes to Eq. (2.3),
e.g., for cubic lattices, is of the form

b3(k) = (1/2)A;(er) (Sky — 3Kk, )n, 2.5)

(k* = k,k,) in the coordination frame with the axes along the four-fold axes of rotation.
Similarly, all the higher harmonics in the general case are ¢ (k) = Afer)@; (K)n,, where
@:,,(k) is a polynomial of an odd (i-th) degree in k,.

As far as the considerations are restricted to the parabolic band all D; except D,
are equal to zero due to the orthogonality relations. For the same reason only the first
harmonic explicitly contributes to Eq. (2.3): b, % 0 and b, = 0 if i % 1. The remaining
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harmonics contribute to the current through the value of by = —D,d,,/det (C;;), where
d is the minor of the element C, ;. When considerations are restricted to the first harmonic,
the conductivity tensor is

_2 _[dk { dk'(ey,— ex)O(en — Ep)M Ky M ok ki K,
me o [ dk § ' Q(k, k') (k,—k.) (k,— k,)n,n,

(2.6)

For simplicity, confine ourselves now to the spherical Fermi surface, i.e., assume
My = (h/m)?,,. The conductivity tensor calculated up to the /-th order in spherical har-
monics is '

o &> h 2 4t ‘
Oyy = v R
BT 4nd  mdy )| T 27)

where 4; = Cyy, 45 = (C11— 2,C54), ... . The tensor o) is diagonal in an arbitrary
coordination frame since the band is spherical. However, as seen from Eq. (2.7) and the
definition C;; the value of 4, (being proportional to the resistivity measured in the n-direc-
tion) must depend on n, i.e., on the direction of the applied electric field with respect to
the crystal axes (provided that the kernel Q(k, k') is not of spherical symmetry). This is,
of course, the reason why the s-f resistivity measured in the direction parallel and per-
pendicular to the easy axis of a uniaxial ferromagnet is different due to an anisotropy
in the magnetic fluctuations. Similar effects can also be expected in cubic ferromagnets
if the applied electric field is directed in nonequivalent crystallographic directions.

3. Uniaxial ferromagnets

3A. Correlation function

To generalize the correlation function derived in [6] we must start again from the Lan-
dau free energy density appropriate for uniaxial crystals

f(R) = AM*(R)+KM3i(R)+BM*(R)+ 43, (‘;]Z ) (%) N X))

(\/ M(R)M, (R) M(R) is the magnetization length at a point R; M, = VM 2+M 2
similar notation for perpendicular components will be used further) and write down the
tensor Az’i of the magnetic fluctuations in a more general form. Obviously, the symmetry
of A“” should be still such as to describe uniaxial crystals properly. However, if this tensor
is to give an account of the magnetic anisotropy (K) effects besides those of the. lattice
symmetry, the form A2 = 4, ,0* used in [6] is not sufficient. This is obvious when one
compares the free energy (3. 1) in the limit T — 0 to the energy corresponding to the spin
Hamiltonian

Hg=—F (2) S(Rl)S(R N+ A (z) [Sx(R,)Sx(R )+ S,(R)S,(R)] 3.2)
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(Ki,j> — restriction to nearest neighbours) in the classical approximation. The, similar
considerations as in [1], based on the standard procedure (see, e.g., [12]), lead to

= = f"‘ 2z zz f 2
AT = A = A2 = MY = S dIST, M = A = 0 IS,
-
az=m=LLpg g pg (3:3)
2V, 2v,
w here
B=yih &=y . G

and r, is the distance to the (/-th) magnetic ion in the first coordination sphere, correspond-
ing to the directions in the plane xy, and z; — corresponding to the direction z. All the
remaining components of A""’ should be equal to zero as a result of the symmetry require-
ments and the above cons1derat10n From the comparison of Eq. (3.1) to the mean-ficld
energy corresponding to Eq. (3.2) one can also estimate the remaining parameters of the
Landau free energy (3.1), namely

7 S? 35(28%+28+1 H 8>
A=f Y, B= ( S+Dw g K- 2Vw

e , 3.5
2V, 40(S+1)°V, (3:3)

B

where w-is the number of nearest -neighbours.
The generalization'(3.3) does-not change the form of the correlation function, which

as in [6], in the inverse space is

nIV—Z/:’.FO(t)é;ZW L

—_— (3.6)
]- + guv zqz + 5uv .Lq.L

Tula, ) =

(¢ — fluctuation wave vector, I'o() = const (1+1¢), #=(T—T,)/T,) for the diagonal compo-
nents and it is equal to zero if u # v. The only change is in the amplitude of the correlation
lengths £, , , of I}, (g, t), in which the additional factor (1—K/4')/? (4 = A’|t]) arises2.
Thus, the correlation lengths defined in [6, 7] read

6zz,z = 6077,2(1): éL_L,z = fo’h(t)a
Comr = Codn (),  &y1,1 = &EAn (1), 3.7

where
b =dw 2 i =d,/d, . (3.8)

“2 An error has been made in [7, 81, in comparing the mean-field free-energy corresponding t;a“(3.2)
to the respective form of (3.1). The correct form of 7 in these papers should be 5, = ¥—/2 for # < 0,
and 51 = (*’+x)"Y2 for t >0 (k.= KjA’, v =1/2).
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and the functions #,(¢) are in the ferromagnetic phase (¢ < 0)

n(0) = 271217 () = (x T =12 (3.9a)
and in the paramagnetic phase (¢ > 0)
nt) = t7%  nu(®) = [A=0)/(+)]"2, (3.9b)

where k¥ = K/A' = 4/ ¢ and v = 1/2. As in [6] the isocorrelation surfaces (I'(g) = const)
are ellipsoids of revolution with the ratio of axes equal to A. From a purely physical point
of view it is obvious that the parameters 4 and x should be interrelated. With tetragonal
lattices and pseudodipolar interactions being equivalent to (3.2), one can find such a rela-
tion (see, e.g., [13]). It simply says that x is proportional to 4, and x is positive if the cubic
lattice is contracted in the z-direction. The latter statement is, of course, in agreement with
common sense since the magnitude of the exchange interactions decreases with distance.
However, even in this simplest case one can hardly estimate the value of the proportionality
constant. Therefore, we shall consider A and x as two independent model parameters.

To include; at least partly, the large-g correlations essential for the s-f resistivity [14]
we modify the temperature dependent factor in Eq. (3.6) by requiring [15] the correlation
function to satisfy the exact sum rule

Y f(g,t) = 4 (1—m?), (3.10)

where m(z) is the homogeneous part of the reduced magnetization. The details of this
procedure for isotropic systems are described in [1]. In the uniaxial case considered here
we integrate the function F(g,t) = I,,(q, 1)+2I,, (¢,?) over the volume in g-space
equal to that of the Brillouin zone and bounded by an isocorrelation surface. Then, I'g(f) —
assumed as the normalization factor to be found from the requirement (3.10) — is ‘ given by

() 30— m?)

) = = ) 3.11
0= F0) = 3 u()—2u,) (3.11)
where
3I(0) = 223(w[3)!/34727, (3.12a)
u,(f) = (61°4%)~ 3(n,r)" " arctan [(62°A%)!*n,r], (3.12b)
_ mejtlf, <0 -1/
m(t) = {o, o0 = &V (3.12¢)

and within the Landau theory g = 1/2 and m, = (4’/2B)!/>.

Further refinements of the correlation function can be obtained by requiring the cor-
relation length of the order parameter to be described by the index v (=~ 2/3 from exper-
iments and more accurate theories). Then, by also applying the scaling relation v = 28
(valid for a 3-dimensional system), we obtain the generalized (v# 1/2) relations (3.9). Such
a generalization should be, of course, made with caution, but there are premises to con-
sider that it shifts the validity of our approximation closer to the critical region [16, 1].
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After these refinements the diagonal components of the correlation function (3.6)
can be represented as

O
P O+ (K +APKD)

K, 1) = (3.13)

where (1) = zz, L L, Iy = 22/3%(nA/3)*3, K, = V}/?q,, and r is defined in (3.12¢). In the
isotropic case (A =1, k¥ = 0) the sum I"®(K, £)+2/ XK, t) = [\(K, ) corresponds?
to (1.4.10).

On the grounds of Eqgs. (3.4) and (3.8) one can estimate the value of A and r for a given
crystal structure. For the simple tetragonal lattice and the hep structure these values along
with the corresponding ratio £,/b (b is the lattice constant in the basal plane, ¢ — in the
z-direction) are given in Table I. As with the cubic lattices [1] the values of &, are of the
order of the lattice spacings, which is in accordance with experimental estimations (see,
e.g., [17D.

TABLE I

The values of the parameters r, 4 and &o/a following from the comparison of the Landau free energy to the
microscopic one (see text)

Quantity T -
Lattice TT— _ fofa ¥ A
simple tetragonal 3-1/2 312 ~ (.58 alc
hep 3-1/2 21/63-1/2 ~ (.65 312 ~ 0.87

3B. Spin-fluctuation resistivity

Consistent with the symmetry of the correlation function (3.6), (3.13) we assume
‘ﬂuv = (h/mz)ézyézv + (h/'nl.) (5xy5xv + 5yu5yv)9 (314)

which according to Eq. (2.6) yields the following expression for the resistivity in the easy
and hard direction (u = z, 1)

w _ 27 [ dk § dkQ(k, k) [v,(k)—v,(K )} (3.15)
= [ dko(ex— e)v2(K) ’ '

where v,(k) is the electron velocity in the respective direction. The above expression corre-
sponds to that used in [18] to calculate the effects of the band structure anisotropy on the

3 As seen from Egs. (3.7) and (3.9) the correspondence to the isotropic case is obvious in the para-
magnetic phase. It is also obvious that for the isotropic ferromagnet the correlation length cannot depend
on direction in the crystal. Indeed, in this case we have Aﬁ = /16“’36,” and on the g_rounds of the definition
of the correlation length that is used here [6] we have 5.(f) = 5.(f) = 2-1/2]¢|-'/2 for the ferromagnetic
phase.
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s-f resistivity and obtained by a different method. If the kernel Q(k, k') and the band are
of spherical symmetry, from Eq. (3.15) one can easily obtain the formula (1.3.19) corre-
sponding, in turn, to the result of the relaxation time approach.

It is easy to note that Eq. (3.15) can be represented by

o™(1) = 0o ;1«“‘“’<R)F(R, 1), (3.16)
where

3ES(S+ Dmy (A GV,
2e*heg

Q0 = . (3.17)

R jdk | dk'8(e,—ep)0(er - er)e " * ) [v,(l)—v,(k NP
3m, N ) dkd(e,—ep)0o(R)]?

and F®(0) -# m,/m,. If R is considered as a continuous variable as in Eq. (3.1), Eq. (3.16)
in the inverse space is

F(”)(R) (3.18)

QOa
(@2n)°

where the Fourier transforms are defined f(g) = ¥, ' | dRf(R) exp (—igR). The transform
of Eq. (3.17) is

Q(”)(t) gon

J qu @) (g, 1), (3.19)

372 qﬂ(mu/mi)
2V kF sz 19

F(g) = O(2kp,.—4), (3:20)
where @(x) is the step function (O(x) = 1 if x > 0 and 0 if x < 0), ¢’ = (g2 +w?q?)?
with 0? = m /m 1 2k, -is the Fermi surface caliper in the u-direction and the summa-
tion convention with respect to yx is not used.

The application of Egs. (3.13) and (3.20) to Eq. (3.19) yields the expression for the
reduced s-f resistivity

A1) = aPy(t) 35L — 5P (n) 25D} (3.21)
where
L)
gz“‘)( t) = , (3.22a)
6qu o _ _
p= 2k VI3, @ =¥ dP =07 (3.22b)

(3

the values of £ are given in Table, II and the integrals S @ are defined as
T

SOy = J d%5%(x)

0

In. [1 +(prn)*a*(x)]
(prm)*a*(x)

(3.23)



491

TABLE II
‘The values of ff)”) in the formula (3.21)
Jff) Jr(()J_)
-1
0< Ho<1 Y(Q—X""'arctan X) 2-1 (Yllz Z arctanX_jgz)>
Mo =1 1/3
@t IYI(1X|* arc tanh [X]—1) {27 (1Y|1/2<—> arctanh 1X|—Jéz’>
w
—_ 2
y= Ty
(Mw)? 1-(Mw)?

in which
2
ey - 3% . k=
&) {(1—-x2)/2, b=

For the isotropic ferromagnet the above expression corresponds to (1.5.8) (see also footnote
3). The temperature derivative of 2 is

a*(x) = [1 —(A/w)2]x2+(/1/w)5. (3.24)

= ™

()
. 101, U {606(“’[(W(“’(nz)—f W) +200) (1+1>) ™ (W90, ~ 5P ,))]

dt 34|
291 [( 1 >+2@(t) Pt 1 &
- St —U, K —— —U
L—md|t]" | \1+(drn,)? L+(@drmyy® ) 4
L2y i T (3.25)
N Tomdi |

where the functions W*(y) are defined in Table III and d = (6721?)!/3,

Fig. 1 (dashed curves) illustrates the dependence of ¢ on the reduced temperature
in the case w = 1 (spherica1 band). The anisotropy of the s-f resistivity, caused solely by
the lattice (hep structure, 4 < 1, see Table I) and the magnetic anisotropy is evident. The
band structure anisotropy increases the splitting between the s-f resistivity values corre-
sponding to z- and L direction (solid curves). The same dependence is shown in Fig. 2
but for = 4 = 1.01 (which may roughly correspond to tetragonal TbZn [3]) and the
same value of x as in Fig.-1. Note that now, contrary to Fig. 1, #® > #™. The next
two figures (3,4) show the influence of the value of p and x on d#®/dt. It is seen that even
considerable change in the effective number of the current carriers (p) have little influence
on the behaviour of d“)/dt in the ferromagnetic phase. Also the influence of the magnetic
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TABLE 111
The function W) (n) of the formula (3.25)
w =) ‘ W)
Y(Z-1/2 arc tan Z1/* | 2LY[(X-/2+ X1/2) arc tan X1/?
0 < Aw <1 12 N '
: -X arc tan X1/?) —(Z-Y2 4 Z*%) arc tan Z1/2]

Mo =1 37 (1 +pr )t

5 [Y[(1X /% arc tan h| X ]!/ ‘ 2-YY|[(1Z]-*/?— | Z|*/?) arc tanh |Z|*/?

Jo > 1 — |22 arc tanh]Z|t/2) l —~(JX1-1/2 — |X|"/?) arc 1anh | X|*/%]

PR -1 a2
Z=Zm = <1+ poanke 1= — |rn)®

X and Y defined in Table II.

anisotropy constant x on the anisotropy of d#™/dt is small in comparison to the combined
effect of the lattice (4 # 1) and band structure (@ # 1) anisotropy.

The influence of the value of v (correlation length index) and m, (amplitude of magneti-
zation) on the behaviour of dg/dT as a function of 7 is much the same as in the isotropic
case (see, [1]) with the magnitude of do/dT split for the z- and L-direction.

P
—
|
”/
; em—— 2Z
// -
r10
/
// //
7 /
e 0.6 z
rd //’_—
0.02
1 1 .

t

Fig. 1. The dependence of the (reduced) s-f resistivity on #(=(T— T.)/T) for the hep structure (r, 4 according
to Table I), w = 1 (dashed curves) and w = 0.8 (solid curves). In both the cases p = 12, x = 0.1 and S=1
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1.72

=117

/ 1.7
-

1
0004 ¢

Fig. 2. The dependence of the (reduced) s-f resistivity on 7 for @ = A = 1.01 (approx'imately TbZn) and
the values of the remaining parameters as in Fig. 1. Pay attention that now, contrary to Fig. 1, ¢(® > (1)

b amrat

0.02 t

Fig. 3. The influence of the value of p on dp/dT. The solid curves correspond to p = 12, dashed ones to
p = 2; in both the cases the upper one to the perpendicular direction and x = 0.1

4. Cubic ferromagnets

It is known that anisotropic effects in cubic ferromagnets must be described by at
least fourth order terms in the magnetization components or spin operators. Thus, an
approximate Landau free energy should include such anisotropic terms of the proper
symmetry and, in order to describe fluctuations, also the corresponding fourth order
terms in OM,/OR,. However, to answer the basic questions it is quite sufficient to restrict
the considerations to the variation of the free energy due to the fluctuations (see, e.g., [6]),
which for cubic crystals should read [20]

Af = [ dR[f(R)—f,] = Y L(q) IM(q)* +4-th order terms in M,(q). (4.1)

q,v
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fo denotes here the free energy of a uniformly-magnetized crystal and M,(q) stand for the
Fourier transforms of AM/R) = M, (R)—m, ie., the departures of the magnetization
components from their average values. The cubic symmetry implies the following form
of the coefficients:

L(g) = Lo+L,q’ +'L4q4+ﬂ4(q‘£+q;‘+q;‘)+ (4.2)

The temperature dependence of Af included in L, is not essential for our present considera-
tions. The last two terms of the right hand side of Eq. (4.2), which are invariant under the

\ dR /dt

+10

I
002 ST ¢

Fig. 4. The dependence of do/dT on t, corresponding to the solid curves of Fig. 1. The dashed curves
illustrate the same dependence with the change x for the value 0.2 (instead of 0.1}

symmetry operations of cubic. lattices, arise obviously from the fourth order terms in
dM,JoR, of the Landau free energy. The diagonal components <|M,(g)|>> of the tensor
correlation function, being the only nonvanishing ones and equal to each other, are simply
proportional to the inverse of L(g) [19], if the fourth order terms in M, (q) are omitted
in the probability density exp (—AfJkzT) of the fluctuations. Thus, in the lowest order
approximation we can assume

f(g. v = 1/L(g. D). (4.3)

It is seen that the isocorrelation surfaces cease to be spheres, like those in the case of the
Ornstein—Zernike correlation function, by simply considering higher order terms in the
free energy expansion (see, Fig. 5).

We shall show that the anisotropic correlations described in this way suffice to produce
an anisotropy in the s-f resistivity in cubic crystals. For this purpose we assume the spherical
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band and calculate the resistivity up the third order approximation in spherical harmonics,
i.e., we use formula (2.7) for / = 3 in which the inner products C;; are calculated with
the use of the harmonic (2.5). They can be represented in the form (3.19), namely

Ciy = [ dql'(g, (), 44
where, to within an accuracy of a constant factor, F;;(q) are given by
Fif(a) = | dad(ex—er)d(er-g~5) [d:(0) — ¢k — )] [$,(R) — ¢ (k ~ q)]- (4.5)
The straightforward calculations yield

ﬁl I(Q) oc quqvnunv@(sz_q)5 (46)

Fig. 5. The schematic isocorrelation surfaces (f’(q, t) — const) of cubic lattices in g-space, following as

in [20] from the approximation (4.3). In the spherical coordinates: g5 = g sin® cos ¢, g, = gsin?sin ¢,

gz = g cos$ with the polar axis parallel to the directions of the type [001], the solid curves correspond
to the projection ¢ = 0 and the dashed (thick) ones to ¢ = 7/4 in the case a) Ly > 0, b) L; < 0

which corresponds to Eq. (3.20) specified for the spherical band, when the electric field
is along the main directions, i.e., those of the type [100] — being the reference frame of
the harmonics ¢, (k). One can easily note that the resistivity calculated up to the first order

oV o [ F(q, O)F,,(q)dq @7

does not depend on the direction of n, since only the terms g2, ¢Z, g2 contribute, and all
equally, to the integral (4.6). However, to be consistent with the order of the approxima-
‘tion that we used to calculate ['(g), we have to take into account the next, third harmonic
and determine C;; and Cj;.

The integrals (4.5) can be easily solved in spherical coordinates with the polar axis

+1
parallel to the direction of ¢, and by then applying the identity | d(cos 9) d(cos 3—1)
~1
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= @(1—1), (¢t > 0), where 3 is the polar angle. Thus, we rotate the coordination system
out of the main directions by means of one of the matrices (i, v = x, ¥, 2)

“ & &)
q q q
DAy = 10 _ 4 9y — a2, 24172 ,
( ,uv) H da = (qy+qz) (483)
Ga da
94 _ 9%y %
L Gad 949
_ 4 0 fl_’C_ )
dp qp
dx q q
oiy=| = 2= = |, @;=@+? (4.8b)
q q q
44y, 48 94
L dq 4 954 |
RTINS
dc dc
24 4,4,
0%y = |- L= D el o (g, (4.8¢)
dcd qcq q
a4 &
[ 4 q qJ

In the new coordination system the components g » = D4, are (g,0,0), (0,4,0), (0,0, g)
= \/ g,9,) for the transformation 4, B, C, respectively.

The final expressions for F3(g), F33(g) are polynomials in ¢ of the fourth and sixth
order, respectively, with the coefficients expressed by the elements of the D-matrices and
the direction cosines of the applied electric field. For instance, the terms of F13(q) which
contribute to (4.4) can be represented by means of D, = DS, (transpose of (4.8c)) as

Z {( 1‘2—5) (DﬁxDuzsz + DﬁyDuzsz)qz + [( 1—25) (DixDuzsz + D/,thDuzsz)
fTRY
+15D3,D,,+6D,.D,;] (g*/4ks)
—+ S(Dizsz - 3Duzsz)q4}nnnv@(2kF " q) (49)

By the same arguments as in the case F,.(q) one can find out that none of the terms
in the brace bracket contributes to (4.4) if u # v. This is sufficient for isotropy of Cj3,
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since its values corresponding to the main directions should be the same. The list of the
terms which contribute to C,; is, of course, considerably more numerous. It suffices to
day that among them there are such terms of the second and fourth order in g, e.g.,

Zv {(DaszazDﬁxDuzsz + DayDazDinuzDvy)qz

a, B,y
+ (DaxDﬂxDa::DﬂzDuzsz + DayDﬂyDazDﬂzDuzsz)q4}nunv@(sz - q)’ (4‘ 10)

which contribute to the dependence of C;3 on the field direction. Thus, on the basis of
Eq. (2.7) it is obvious that the magnitude of the resistivity is directionally dependent.
Due to the symmetry requirements used to built the higher harmonics the s-f resistivity
should be of the same value for the electric field applied to crystallographically equivalent
directions. The number of the contributing terms is considerably smaller if the field is
directed in one of the main directions, namely, if n=(1,0,0), (0,1,0), (0,0,1). In this case
the equivalence of these directions can be shown in the most efficient way by applying
respectively the transformations (4.8).

5. Final remarks

The results of the present paper may be summarized shortly by saying that both in
uniaxial and cubic ferromagnets an anisotropy in the magnetic fluctuations leads to anisot-
ropic effects in the electron scattering and electrical resistivity. Remarkable is the fact
that these effects are caused solely by the spatial (in R- or g-space) anisotropy of the magnetic
fluctuations, following in turn form the anisotropic medium in which the fluctuations
propagate and from the existence of a magnetocrystalline anisotropy. No anisotropy
in the magnetic interaction between the scattering system (localized magnetic moments)
and the current carriers (free electrons) was assumed. The existence of such an anisotropy
should yield additional anisotropic contribution to the s-f resistivity.

The anisotropy in our system was assumed at the level of the interactions within
the scattering system. In the uniaxial case an anisotropy of the electronic dispersion law,
and consequently that of the Fermi surface, was also assumed. As seen from Eq. (2.6) these
two factors have quite a different influence on the s-f resistivity. While the latter determines
the tensor properties of the conductivity (or resistivity), the first depends only functionally
on the direction of the applied electric field due to the spatial anisotropy of the magnetic
fluctuations. As a result, for the spherical Fermi surface when the resistivity tensor is
diagonal, and — as one should expect — with the diagonal components are equal to each
other, their values depend on the direction of the applied electric field.

In the uniaxial case we calculated the values of the resistivity in the (magnetic) easy
and hard directions in which the resistivity had been experimentally measured [9, 2] and
for which the anisotropy is most pronounced. The results of Section 3 show that the
effective anisotropy of the s-f resistivity is simply related both to the Fermi surface anisot-
ropy and that following from the magnetic fluctuations. The effect seems to be of the same
order as an apparent anisotropic influence of the phonon scattering background. Therefore,
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while interpreting the experimental data for such a material as GdTb [2], both scattering
sources should be taken into account.

At the present stage of the investigations one can hardly describe the anisotropy of
the fluctuations in a better approximation than that used in the present paper. However,
this approximation seems quite sufficient, provided that the comparison of the experimental
data to the theoretical results is performed in a proper temperature interval. The incor-
poration of a more realistic band structure into the theory is rather more important. Within
the formalism that we use it is not difficult to include the band structure in the same approxi-
mate way as in [21, 18]. Without knowing of the details of the band structure of uniaxial
ferromagnetic metals a better approximation is not needed. Nevertheless, even this over-
simplified approximation requires numerical analysis from the very beginning. Thus, the
present free clectron approximation calculations were made simply to point out the exis-
tence of such anisotropic effects and to estimate its magnitude.

In the case of cubic ferromagnets one can just about to assess the magnitude of the ani-
sotropy in the s-f resistivity. As we showed in Section 4 such effects should exist, but —as
far as we know — there is no experimental evidence for their occurrence. From a theoret-
ical point of view the difficulties in studying this effect are twofold. In the first place,
it is a question of finding a proper, anisotropic correlation function. Secondly, the effect
can be revealed only in a higher order approximation than that used usually in treating
the transport phenomena within the Boltzmann-Bloch equation approach.  In comparison
to the uniaxial ferromagnets the effect is of the higher order, and, therefore, one may
expect that the anisotropy of the s-f resistivity of cubic ferromagnetic metals can be even
considerably smaller. At present it is difficult to estimate whether this anisotropy could
be experimentally revealed amongst other anisotropic factors which apparently influence
the resistivity of a metal. -

The author has benefitted from conversations with Dr.Dr. M. Ausloos, D. J. W, Gel-
dart, J. Klamut and J. Sznajd. He is grateful for their useful remarks.

REFERENCES
(1] K. Durczewski, Acta Phys. Pol. AS9, 167 (1981).

2] J. B. Sousa, M. M. Amado, M. E. Braga, R. P. Pinto, J. M. Moreira, D. Hunkin, Commun.
Phys. 2, 95 (1977).
{31 J. B. Sousa, M. M. Amado, R. P. Pinto, J. M. Moreira, M. E. Braga, M. Ausloos, J. P. Lebur~-
ton, J. C. van Hay, P. Clippe, J. P. Vigneron, P. Morin, J. Phys. F 10, 933 (1980).
4] J. Kocinski, L. Wojtczak, Critical Scattering Theory, An Introduction, p. 212; PWN (Polish
‘ Scientific Publishers), Warszawa, Elsevier Publishing Company, Amsterdam—-Oxford-New York 1978.
[5] M. Ausloos, K. Durczewski, Phys. Rev. B22, 2439 (1980). ' ‘
[61 J. Klamut, J. Sznajd, Phys. Status Solidi (b)- 60, 795 (1973). .
[71 K. Durczewski, Solid State Commun. 31, 427 (1979)..
[81 K. Durczewski, M. Ausloos, J. Magn. Magn. Mater. 15-18, 927 (1980), Proc. ICM’79 (Munich).
_[91 H. E. Nigh, 8. Legvold, F. G. Spedding, Phys. Rev. 132, 1062 (1963).
[10] T. Kasuya, Prog. Theor. Phys. 16; 45 (1956); 16, 58 (1956).
{111 P. G. de Gennes, J. Friedel, J. Phys. Chem. Solids 4,71 (1958).
[121 A. H. Morish, The Physical Principles of Magnetism, § 6.3, J. Wiley and Sons, Inc.; New York 1965,



499

[13]1 J. Klamut, Acta Phys. Pol. 25, 711 (1964); H. Pfeiffer, J. Ulner, Acta Phys. Pol. A39, 703 (1971).

[14] M. E. Fisher, J. S. Langer, Phys. Rev. Lett. 20, 665 (1968).

[15]1 S. von Molnar, T. Kasuya, Phys. Rev. Lett. 21, 1757 (1968); S. von Molnar, M. W. Shafer,
J. Appl. Phys. 41, 1093 (1970).

[16] G. Malstrom, D. J. W. Geldart, Phys. Rev. B21, 1130 (1980).

[17] P. P. Craig, W. I. Goldburg, T. A. Kitchens, J. I. Budnick, Phys. Rev. Lezt. 19, 1334 (1967);
L. Passel, K. Blinowski, T. Brun, Phys. Rev. 139A, 1866 (1965).

[18] D. J. W. Geldart, T. G. Richard, Phys. Rev. B12, 5175 (1975).

[19] L. D. Landau, E. M. Lifshitz, Statistical Physics, Nauka, Moscow 1964, § 113.

[20] J. Klamut, J. Sznajd, ICM ‘79, Program and Abstracts, International Conference on Magnetism,
Munich 1979, page 108 (4W10).

[21] T. G. Richard, D. J. W. Geldart, Phys. Rev. Lett. 30, 290 (1973).



