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The Ising model in a transverse field with an account of dependence of “exchange
integral” on the mutual position of atoms which changes due to thermal motion, is investi-
gated. Using the method developed recently by Konwent and Plakida in the theory of highly
anharmonic ferromagnetic crystals, the system of selfconsistent equations describing the lattice
and spin subsystem in the selfconsistent phonon and molecular fields approximations,
respectively, is derived and numerically analysed for some values of the model parameters.
Influences of the lattice vibrations and external pressure on the spin subsystem, and of the
ordering in the spin subsystem on thermal expansion of the crystal, are investigated. It is
found that the phase transition remains of the second order and the coefficient of thermal
expansion exhibits discontinuity at the magnetic phase transition point, which is suppressed
by external pressure.

PACS numbers: 05.50.4+q, 64.60.—i, 75.10.Dg

1. Introduction

In recent years the Ising model with transverse field (IMTF) was the subject of intens ive
investigations by means of different approximations [1-14]. For the extensive discussion
of applications and properties of this model, we refer the reader to Refs. [1, 2, 5, 6]. One
usually assumes [2-5] that all spins are located at the sites of the immobile lattice. We call
this model the rigid Ising model with transverse field (RIMTF).

From the formal point of view, the compressible Ising model with transverse field
(CIMTF) in the harmonic and weakly anharmonic lattices was investigated in Refs. [6-11]
and [12-14], respectively.

The problem of spin-lattice coupling in the Ising and Heisenberg models was the
subject of numerous studies in the past, e.g. in [15-31]. In the earlier works, compiled
in Ref. [15], it was assumed that the exchange integral J depends on average interatomic
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distance. If we assume that J is an analytic function of the instantaneous distance between
crystal atoms, we can expand J in the Taylor series with respect to thermal displacements
of atoms, cf. [27-31]. Usually, a few lowest terms of this expansion were taken into
consideration, [16-25].

In Refs. [26-31], the spin models with the infinite Taylor expansion of J were studied
theoretically. The aim of the present paper is to investigate the CIMTF in isotropic anhar-
monic lattice. There will be taken into account all terms in the Taylor series expansion
of crystal potential energy and exchange integral [31] with respect to the thermal displace-
ment of crystal atoms. This is the essential feature, which differs our theoretical treatment
of CIMTF from the previous approaches. We shall not consider the dependence of tunneling
integral on the thermal vibrations of lattice, cf. [11]. In order to study the CIMTF, we shall
apply the formalism of the spin-phonon interaction developed by Konwent and Plakida
[27-31]. In this paper we have restricted ourselves to mean field approximation MFA and
mean field phonon approximation for the spin and phonon subsystem, respectively.
The paper is organized as follows: in Section 2 the Hamiltonian and the basic equations
are introduced. In Section 3 the model of interactions and the system of self-consistent
equations SSCE are presented. In Section 4 the numerical results are given. Conclusions
are summarized in Section 5.

2. Hamiltonian and the basic equations

The total Hamiltonian of IMTF in compressible lattice can be written in the form

H=1Y (PIM™'=208)+% ¥ [¢(R,~R,)—J(R,—R,)S;S.], (1

where P,, R, are the momentum and coordinate of atom with the spin 7 and mass M at
the lattice site n; Q is the tunneling integral.

We introduce the thermal displacement of atoms, u,, from the equilibrium position
n [31]

R, = (R, +u, = ntu, (2
where the average value (... is taken over canonical ensemble with the Hamiltonian,

), <...) = Ti[... exp (— BH))/Trlexp (—BH)], B = (kgT)™t. The dynamical variables
obey the usual, commutation relations [30, 31]

[u(lza P{i’] = iéll’éa:p’ [S?a Sﬁ] = isaﬁyall'sly,
[uf, St] = [P}, St = 0.

According to Konwent and Plakida [31], the equation of state for the model under conside-
ration takes the form

1 <(7(p(R,,—R0) — aJ(Rn_Ro)> "
- . - n,

R §78% =
% oR” °  oR*

nyo
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where P is the isotropic external pressure. Equation (3) defines the equilibrium parameters
of lattice, which depends on the temperature 7, external pressure P, and the correlation
function: {S;S5>. Expanding J(R,~R,) and @(R,— R,) in Taylor series of powers of the
displacements u,, we write the Hamiltonian (1) in the form

1 ’
H=1 2 (PIM ™' -208%+4 Z i Z Z (o) = ThZilSESENuy . wyy (4)
n I=0 n,m 1...1

where
4
4>rf—ml = n (5in n 5lm)Vzrln e V:;;l(p(" . m)
i=1

The analogous expression is valid for J1:-! [30].

To describe the thermodynamic properties of a system, we use the self-consistent
phonon approximation® SCPA [29-31] for the lattice subsystem and MFA for the spin
subsystem. We assume the trial Hamiltonian H, in the form

Hy = Hy+Hs = 7 ), (PM ™ =208 +4 Y (uidub — J,,8:5%), )
n n,m
where 7, and J,,, are the variational parameters. The trial free energy F, can.be written
as follows:

Fy = Fo+-{(H—Hg),, 6)
Fo = B7*{3 In [2sinh (0.580,)]— Y In [2 cosh (0.58H¥)]}, 7
aj 5
where w,; are the solution of equations
ehiws; = (MN)™? ”Z;‘ eh &l exp [—ig(I-1')] 8)
and
Hy = [92+(§, TS, ®
The mean values of spin in ordered phase (OP), in MFA, are equal to
(8> =2 Q)" tanh (5 BHY), (10a)
S =0, (10b)
(S =32 J.<SD (H)™" tanh (§ BH}). (10c)

Using the Bogolubov variational principle [29-31],

SF, SF,
g = v = 0 we have
0D, O0d pm

! This approximation is equivalent to pseudoharmonic approximation [27, 28].
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B = ViVl p(n—m)—J(n—m) (S350 (Sh00], (1)

J(n—m) = exp [} (up—up) (i —up)>oV,Vn 1 (n—m), (12)

up
r—m) = exp [3 3 Cui—u) (=)o ViVElo (= m), (13)
Ul yo = (MN)™! 2 Qog)” leleh cth (3 fag;) exp [ —ig(n—m)]. (14)

Substituting (11) for (8), we obtain the system of equations for the phonons frequencies.
Let us note that the effective parameters of interactions ¢-and J, take into account the
mutual influence of both subsystems [28-31]. Equations (3), (8), (10) form a closed basic
system for w,;, n and {S;)> [29]. In the next Section we will consider this system for the
chosen model of lattice and spin interactions.

3. Model of interactions and the system of self-consistent equations (SSCE)

In order to study the physical properties of CIMTF, we investigate the FCC lattice
with the nearest-neighbour interactions. We assume, that atoms interact via the Morse
potential [31]

(1) = D{exp [ —2a(r—ro)]—2 exp [—a(r—ro)]}. (152)

We choose the dependence of spin interactions on interatomic distances in the exponential
form [29]

J(r) = Joexp [—b(r—ro)]. (15b)

From (12) and (13), we get [27, 29]
@(n) = D{exp [2(y—a(n—r,))]—2exp [ y—a(n—ro)1} (15¢)
J(n) = Jo exp [(% S;) y—b(n— Vo):l , (15d)

2
a . .
where y = — {[n(u, —up))?yo describes the correlation between displacements of atoms.
n

Taking into account only leading terms for ¢” and J’’, and using the Debye model for
lattice vibrations [29], we obtain the following system of a self-consistent equations

A?y— AQ—1 TyWQF[AWT,) 1] = 0, (16)
tanh {[Z>+(*)?12/T*} = [Z*+ (%] = 0, 17)

x> —exp {2[y—A(x—1D]}+exp [3 y—A(x—1)]

2
+”2f1?§ WQZ? exp [%'y (;) —B(x—l)] =0. (18)
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The explicit expression for 4 reads

4% = 2exp 2[y— A(x— 1]} —exp [4 y— A(x—1)]

_L(Ef WQZ%*exp| L B ’ —B(x—1) (19)
X A P2 A Y '

%

It has been introduced in (16)-(18) the following dimensionless variables: x = nfrg,
2=2(8, d=aro, B=bro,T; = 3Jo, Ty = T/T, W =TTy, Q = Tp/D, Ty = Q/6J,,
Il = Pri(4.2'2Day, T'* = I'yexp [2(x—p—1)], T* = T, exp 2(x—y—~D], Tp and F,
are respectively, the temperature and the Debye function

Fp(x)=3- x_3}C *[exp (£)—1]"1dz.

Let us mention, that 4, B, W, Q, I', are the external parameters of a model. We use the’
units ;where n = ky = 1. Equations (16)~(18) form the algebraic, nonlinear system of equa-
ions, which we solve numerically using standard methods [32, 33]. :

4. Numerical results
First we consider the case z = IT = 0. Then
X = nfro = 1.0+ 1.5 (y/4) (20)

and equations (16)~(18) become greatly reduced. In this case, equation (16) is solved
numerically for y only. The results of calculation for different, fixed values 0 =Tp/D
are presented in Fig. 1a. They can be interpreted, if we consider two limiting cases:

1°. For T < Ty, Fy (4 - Tp/T) ~ 0.0 and y ~ 0.094 Q. These estimated values of
y agree very well with the values obtained numerically.

2°. For T'> Ty, we have exp (») ~ 4T (OT)"!. When T is increasing the plots of
both sides intersects at higher values of y. On the other hand, Eq. (16) for sufficiently
high T has not any real solution.

For Q < 1.0, 1og;(») is a linear function of log,, (T/T},). This indicates power depen-
dence between y and 7/T,,. For Q = 0.001 and 500 < T/Tp < 1.0, we obtain: y = (.288
[(7T/Tp) 1073109, whereas for Q = 0.01, 50 < 7/T;, < 1.0, y = 0.288 [(T/T)10-2]4-05,
The obtained values of y can be now used to obtain the plots of x (20) versus 7. From (20)
we see, that with 4 increased, the lattice becomes more rigid. From the above it follows
that for IT = z = 0 (9y/0T)y > 0 and (8y/0Q), > O. Moreover, according to (20) we
have (0x/0T)y 4 =0, (0x/0Q)r 4> 0 and (0x/04)g,r < 0. We notice, that the above
results are the starting point for further numerical calculations. We choose the following
values of the external parameters

A=10, B=20, W=50, Q=01 TI,=0.1. 21

In the numerical calculations T, varies from 0.0 to 2.0 and II from 0.0 to 0.6. For T* < 1,
equations (16)-(18) were solved and for 7% > 1 only two first equations were solved at
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Fig. la. The log;o-logio plots of solutions for y, calculated from Eq. (16), against T/Tp for II = z = 0.0.

The actual values of Q are marked on each curve; b. The plots of numerical solutions of Egs. (16)—(18):
the values of y versus T* for certain values of I

z = 0.0. The plots of y versus T for a few values of IT in ordered (OP) and disordered
(DP) phases have been given in Fig. 1b. The very weak influence of phase transition on
the behaviour of y was observed in spin subsystem. The influence of z % 0 on y in OP
is so weak, that it cannot be demonstrated in the scale used in Fig. 1b. More interesting
results are shown in Fig. 2, where the dependences of z = 2 (8% and x = nfro on T*
for different of IT are demonstrated. In OP, x = n/r, depends strongly on {(S*>. The value
of x decreases in OP when compared its value in DP, owing to an appearance of z#£0
in ordered phase. Besides, x increases rapidly and approaches its value in DP in the vicinity
of the phase transitin point. We notice, that x decreases with increasing I1. It should be
added that increasing of IT causes the flatting of the curve shapes of n/r, near the Curie
temperature T,. In Fig. 3a we have illustrated the changes in the coefficient of thermal
expansion, «

of = [x(T3) — x(THY[(TT) (TF = TH)- (22)

As was expected in Refs. [8, 18, 29] o* jumps down at the phase transition point, and the
magnitude of this jump decreases with increasing IT. The plots of z = 2 {S§*) versus T
have the same shape for the all IT just as in Fig. 2. This is a little misleading result. From
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Fig. 2. The plots of numerical solutions of Eqs. 16)-(18): the values of z = 2{S%> and x = n/r, against
T* for different fixed I7

Fig. 2 it seems that T is the same for the all IT. In fact T, increases with IT, i.e. (87,/0IT) > O,
because of the explicit dependence of effective exchange integral J(n) on x and y J(r)
= Jo exp [2(y +1~x)]. For I', > 0.5, we can presumably obtain the different dependences
of z on T for different II, but this suggestion ought to be verified. For the qualitative dis-
cussion of the influences I'y, x and y on <S*) we have performed the series of calculations,
in which the equation (18) was solved only, for z at fixed, different values of I'y, x and y.
In Fig. 3b we present some results of these calculations for values of I'y, x and y listed in
Table 1.

J. Discussion

In this paper we have presented results of numerical calculations for the compressible
Ising model with transverse field. Using the standard numerical methods [32, 33], we
have solved the system of the self-consistent equation (16)-(18) [29] for the certain values
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TABLE 1 B
The number r « y
of curves S
i ] 0 all all
i ‘ combinatio] combination|
05 0950 | 0.100
1000 0.100
3 05 0950 0050
0950 0005
4 05 1000 0050
i N 1050 | 0100 |
1000 0005
5 05 1050 0050 |
6 05 1050 0005 |
7 08 0950 0.100
0950 0050
8 | o8 1000 | 0300 |
0950 0005
9 08 1000 0050
I 1050 0.100
10 | 10 0950 0.100
1000 0005
T 08 1050 0050
1000 0.100
12 10 0950 | Q050
3 08 1050 0005
0950 0005
16 10 1000 0050
N 1050 | 0100
15 10 | 1000 0005

of model parameters 4, B, I'y, O, W in the wide range of reduced pressure IT and reduced
temperature 7%,

The main results of the paper are as follows:

1. If the spin-phonon interaction is sufficiently weak?, the phase transition in spin
subsystem is of the second order.

2. Lattice vibration influence the properties of spin subsystem. (7) The Curie tempera-
ture 7, and the saturation values z, of the order parameter increase for the increasing
values of y, whereas they decrease for the increasing values of the dimensionless inter-
atomic distance x. This fact can be checked in Fig. 3b, e.g. for the curves labelled by 15,
14, 12 for T, and 10, 12, 14 for z,.

(if) For Il = 0.0, T, in CIMTF is lower than 7?° for RIMTF, e.g. T, ~ 0.9 T2. The
Curie temperature 7, raises with increasing of I7 and for IT = 0.6, T, ~ 1.8 T?. Therefore,
(0T /oIT) > 0. In [20], it has been pointed out that the changes in T, for IT = 0.0 in the
Ising model, depend on the range of the exchange integral. If it has the finite or infinite

? The value of model parameters used in our calculation are in the range of the second order phase
transition of Zagrebnov and Fedyanin’s paper [26]. Such a choice of the model parameters corresponds
more adequately to the real physical situation.
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ranges, T, increases [16, 18, 21, 26] or decreases [20], respectively, as compared with its
value for the rigid Ising model. In CIMTF the exchange integral has just an infinite range
and the obtained changes in T, for Il = 0 are in agreement with the results of Refs. [20, 29].
From our calculations it follows, that the Curie temperature T, for CIMTF increases
with the increasing of pressure. The same effect was first predicted by Konwent [29] for
the compressible Heisenberg model.
In Section 3, it has been shown that dimensionless temperature is equal to
T* = (T/3J,) exp [2(x~y—1)] & T2 exp [2(x—y—1)] as Q* < J2. We see that changes

Fig. 4a. The qualitative picture of changes in z versus (7, ¥) or (T, nfro) or (T, P); b. The qualitative pre-

sentations of the ordered phases (OP); for the RIMTF — the OP is placed under the surface, of which the

cross-sections are marked as the point-dotted lines. For the CIMTF — the OP is placed under the surface,

of which the cross-sections are marked as the solid lines; c. The qualitative picture of changes in ¢* and
njre versus T and P

in T, are the results of competition between the temperature and pressure dependences
of x and y. From the numerical calculations presented in Section 4 it follows, that in the
vicinity of phase transition point for IT > 0, x—y > 1.0 and therefore x—y—1 = ¢; > 0.0
and T = T? exp (cy), i.e. T, < T?. As x depends more strongly on IT than y when IT is
increasing, we have x—y < 1.0. Thus, x—y—1 =1¢, <0.0 and T = T? exp (¢c,), i.e.
T, > T°. The above conclusions are illustrated qualitatively in Fig. 4a.
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3. The Curie temperature 7, and the saturation value z, of the order parameter for
the rigid moddel [1, 2, 5, 6, 11] as well as for the compressible Ising model with transverse
field [7, 11, 13] are the decreasing functions of I'y i.e. (0z0/0T0) < 0 and (8T,/I'y) < O.
However, for CIMTF the ordered can exist for I'y > 1.0, whereas for RIMTF T? = 0.0
if 'y = 1.0. This is a qualitatively new result, and it is the manifestation of the influences
of x and y on T,. It has been discussed above. This conclusion is presented qualitatively
in Fig. 4b.

4. The appearance of z differént from zero decreases the values of x = n/r, [29].
The influence of z on x is important for T near T, and leads to discontinuity in the coefficient
of thermal expansion at the transition point. We have shown this in Fig. 4c.

The author is very grateful to Doc. H. Konwent for suggesting the problem and for
many helpful remarks.
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