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THE LOGARITHMIC TERM IN THE GROUND STATE ENERGY
OF A HARD CORE FERMI GAS*.**
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The logarithmic term ~c¢* In ¢ (¢ = kgre, kr — Fermi momentum, r. — hard core
radius) in the expression for the ground state energy of a hard core Fermi gas is derived,
without the usual cut off procedure. The reaction mairix method is used, with sufficiently
exact expressions for the relevant matrix elements.

PACS numbers: 05.30.Fk, 21.65.+f

1. Introduction

The expansion of the ground state energy E of an infinite system of fermions inter-
acting with a hard core two body potential in powers of the parameter ¢ = kgr, (kg is the
Fermi momentum in units of #, r, is the hard core radius) has been investigated by a num-
ber of authors [1-15]. The first three terms of this expansion are well established. Beyond
the ¢* approximation the divergent integrals appear [7-9, 12, 13]. Cutting off the upper
limits of the divergent integrals somewhat arbitrarily [7, 8, 13] or introducing the cut off
function under the divergent integral [9, 12], one gets the logarithmic term ~c*In c.

The aim of this paper is to obtain the logarithmic term in a natural way without the
cut off procedure. We will use the method of perturbation expansion of E in terms of the
Brueckner reaction matrix K. The method is described in detail by Bishop in [13], hereafter
referred to as B. ' '

The expansion of E in powers of ¢ is obtained in B by expanding in powers of ¢ each
K-matrix element in the formula for energy. Computing in this way the term proportional
to ¢* in the energy series, one obtains integrals logarithmically divergent when the powers
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of the momenta in the K-matrices expansions in numerators sufficiently overtake the energy
denominators.

In this paper we do not expand the K-matrix elements. Instead, we use the sufficiently
exact solution of the K-matrix equation and obtain convergent integrals which are then
expanded in powers of c. Actually, a possibility of such a derivation was mentioned in B.

The present paper is organized as follows. In Section 2 we show that to obtain the
logarithmic term it is sufficient to solve the K-matrix equation for S wave only, with
neglected Pauli operator, and with neglecting dependence on the hole momenta. We also
exemplify the difference between our approach and that of B. In Section 3 we compute the
total contribution ~¢* In ¢ to the ground state energy per particle. In the Appendix expres-
sions for the elements of the free reaction matrix K°(z) with negative argument z are derived.

2. The solution of the K-matrix equation
The K-matrix is defined by the equation:

(p1p31K(2) 1p1p2) = (P1P210IP1P2)

z : 1
+ (pip3lvik ky) Z__-&:(k ):(k )':k1k2lK(z) [p1P2)s ®
. 1 2

kik>
where states denoted by |p,) are plane waves normalized in volume &, v is the hard core
two body interaction, &(p) = p?/(2M) is the kinetic energy of the p state, M is the mass
of a particle. From now on we shall denote by m; the hole momenta for which |m;| < kg,
by k; the particle momenta for which |k;| > &, and by p; any momenta.
If we introduce the relative and center-of-mass momenta

p=@:—p)2 P =pitps @)
we have
(Pip31KIp1p2) = (Orr /D) {P'|KplP>, 3
where {r|p> = exp (ipr).
In the relative and c.m. momenta Eq. (1) takes the form

dk O(P, k)
R ZaP 2 =209 IKp(Z) Py, @

p'|Kp(2) 1pD = {p'lvlp) + J {p'lvlie>

where Q is the exclusion principle operator:

o, ) = {1 for L|P+k| > kg, )

0 otherwise.

To solve Eq. (4) we consider the matrix K°, defined by the equation

, o ak 1 .
<P'IK3(2) |py = <p'lolp>+ J(-Zn_)é {p'lvlk> T e(P)2—25(k) <kIKp(2) [P (6)

where the principal value of the integral over k is taken.
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From Eq. (4) and (6) we obtain:
{P'|Kp(2) Ip) = <P'IK3(2) Ip)

P, k)—
&(P)/2—2¢(k)

dk )
+ J o <PIK3E) ey — CkIKp(2) ). ™

Solving Eq. (7) by iteration we get:

P'IKp(2) Ip> = <PIKp(2) P>

0P, k)-1

0
—&(P)[2—2e(k) CkIKp(2) Ip>+ ... ®)

" f G IKI) )
To obtain the logarithmic term ~c¢*1In ¢ it is sufficient to consider diagrams of the
third and fourth order in K-matrix. So we need the K-matrix expression exact to second
order in parameter c. Since the contribution from P-wave in the K-matrix expansion is
of the third order in ¢, we may confine ourselves to the S-wave solution for the K-matrix.
If the K-matrix element {p’|Kp(z)|p)> is on the energy shell, it means z = 2¢(p)
+¢(P)/2, K° is the free space reaction matrix and does not depend on the center of mass
momentum. In this case we may write (see e.g. B)

dn sin (p'clkg)
Mkg p'lkg

<PIK°p) = +0(c). ®
We will also need the solution for the off-shell K°(z) matrix elements with negative argu-
ment z. As it is shown in the Appendix, for z < 0 the K°matrix element exact to the
second- order in ¢ has the form

4n sin (p'c/kg)

PIKp(2) [p) = ——

KF) 3
M plks (1+be)+0(c), (10)

where

b% = i(—Mz+1>2/4) 11
ki '

Let us consider the third order K-matrix diagram shown in Fig. 1. (One of the diagrams
which contributes to the logarithmic term.)

Fig. 1. The third order K-martrix diagram corresponding to expression (12)
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The contribution to the energy per particle from this diagram is

A_E _ 6y (Fe k5| K(e(m) +e(m,)) |m1m2)|_2
N ks Le(my) +£(m2)—s(k1)—s(k2)]2
X (kyms|K(e(my) +e(my) +e(my) —e(ky)) |kymy), (12)

where v is the number of spin and isospin degrees of freedom per particle. Using Eq. (3)
we may express Eq. (12) as follows:

AE )
N = J dm dm,dm, fdk1F(m1, my, ms, k), (13)

where
6n°v? K (k1 — k2)/2|Kon, +ma(e(m1) +8(m5)) |(my — my)[25?

F(m,, my, ms, k) =

@n) "2k [ )+ e(m;) —e(k,)—e(er) T
% {(y — 113)[2| K+ ma(e(m ) () £ 8(m) —e(ky)) (e~ m3) /2D, (14)
k,=m,+m,—k,. (15)

To calculate the logarithmic term we can equate the hole momenta to zero in the
expression under the integral in Eq. (12). To see this we transform Eq. (13) as follows:

[eo]

4E 4 .1.3\3 27 ‘
N = (3 nkp)*4n | kiF(my = 0,m, = 0, m3 = 0, ky)dk,

kr

+ dmydm,dms § dk,F(m,, my, my, k))—F(m, = 0,m, = 0,my = 0,k;).  (16)

Confining ourselves to the first term of iterative solution for the K-matrix (Eq. (8)) and using
Eq. (9) and (10) we see that

{F(m, m,, my, k)—F(m, = 0, m, = 0,m; = 0, ky)} mO. amn

(The on-shell K®-matrix elements exact to ¢2 from Eq. (9) do not depend on the hole mo-
menta, the argument z of the off-shell K°-matrix element becomes negative for |k, ] > kg
so we may use Eq. (10).) Since the divergences come from high momenta values (> kr)
the logarithmic term comes from the first integral on the r.h.s. of Eq. (16) only. Denoting
this term by (4E)/N we have

(4E)  61*?
N~ G (¢ nkd)*4nM?
F

dky )
X j—kz ey KO(0) 002 {—ky[2]K g, (— k3 /(2M)) | =K1 [2). (18)
kr
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It is sufficient to take in Eq. (18) the expression (9) or (10) for only one of the K-ma-
trix elements and expand the remaining matrix elements in powers of ¢ to the ¢? term
to obtain the following convergent integral:

(4E) 4. /3v?kkc* [ dk, sin (kyc/kg)
N  9’M ke  kycjke

k¥

(19)

By dots we indicated the part of AE’/N which does not lead to the logarithmic term. The
integral in Eq. (19) gives in a natural way the logarithmic term

o0

J" sin x sin ¢ 2

. c
2 dx = —Cic=1—-y—Ilnc+ o o (20)

c

where y is the Euler constant.

If we expand the function under integral in Eq. (19) in powers of ¢ we obtain the expres-
sion used in B which gives the logarithmic divergence. (Because the Maclaurin expansion
of sin is valid only for finite values of argument, we must not compute the improper inte-
gral on the Lh.s. of Eq. (20) term by term.)

From Eq. (18) we see that the logarithmic term appears because the expansion of the
product of the three' K-matrix elements contains a term linear in k,. This term derives
from the expansion of the part proportional to b of the r.h.s. of Eq. (10) and is proportional
to ¢ So from the second iterative term of solution of the K-matrix equation (8) we get
the logarithmic term ~¢* In ¢. We conclude that to obtain the term ~c* In ¢ we can neglect
the Pauli principle in the K-matrix equation, it means we can replace the K-matrix by the
KO%-matrix.

3. The total logarithmic term from the third and fourth order K-matrix diagrams

Third order diagrams fall into two separate classes: those containing four hole lines
and those containing three hole lines as shown in B. Whith the hole momenta being ne-
glected, each diagram with three hole lines contributes an identical amount to logarithmic
term as diagram in Fig. 1, apart from the trivial difference of spin and isospin traces. The
sum of these contributions is

1.2
g3 = —(v—1) (v=2) 89*7{3; c*lne. (21)

In calculating contribution to the energy from diagrams with four hole lines, we may
take all K-matrix elements on the energy shell. In this way we calculate contribution from
the entire class of four hole lines diagrams as shown, e.g., in Fig. 2.

This diagram does not give the logarithmic term because the expansion of the product
of three K-matrices, each of which is on the energy shell, cannot contain a term linear
in particle momentum and we get the convergent integral { dke, k3.
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(LT~ Wy -HHD-

Fig. 2. The hole self energy diagram with the on-energy-shell K-matrix

In the case of the fourth order diagrams in K we need the K-matrix elements exact
to the first order in the parameter ¢ only. In agreement with Eq. (9) and (10), we have

4n sm 2 c/kF)

P'IKe(2) P> = Mk Dk
F

+0(c?). (22

The logarithmic term ~c¢* In ¢ comes from the fourth order diagrams containing the mini-
mal number of hole lines, namely three, as shown in B. To obtain convergent integrals
it is sufficient to express one of the four K-matrix elements in the formula for energy with
the help of Eq. (22) and other remaining elements by 4nc/(Mky). The logarithmic term

from all fourth order diagrams is
2

g, =0v—1D (- ) c*Inc. (23)

27M= g
The sum of Eq. (21) and (23) gives the total contribution to the logarithmic term

8k2
Elog = (v—1) (v— ) YTy (4n—3/3)c* Inc. (24

Sufficiently exact expressions (9) or (10) for the K-matrix elements are also necessary
for computing all terms ~ ¢* (not ~ ¢*In ¢) in the expansion of E. For example, we see
that performing integration in Eq. (19) we obtain from Eq. (20) the term ~ (1 —y)c* which
could not be obtained with the help of cut off procedure used in B.

I would like to express my gratitude to Professor J. Dagbrowski for suggesting this
problem and for many helpful discussions as well as his help in the preparation of the
manuscript.

APPENDIX

Matrix elements of K%z) for z< 0
The reaction matrix K° is defined by Eq. (6):

dk_{p'lvlk) <kIKp(2) |p) .

1170 —_ 4
<P'IKp(2) P> = <{p'lvlp>+ Qn)  z—e(P)j2—2e(k)

(AD)
Eq. (Al) is equivalent to the differential equation

2
(A +Mz— 114) [Ph(x)—€P"] = Mu(x)¥5(x), (A2)
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where the two body wave function ‘Pﬁ is introduced in the following way:
<PIKpIp) = <p'lo]¥p). (A3)

For z < 0 function 'Ifl’:(x) has the “healing property”, i.e., it becomes asymptotically identi-

cal with {x|p>.
We look for S wave solution of Eq. (A2) in the form:

v = "2, )
where
r = kglx]. (A5)
‘Inserting Eq. (A4) into Eq. (A2) yields
(—d—z —b2> Er) = ]—VIE u(Mu(r) = w(r), (A6)
\dr kg
where
() = u- 2D 2 A7)
K kg
S VI
—~b *kﬁ(MZ 4). (A8)

Since the wave function must vanish inside the infinite potential, the product (M/kZ)u(r)v(r)
can thus be written as:

w(r) = AS(r—c)+(b*+x?) %_;c_r O(c—r). (A9)

Here the first term gives a finite discontinuity in the slope of the wave function at the core
boundary. The remaining term cannot contribute outside the core where the potential
vanishes. Outside the hard core the solution of Eq. (A6) is given by

Er) = e P htma s (A10)

From the boundary conditions

sin K¢
¢(e) = — o &) =0,
&'(c) = A—cos ke, (Al1)
we obtain
A = cos kot b K¢ (A12)
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From Eq. (A2) we get for the S-wave:

, 4n sin x'r
{P'|Kp(2) Ip> = e} Jv(i')u(r) —dr
¥ K
/]
4 Y s o '
L R LG [ (A13)
Mk K KK

0

Eq. (A13) exact to the second order in ¢ may be written as:

A 4n sinx'c
{p'IKp(2) P> = — (1 +be). (A14)
Mky «
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