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ON THE APPLICATION OF THE UNIFIED MODEL
OF FERROELECTRIC PHASE TRANSITION TO CRYSTALS WITH
COMPLEX STRUCTURE

By A. Raposz
Institute of Physics, Technical University of Wroctaw*
( Received June 14, 1980)

The model of ferroelectric phase transition in a crystal with complex structure is con-
sidered. The basic equations decribing the phase transition in the framework of a self-con-
sistent scheme are derived. A simple model with two atoms in a unit cell is discussed in some
detail. It is shown that the low-temperature phase is ferro- or antiferrocelectrically ordered,
depending on the model parameters. In both cases, the phase transition occurs without change
in translational symmetry. The behaviour of electrical susceptibility in the case of the second-
-order phase transition is discussed and it is shown that the resulis are similar to those of the
phenomenological theory.

PACS numbers: 64.70.—p, 77.80.—¢

1. Introduction

In ferroelectric crystals there is an usually distinguished group of atoms which are
active in the phase transition. The phase transition can be a result of spontaneous displace-
ments of active atoms or their ordering between equivalent equilibrium positions. There-
fore, the phase transitions are considered as being of the displacement type or order-dis-
order type, respectively [1]. Such a description is, however, a simplified one and does not
reflect- the whole complexity of phase trapsitions in real crystals (see e.g. [2]). Recently,
Stamenkovic et al. [3] have proposed the so-called unified model (UM) of ferroelectric
phase transitions. In the framework od this model the behaviour characteristics of the order-
-disorder type as well as of the displacement type for phase transitions was taken into
account. It was shown that the phase transition may be of the order-disorder, displacement
or mixed types, depending on the model parameters.
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The ferroelectric crystals have, as a rule, a very complicated crystal structure. There-
fore, different crystal units may be active in the ferroelectric phase transition. Such a situa-
tion appears probably in the TGS crystal where the glycine group and SO, complex motions
are important for the phase transition [4, 5]. In the well known ferroelectric, KDP, the pro-
tons in the hydrogen bonds and PO, complexes are active in the phase transition [6].
On the other hand, in antiferroelectric crystals one distinguishes in the ordered phase, at
least two non-equivalent groups of atoms which are active in the phase transition.

The aim of this paper is to discuss such a model which would be helpful in describing
the phase transitions in the above mentioned crystals. In our considerations we take as
a starting point the model presented in Ref. [3]. Therefore, we extend UM to the case of
many active atoms within the unit cell. The model with two non-equivalent atoms is dis-
cussed in some aspects. We use the methods of calculation described in [3]. We also discuss
the behaviour of the electric susceptibility for the second order phase transitions and com-
pare the results with those of the phenomenological theory.

The paper is organized as follows: in Section 2 a Hamiltonian of the model is presented.
Equilibrium conditions of the system are derived in Section 3. In Sections 4 and 5 the prop-
erties of the phonon and pseudospin subsystems are investigated. The Green’s functions
are determined in the self-consistent phonon approximation. The mean values of pseudo-
spin operators are found with the use of the Bogolubov variational method in Section 5.
In Section 6 a model of the two-sublattice ferroelectric is discussed. The behaviour of the
electric susceptibility of such a model is considered in Section 7. Final remarks are presented
in Section 8.

2. Hamiltonian of the model

Let us consider a complex crystal with N unit cells, volume ¥ = Ny and n atoms
within the cell. We assume that atomic displacements occur along an arbitrary axis and
that the single-particle potential has the shape of a symmetric double well. In the ordered
phase the atom may be in the left- or in the right well. So the atomic coordinate is written
as follows:

[o} +_.+ -
le = Rhc il Oy X + O X

where I labels the lattice sites and x(= 1, 2, ... n) atoms within the unit cell. R, denotes
the equilibrium position in the high-temperature phase, xJ, is taken from the local maximum
point of the single-particle potential, o}, is the projection operator with two eigenvalues
oy = 1 or 0, (x = +) corresponding to the cases where atom / is placed in the « or —«
well, respectively.

The Hamiltonian of the system takes the form [3, 7]
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KKy

where pj. is the momentum of the atom /x in the « state, M, and @j;;' are respectively
the masses and force constants in the system, xj, is the sum of static displacement, xZ,
and thermal fluctuation af,

Xpe = Xpey T UL = X+ U
where (...> = Tr {... exp (— H/0)}/Tr {exp (— H/O)} denotes thermal average with the

Hamiltonian (2.1).
Expressing the projection operator by means of the spin operator, according to

a;zx = % (1 -+ aalx)s

we write the Hamiltonian (2.1) in the form

_—W ax? i AK i BK
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plays the role of an “‘exchange integral”, and

@) A, By ., wxy oo
hlx == % {M T ? (xltc)2+ Z (xm)4 d+’é_ ¢ll1la(xlk—xfﬂ€1)2

a==t Lixyaf

may be considered as a mean field [3] (in analogy with the Ising model with many spins
in a unit cell).

3. The equilibrium conditions

The static displacements x7 can be calculated from the equilibrium condition [3]

0 .
o <P = {[piws HI> = O, (3.1)

where pj.(2) is an operator in the Heisenberg representation (h = 1).
In the pseudoharmonic approximation and weak interaction between the phonon
and pseudospin subsystems, Eq. (3.1) takes the form (for details, see [3]):
B(x3° +{3BL(#5)*> — A+ 0 @ (0)+ Y, 94 O)}x

K1
= ()0 "X+ Z &**1(0) (O':lx:1+0',¢—1x,;): (3.2)
K1(Fx)
where

o = (o>, FHg) = ¥ DI,
11
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The system of Egs. (3.2) has a solution x; = 0 corresponding to the high-temperature
phase, and solutions xj # 0. In the latter case the spontaneous polarization may be non-
zero if at least one of the variables o, # 0.

4. Phonon subsystem

Now we determine the dynamic properties of a system: the excitation spectrum and
atomic displacement correlation functions. We apply the Green’s function method [8].
Let us consider the following Green’s function (GF), (see [3]):

Grage(t—11) 1= Kug(1); uy e (1))

1 . d .
- g et J 7j‘:-Gg,ﬂ“(w)e“""“‘“), 4.1
q -0

o= =) denotes that atom Jx is in an o« well (¢}, = 1). In the same approximation as used
in Eq. (3.2), we obtain the following equation for GF:

M0* Gl (9) = By = 0 * O™ (@) G (@) + (3BLD + (@) ]
— A+ PO — D (o "+ Y P(0)}Gl (@)
)

K'(#x

= Z @KK’(q) {0':' G;K'xx(w)+o'1€_’ Gq_x’m(w)}’ (42)

x'(FK)
which can be written in the matrix form:
/i(q’ w)G(qs CO) =9,

where A[2n2 x2n2] is a quasidiagonal matrix

1
1
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The phonon excitation spectrum is obtained from the following equation:
det [4,(g, ®)| = 0,
because
det [A4(q, w)] = det |4,(q, )| = ... = det |4,(q, ®)I.

KK

Mixing excitations of noninteracting sublattices results from their interaction @' # 0.
The self-consistent equations for the high-temperature region (the classical case) take

the form:
@ =25 [doen (2 - Lme @i
Ix i N 2@ ™ gKx
q [}

e
2= z Re G%(0+i). (4.4)

q

{(u%)?> ought to be inserted into Eq. (3.2), then x? could be calculated. An independent
determination of ¢, enables one to reach the full self-consistency.

5. Pseudospin subsystem

The mean values of the pseudospin operators will be determined by using the Bogo-
lubov variational method [3, 9, 10, 11]. The trial Hamiltonian H, is chosen in the form

H o= ﬁ L+ﬁ o
where H, is the effective pseudoharmonic Hamiltonian, and

H, = — Z lealx'
ix

From the stationary conditions for the free energy

ath‘riall — 0’
0Ky,
we calculate the variational parameters K, and o,
Ky = ,Z Ty D00, = Chyedo = 3 I 0, — b, (5.1
K
0, = {Ouo = th (5) (5.2)

where
T = 1 0 0) (xF —x7) (3 — %),

he = =% AL — () + <5 = i) D} +3 Bl — (x0)*
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+ 30 )™ = 2 <) + () > = (i) T} + 4 'Z Dy {2 (x)?

— () )Y = L) ™+ (g = x5 (6 = x0) ]+ i — i) (w3t — wie ).

For the phase transitions of the order-disorder type the atomic vibrations are usually
neglected, uj, = 0 [1]. In the molecular field approximation (MFA), one gets the following

equation for o,
1 3‘ AA N
.= th<— AL A1) . 5.
(s l{@ [( BKB,H> A )a"‘]} St

pi—

i

There occur significant differences between the results of the standard MFA and of the
present model. One of those differences arises from the appearance of #,(0) in Eq. (5.2)
(which does not reach small values for ® — 0 contrary to the assumption found in [3]).
The other one is the dependence of J**! on temperature in UM. The latter causes a signif-
icant change in the shape of the curve of ¢,(®) when comparing with MFA results, cf.
Eq. (5.3) and Ref. [3].

6. Phase transition in the two-sublattice model
Let us consider the two-sublattice model, x = 1, 2, with additional simplifications
My=M, A =A,=A4, B,=B,=B5,
by, = Dy = Dy,

We introduce the dimensionless parameters

1 i
fq i ;I (D(q)’ g = ;1_ @ (q)a

@ A R o o A>—1 a2 | @
He = (E) Xacs Vi = (E <(uhc) >5 = (AZ/B) 3

and assume that fy = f,.o > 0.
It follows from Eq. (3.2) that in this case the phase transition is of the displacement
type, if

(a) fobge = 025 for g4 >0, (6.1a)
(b) 2fo+lgel 205 for gy <O. (6.1b)

The low-temperature phase can be ferroelectrically (a) or antiferroelectrically (b) ordered.
In the high-temperature phase, % = 0, one of the optical modes in the system becomes
soft. Dynamic instability occurs at the temperature T = t,, at which the frequency of the
soft mode is equal to zero, wgy, = 0. However, the phase. transition is of the first order
[12, 13]. Therefore, 7, is the temperature of instability of the paraelectric phase, the so-
-called soft mode temperature.
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The gap in the soft mode spectrum, 4, is expressed for g, 2 0 respectively, as
@) Agpro = 3L +yi1=1 =3[ +y:]-1, (6.2a)
() Agy<o =3[ +yi1-1+2g0 = 3[(n2) +y2]—1+2g. (6.2b)

It might be seen from Eqs. (6.2) that the gap in the spectrum is caused by a single-particle
potential for the ferroelectric phase transition (FPT). For the antiferroelectric phase
transition (AFTP), 4 is expressed both by a single-particle potential and the force con-

stant gg.
From Egs. (6.2), it results that 7, is determined by the following expressions
T fo+ 80—/,
(a) Or ° * 211 2=%’ g0>09
N (fotgo—/f) — 24
a
To So+1gdl =14
b) —— —— = 1 (1+2]gol); 8 < 0.
N Z (o+lgol—f'~&5 ° o e B
q

It is expected that the phase transition is of the order-disorder type in a system with
the weak interaction between active atoms, fy+ |gol < 1 (see: [3, 14, 15]). Instability of
the ordered phase occurs at the temperature 7 (see: [3])

(a) Tk = fo+ 80 8 >0, (6.3a)
(b) Tk ~ fo+lgl, g0 <O. (6.3b)

In the case when g, < 0, the low-temperature phase is antiferroelectrically ordered,
as may be seen from Egs (5.2).

Let us consider the disordered system, ¢, = ¢, = 0. The superheating temperature,
7., for the phase % # 0, has a value (for details, see [3]):

(@) (8o > 0) = ¢ [1-2(fo+20)]: (6.42)
(b) (8o < 0) 2 § [1+2(Igol —fo)]- (6.4b)

Phase transition of the order-disorder type appears, when instability of the statistical order
occurs prior to the dynamic instability

g < Tshe (6.5)

It follows from Egs. (6.3-5) that the phase transition in a system is of the order-disorder
type when coupling parameters are sufficiently small

(@) fotgo S 0125, g >0, (6.62)
(b) 2o+lgol $025, g <0. (6.6b)
Phase transition is of the “mixed type” [3], when

n==0g= for 1> 1,
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and
n#0, ¢#£0 for <1,

where 7, is the transition temperature. It follows from (6.2) and (6.6) that in our case phase
transition is of the mixed type if coupling parameters are in the following regions

(@) 0.125 < fo+go S 0.25, (6.72)
(b) 0.25 < 2f, +lgel < 0.5, (6.7b)

When g, > 0 the above results coincide with those obtained in [3]. This is anyhow
evident from the condition f§) = @ > 0.

The discussion of the somewhat more general model, f ;1) #f ff) is more complicated.
However, the occurrence of different type phase transitions is expected within each of the
sublattices. This assumption may contribute to a better understanding of phase transi-.
tions in complex structures.

7. Electric susceptibility

In this section we discuss the behaviour of the electric susceptibility of the model
described in the previous section. It is assumed that all the active atoms carry equal effective
charges ¢, = ¢, = e,

The fact that the phase transition of order-disorder type is of the second order is not
obvious (contrary to [3]), because of appearance of /(@) (Eq. (5.2)). This is because we are
mostly interested in the temperature dependence of electric susceptibility for such phase
transitions. We consider the model with the additional condition fy+ |g,] < 1.

The electric susceptibility y = — is calculated by taking the derivative of the

E=0

spontaneous polarization P [3]

]\/1.7 z <O-1leh> = 3“ (‘7 r’h 0 Hx ): (71)

with respect to E. The external field E is introduced as parallel to the atomic displacements,
and the Hamiltonian (2.1) is then replaced by
Hyp=H- Y eExj,. (7.2)
Ika
In MFA (n; = 1, uj, = 0) the susceptibility for FPT (g,.> 0) and AFPT (g, < 0),
respectively, is expressed as
[ 1

—— T >t = fo+ Qo
T_TK

(a) xgo >0 ~ 1 (7.33)

26ex—1)’

T <TE
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léETﬁ'er , T > Tk, = fotlgels
0 t
(b) 1 1

|5

(21 g0l +2(tk, o —1)

(7.3b)

T < TKl‘

These formulae coincide with the results of the phenomenological theory, [16]. In the
framework of UM, the atomic vibrations are taken into account, changing the value of
the transition temperature. Actually the latter is expressed for g, 2 0 respectively as

= (fo+go) [1+7(z)] (7.4b)
., = (fo+1gol) [1+7:(zc )]s (7.4b)

where

oz) 2@(_1 o) [67.— (215)"] +(fo+ 80) [(2’70) +31.]+ 6115
¢ 25 (2n5)* — 671 - (fot+ o) [(2770) +37]

Mg = n’(x = 1),
y; may be obtained from y by changing

o — 18'0]» To = Ty
Formula for the susceptibility in FPT is of a similar form to that of MFA

Tegro ~ =T 7% (7.52)

i.e. it has a singularity at the transition temperature. Susceptibility for AFPT is a contin-
vous function of temperature

5 [4,+4,—1 )] t>7, )
Fag=0 {[A1+A3(rq—r)]—“ e (7.5b)

where Ay, 4,, A; are dimensionless constants.

The lattice vibrations lead to the renormalization of the traunsition temperature.
However, they do not change the behaviour of the susceptibility, and so the type of phase
transition. Therefore, the Curie-Weiss law for susceptibility is also obtained (Egs. (7.5)).

8. Final remarks

In this paper we have derived the basic equations of UM extended to a case of many
active atoms. A wide variety of the possible phase transitions in the two-sublattice model
were pointed out. We have derived the criteria of dependence of the transitions’ type on
coupling parameters f, and gy It has become evident that the low-temperature phase
might be ferro- or antiferroelectrically ordered.

In the case of strongly interacting atoms, the phase transition is of the first order.
The soft mode temperature was expressed by the model parameters. In both cases, g 2 0,
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the soft mode appeared for the wave vector ¢ = 0. In our model AFPT as well FPT take
place without change in translational symmetry.

Phase transition in a system of weakly interacting atoms is of the second order. This
fact was established in a discussion of electric susceptibility. In this case the results obtained
within UM are qualitatively similar to those of the phenomenological theory.

Finally, let us remark that the present model can be applied to describe the phase
transition in some ferroelectric crystals, (e.g. TGS, Rochelle salt). This problem will be
discussed elsewhere.

The author wishes to express his gratitude to Doc. Henryk Konwent for suggesting
the problem and for valuable discussion.
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