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The two dimensional stability of complex nonlinear wave and soliton sotutions of the
nonlinear Schrodinger equation is examined, thus largely extending recent results of Infeld
and Rowlands for real solutions. All stationary entities are unstable to two dimensional
perturbations. However, the solitons and a class of waves are one dimensionally stable (when
perturbed in the direction of propagation only). These semi- stable entities could be of partic-
ular significance in narrow tube plasma experiments and in neurophysics.

PACS numbers: 03.65.Ge

1. Introduction

The nonlinear Schrédinger equation is the basic equation of nonlinear wave propaga-
tion. If, instead of a plane wave given by ¥oe'*°*~ ), we have a modulated plane wave
Re P(x, 1)e%o*= " we call ¥(x, t) the wave envelope. In various media ¥(x, £) can be slowly
varying, thus describing deviations from simple plane waves such as propagate in a vacuum.
One can show that in a variety of media ¥ satisfies the equation:

oY oty ot 4
+ —— +¢

o Tl oy*

+alP*¥Y+b¥ = 0, (1.1)

(see [1-3] for ¢ = 0 and Appendix A of this paper for general ¢). Although this equation
with @ and & complex has appeared in solid state physics [4], our interest here will be
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focused on a, b, c all real. For ¢ < 0 we propose to call (1.1) the hyperbolic nonlinear
Schrédinger equation (hNLS).

The form of (1.1) most often found in the literature is for ¢ = 1 (unless the dynamics
are one dimensional and ¢ = 0). This form arises, among other fields, in nonlinear optics
and in plasma physics [1, 5]. The hNLS describes the wave amplitude for deep water
waves of small amplitude (¢ = —2; [6, 7). In this case the equation is 2+ 1 dimensional,
as the wave height in the z direction is linked to ¥. The hNLS also appears in the context
of electromagnetic plane waves in a plasma (¢ = —1, see [8]).

Weakly nonlinear wave solutions of (1.1) were investigated for stability with respect
to one dimensional perturbations some time ago [9] (see also [1]); this problem is known
as the modulational stability of the waves. However, the important step in a general stabil-
ity analysis of (1.1) was taken in 1974, when Rowlands solved the problem of stability of
all real stationary solutions when ¢ = 0 [10]. These solutions include nonlinear waves
(which were found to be stable or not depending on the sign of a), solitons and shocks
(all stable). His results were then generalised to two dimensions by Infeld and Rowlands
for ¢ = 1 [11], and then for ¢ = —2 by Infeld [12]. All real stationary entitics were found
to be unstable (previous two dimensional calculations had been limited to perpendicular
perturbations on the soliton solution only; i.a. [13-15] for ¢ = 1 and [16, 17] for ¢ < 0).
In this paper we propose to take the penultimate step in generality by looking at the
stability of general complex stationary solutions to (1.1) for arbitrary real a, b, c¢. The
results should yield those of [11, 12] when phase tends to zero (these are in fact some slight
problems when taking this limit and they will be mentioned later).

By renormalisation of x, y, # and ¥ we limit @ and b to the following:

a= —1I or +1
b= —1,0, or+1,

(¢ = 0 would no longer describe a nonlinear problem). This will considerably simplify
our presentation.

2. Form of waves, shocks and solitons

We now propose to look at stationary solutions to (1.1) that do not depend on y.
One can see by inspection that

P(x, t) = Po(x—uvp)ex-omri (2.1)
and

P(x) = Po(x) 22)

obey essentially the same ordinary differential equation, though with different variable
and constant b, so without loss of generality we choose ¥,(x) and write it as

Yo(x) = @(x)e’;  d(x) =0 (2.3)
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obtaining from (1.1)

&, +ad>+bd— Do = 0,- (2.4)
@%c, = A = const,
(P, = 60/0x). (2.5)

Dividing (2.5) by &> we obtain:
A - 2

In what follows we take A = 0, but the extra term would be needed if we wished to recon-

struct the general real ¥(x) that are treated in [10] and [11], as for them 4 = 0 but ¥ can

be negative. For 4 # 0, however, ®? is never zero and the extra term will not appear.
Thus for A = 0, from (2.4) and (2.6)

&, +ab>+bd— A0 % =0 (2.7
and, upon multiplication by &, and integration

a b
1o2 = B- o ot — 5} o2 -1 A%¢72, (2.8)

where B is a constant of integration. Meaningful solutions will only exist if the left hand
side of (2.8) is nonnegative between two zeros of 2. This can happen for all values of
b(~1, 0, +1) when a =1 and then

P2 <0< P} <P* < D3,

where @2 are real zeros of the rhs of (2.8). When this is the case, (2.8) describes a nonlinear
wave. The case ¢ = —1 is much more interesting. Now b must be +1 and

0 < @2 < P* <P < D3

Solutions correspond to nonlinear waves and solitons. Permissable values of 4 and B are
sandwiched between parameters such that:

¢? = ¢2  (linear wave limit)
and such that
@2 = ¢} (soliton limit).

A simple calculation shows 4 and B to be in a region, the boundary of which is given
parametrically by (s is the linear value of @):

0 < 4% < s*(1—5Y),
0 < B < s*(1—-%5%). (2.9)

This region is shown in Figure 1 (for the moment disregard the little polar plots).
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Fig. 1. Permitted region in 4% B parameter space. The lower boundary corresponds to the linear or weak
wave limit (L), the upper boundary to solitons (S), and the segment of the B axis between 0 and 1/4 to the
calculations of Infeld and Rowlands [11] (IR). Parameters inside the region yield nonlinear waves. Phase
diagrams of w/k(6) are also shown: real w/k, .- .. imaginary part of complex w/fk. Each little
polar plot corresponds to one physical situation

@\//e‘;

Yy

Fig. 2. Phase space diagram @,(®) for a = —1. Closed curves correspond to physically meaningful solu-
tions ‘
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A phase diagram of @ (&) based on (2.8) is given in Figure 2 forc = —1, b = +1.
The center of the closed region corresponds to ¢ constant and the tiny circles surrounding
this center to the weak wave limit. We will treat this casein some detail in the next Chapter
Interior closed curves correspond to nonlinear waves. The limiting curve depicts an
(inverted) soliton solution. The general solution to (2.8) for nonlinear waves will not be
given here (it would involve incomplete elliptic functions of the third kind). For the soli-
ton case ®% = @2 and (2.8) becomes

(%) = 2P*—B3) (9*— D7) (2.10)
solved by

@? = P2 [1—n1 sech? (\/%1 cPlx)] "

dx ‘\/1—a2 s J1—a2
c=A4 | — = x—tan = cth x | +=H(x)+ const,

" a
— @2
m = o
1 .
Hx)=0, x<0;, HXx) =1, x>0 (2.11)

This can be seen in the following. way: if we differentiate the first two terms on the right
; . A o
hand side of (2.11) for any nonzero x we obtain w5 However, the second term is discon-

tinuous at zero and jumps —7 when x passes through zero from the left. Since the left
hand side of (2.11) must be continuous and monotone increasing, so must the left hand
side be. Hence the Heavyside function must be introduced: In the ¢ — 1 limit (which corre-
sponds to 4 — 0) ¢ increases by © as x goes through zero from the left. This gives a change
of sign in ¥, Hence, if the constant is zero,

lim ¥ = —¢, tanh x (2.12)
a1

and if it is =
lim ¥ = &, tanh x. (2.13)
a1

If we wished to obtain these results by taking 4 = 0 from the beginning, we would need
the §(®2) contribution in (2.6), as @ = |¥| would have a discontinuous derivative at zero
and this would introduce a é function contribution to &,, in (2.7).

We conclude that both calculations, 4 — 0 and 4 = 0, lead to ¥ of the form Q. 12)
or (2.13).

Finally there is still another reason why a = —1 is the more interesting case. Previous
calcu:ations [10] led to siability for this case when ¢ = 0, 4 = 0. It will be of interest to
see if this is still true for 42 > 0. After all, it is the stable wave and soliton solutions that
we have most hope of observing in the laboratory.
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3. Weak wave limit

So as to better understand the results, we will first look at the weak wave limit. For

oscillations about an equilibrium we have

where

@ = Dy(x)+ 5D,

0 = 6o(x)+ae™, 3.D
dx
Ty = A E +1.

If we substitute (3.1) into (1.1) and neglect terms like &2, we obtain:

(L—A*®5 )o@ —240;5 50, = ind,da,
24(Pg '6®),+(P;00,),+c(P305,), = —inddP, (3.2)

62 2
2
L= P +c5)5 +b+3ad3.

In the weak wave limit we assume @, 5P, 6o constant and

8P, b ~ &

and now (3.2) reduces to algebra. Solutions 59, o exist if

—k*+b+3a95— AP ¢, —24ik D5 —iod,|

24ik, @g ' +in®, , —PFK’ TR 33
k= iC+ckl,
A? = a®S+ by,
Thus, from the first and third component of (3.3)
(0+24k, D5 %) = —2ad3k>+ E*. 3.4
As stated above, the ¢ = 0, 2 = —1 case is of particular interest to us. For this case:
o = +kVE+20% —24ko;> (3.5)

. de
(Figure 3). There are three values of % for which  is zero:

= 24®5 2 —~P5A™1, (double value)
= /2 Py—24P5 2,
= —/2 §o—~24%5> (3.6)
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Fig. 3. Dispersion relation in the linear limit for ¢ = 0, ¢ = —1

If we divide the third component of (3.3) through by &g we obtain for &, — 0
2

and

Vi =0 dpe e =2
This agrees with Chapter 3 of [11]. In general when using the above for ¢ = —1 we put!
D, =P, = D,

4. Small k stability analysis

We will now look at small k stability. We will, however, keep the exact form of the
nonlinear wave structure (2.8). This method (expansion in & but not in wave amplitude)
was introduced into plasma physics in [18]. It is equivalent to considering slowly varying
wavetrains (slowly varying in space and time) and yields the same results as Whitham’s
method. For more about the correspondence of the two methods see [19].

Return now to the general case, assuming ®4(x) to be any periodic solution to (2.8),
thus for the moment excluding solitons. In this presentation we will take ¢ = 0 in the hope
that the rather heavy calculations will not be too obscure, reinstating ¢ and simply quoting
the general result at the end. We will look for & and 6o in the form of P(x)e™, where P
is periodic with the same period as &, (this is guaranteed by the Floguet theorem [20]).
We also assume & to be small and look for w, 6@, d¢ such that:

o = ko +kwo,+ ...,
6@ = 5@0+k5¢1+ ceny
50’ = 600+k50’1+ cnas (4.1)
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The zero order solutions to (3.2) are

A
(S(p‘):E, 560=q’_§“2+l

and in first order, dropping the zero in &,:
(L—A*" )50, — 2407 60, = iw Pday—2iPy,+2iAP ™ *50,, “4.2)
(2407160,),+(D%00,,), = —iw, PP, —2iAD &~ ~2ilp &
—2iAP, b1 —2i40* (éi) . 4.3)

X

The second equation (4.3) can be integrated to give:
2 iy of| @ 2
P00, = —2AP” 6P, —i (—2— +l> D+ D, “4.4)

where D is a constant of integration. Upon substitution into (4.2) we obtain an equation
for 6&, only:

Lé®, = iol®—2id ,+2A(D+iA)® 3,

L=L+2407" (4.5)
Define ¥y, ¥,, ¥, through:
'Ill
DE,s =ies (4.6)
v_, o3

x@z._ ___2
YI1 = ‘;‘¢x 3 dx,
x
1 1
5”1 =3 ‘2—a @x E —o dx,
xp-2_ -2
o
W, =3 qsxj— o 4.7
¢x

X

- o d
(use the fact that L&, = L&, fg; = 0). Here o, are defined through

dx Sl .
P, | —5 9" = P0,x+periodic function
@

X



and o, = «. The values of the a, in terms of 4 and B are given in Appendix B. Thus finally
(60, = iol¥,—2i¥,+QAD+id*)¥ ;. . (4.8)

We are now in a position to determine D, so far unknown. Divide (4.4) 'thfough by &2
and integrate over a period ({ > is average over a period): '

8,y =0 = —2460, 7 >p—i ( > +l) + Dy,

=) o

If we now substitute 6@, from (4.8) in (4.9) we obtain D:
D = Dyo+ Dyl + Dy 00+ Dy 1o,
Doo = [—44iy™ KP,07%) +44% ™ KP_30 7MY,
Doy = iy”'M ™! = 2D,,,
Dy, = 24iy ¥, 7M™,
M = 1-44%" (Y _;07 ). (4.10)
From (4.4) and (4.9) do, is:

My 0P, 1 -3
0o, = —2i9”"W;—24 Fdx+2A? 62,977,

o (/1
W= — — | (2 —y)dx 4.
: 2yj<¢2 y) g (11)

It will prove convenient to write all first order quantltles as polynomials in /- and w as in

(4.10). This is done in Table 1.
We now proceed to second order:

(L= A0~ 6D, — 240 50, = iw, 800, +iw, P00 —2i6®;, .
+0By+2iAD 50, “4.12)
(9256 ,,), +24(30,97 ), = S+iw,dP,, . 4.13)
S = —i0, PP, + 19>+ A—2id%56,,—2idP S0, —2AiD™16P,.
Equation (4.13) can be integrated over a period, yielding a consistency condition:
4 =) - @
The second consistency condition is found by substituting do,, from the intégrated form
of (4.13) into (4.12). We then multiply on the left by &, and use the self-ad_]omt property
of L:
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to obtain the second consistency condition:
(B2 +ia (DD, b0,y + 214D~ D, 00,)
—2i{ DD, >+ ASP™Y = 0. (4.15)

The last term has been integrated by parts:

X

qjx 1 -2

We thus have two conditions for two unknowns, / and w. Both are linear in / and we
find this constant from (4.14):

I = L(o)/M'(w),
where L' and M’ are quadratics. The secénd,ﬁcondition. (4.15) can be written as:
A'(0)+1B(w) = 0,
so finally:
A(@)M'(0)+ B (w)L(w) = 0

is the dispersion relation. It is a quartic in w;. Writing w/k in place of w,, and substituting

from Table | we obtain:
w n
§ s, <_) =0,
k
0

S,= T (M, +BL,-y).

A = kio Ao etc. (4.16)

(With the convention that A, etc. are zero if k > q) el

Ay = —4alP,8%) —4b(P? D) +a{P*) + b D) +4A4(A+ Dyo) <a®®+bd|¥ ),
Ay = —24C¥, 8% +44D0,(a®° + O 3y +24% "~ (A+ Do) <¥_, 0%,

Ay = {D¥5)+24° Doy~ (¥ _387),
By = A+4A4Dy(ad’ +bd|P_,), -
B = % ®V;>+2{ad® +bd|W_ ;> AD, + 24Dy~ "W _ 673,
By = Ay ' (W07 +24% 71D, (P50,
Ly= —A+44y™'(¥,97%) =447 7 (A+Doo) (¥ 30,

Ly = —24(A+D5) (P 3B +2(W, 8> — 2D, P> — 4%~ B, (W _ -3,
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L, = _2A50w<ql—3(1)>9
Mp = (@*>—4( W3, @) +44%y ' Do ¥ 307 %),
M} = 24(Dg+77") (¥ 3@ +44% ' D (¥ 307 %),
M}, = (¥,0>+2AD,, (¥ _;0).
Calculation of averaged products is also straightforward. For example:

/

ot (cbz— 2 ;
r -\« | 1 0y 1 1 1
n+l) \ @2 Wt « |

2 dx (4.17)

Similarly:
1
'P ¢n | Sl . ¢n+1
(¥,9% 2a(n+1)[an+1 al >],
(P_ 9" = =l E=aaeil 4.18
A TR Y e « | (4.18)

One can see by inspection that
Y38y = <¥,97%
and finally:
(P38 =5 (7 —(2D).

Equation (4.16) can be simplified. The reduction of Ay, which is the most difficult, is given
in Appendix C. We finally obtain:

Ay = (+A%a_at, By =A =2,
ol_y- 2Noc_ Moc
wosfizon), il 2
o ) ° ‘ o
= L(1-yM(®%)), B, =3 AN, (4.19)
Lk = —Bk’

£H z
¢4
.M0=19 MI?AN‘»' M2=%-'(A2N2+MY(;Z' _a4))’
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where:
d%.z
M'y = ');+A2a_4—A2—— . A, = M’))A," etc.
o

o Gl
N =oa-— I
of

The first two coefficients S, and S; simplify:
Sp = Mya™?,
S;=0 2 (4.20)
The first component of (4.20) is seen immediately. Also:
Sy = AoM;+A;Mo+BoLi+B(Ly.

AN o o_ o o
= (y+A2a-4)71 +A4 <72 -—My) —A 1—2 <1+A2N—u—% ~My —;) =0. (421)

Finally we write the generalisation to finite ¢, leaving the derivation to the interested
reader: .

M
So — ! cos* 0+[a®* +bP>> + Ao D>) +24Ly]c sin” 6 cos® 0,
o

Sy = [A;{P*>+ (ad* +bd*IM; +2AL, e sin* 0 cos 0,
S, = S, 08 0+ [P DA, + (a®* +bP*IM, +2AL,]c sin” 6,
S; — S;cos 6,
S, — Sa
k = (k,, k,) = k(cos 0, sin 6).

We have thus obtained a quartic for w(8, 4, b, ¢, 4, B). The integrals (D2, (1}D%>,
{P*) are found in terms of complete elliptic functions in Appendix D) to be:

y = {1/®*) =TI (m, k)| PFK(k),
(D% = &L~ (DL — D) E(k)/K(K),
a((f)4> = %’ B_% b<¢2>5

22 , ®3-d}
m = =, kE =S—,
o; o, —~ P,
n=1, p=3 I a= -1,
n=3 p=1 if a= +1. (4.22)

When we formally put 4 = 0 in (4.21) and redo the calculations of Appendix D we recover
the formulas of [11] and [12]. One can see by inspection that! terms containing
II (m, k) cancel.
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5. Some special cases
l.e=0,a= —1, b =+1

When (4.22) is used in (4.19) with a = —1, b = 1 we can obtain w/k as a function
of B, say, for given 4. This corresponds to a vertical cross section of the permitted region
in Figure 1. So as to beable to compare these diagrams for different 4% we use k2 as defined
in (4.22) in place of B, as this parameter always takes values from zero to one. Curves
of w/k(0) are given in Figure 4 for three chosen A2. The linear limits (k? = 0) agree with
those of (3.5) when &) = &} = &2. Continuity with the earlier results of Infeld and Row-
lands [11] is found. Figure 4a depicts both w/k for 42 = 10-'* and obtained from the for-
mulas of [11], as differences between the two will not be discernable on this scale. All
roots are seen to be real. The k2 — 1 limit corresponds to one of the solitons (2.11). Thus
all nonlinear waves and solitons are one dimensionally stable for ¢ = —1.

2ec=+la= -1, b=+1

.. The values of w/k(0) for this case are shown in Figure 1 in the form of polar CMA dia-
grams [21] introduced into nonlinear physics in [19]. The whole diagram can be thought
of as a huge pond in which, at any point of the permitted region, there is a nonlinear wave
or soliton, corresponding to (4, B), that is not indicated but is understood. Each little polar
plot corresponds to the wave or shock for values of (4, B) at its center. The distance from
the center to the continuous line is proportional to real phase velocity w/k(6) for given 6.

wyy, A
k o |

 Sym el

=5




Y b)

=1k

wr b o

7K

L e T

Vg

Fig. 4. wjk for ¢ =0, a = ~1 and three chosen values of 42: a) 10-** and 0 from {11}, b)'10-2 and c) 107%,
The parameter k21is essentially the amplitude of the basic nonlinear wave normalised to the amplitude in
the soliton limit
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In the case of complex roots the dotted line indicates the imaginary part of w/k, the real
paris having been omitted for clarity. We note that:
(@) For 8 = 0 all roots are real (stability of waves and solitons mentioned in point 1).
(b) In A% > 0 limit we recover the plots of [11] (Figure 2 of reference, indicated here

{o the left of diagram).

(c) For general nonlinear waves (interior of region) instability sets in at a critical angle
and all waves are unstable for 0 # =/2, 37/2.

(d) Solitons are unstable for all § # 0, = and the largest growth rates are at 7/2,
3713/2..

(e) The linear limit is described by (3.5) with ¢ = 1.

3.c=+1,a= +1, any b
This case only includes nonlinear waves, so we will just give one phase diagram
(Figure 5). All waves are unstable.

il . e

Fig. 5. Polar plot of wfk(f) for ¢ = +1, a= +1, b= —1, 4> = 0.05, B= —0.2. Broken line is
real part of complex root

4. ¢<0

Now the L operator can introduce an instability. The 4> = 0 case was treated in [12].
" One can gain an idea of how general phase diagrams will be altered as compared with
Figures 1 and 5 by using the schematics of Figure 6, which is drawn for ¢ = -2, as this
is the case of deep water waves. Roughly speaking, the waves and shocks are now subject
to a larger number of instabilities when @ = —1 due to the hyperbolic form of L (now
instabilities appear even in the linear limit, (3.4) for a = —1 and 8 > tan-!(1/,/c)). For
a = -+1 on the other hand, unstable angles are diminished.
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We can summarise our findings by stating that all nonlinear waves and solitons are
unstable when ¢ = 0. For the special case of ¢ = 0, a = —1, b = 1, both nonlinear waves
and solitons are stable. Continuity of results with these found previously for real waves
and shocks [11, 12] is established.

Fig. 6. Schematic of changes in Figures 1 and 5 when solving for hNLS

APPENDIX A

Suppose we have a wave packet with nonlinear dispersion such that most of the
energy is in or near the wavenumber and frequency ,. The complex envelope will be ¥
and takes value ¥, at k,, @,:

o = ok, 0y, |¥|?). (A.1)
We may expand this relation around ko, o, |¥|?:

0w w cw

—wy = — (k—ky)+3 t(k—ky)y (k—ko)+
W — Wy Ok, ( o)+ ko ok, ( o) ( 0) POaE:
If we now substitute i3/dt’ for (w—w,) and —8/dx’ for k—k, and operate on ¥ from
the left, we obtain:

v ow alp) Po Y dw

(21 ~1215). (A2)

'(at' ko %'

+1 . — g2y = 0. A3
* Okyok, 0x'0x’ a;wlg(' "= 1¥1) (A-3)
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We now introduce the transformation:
, Jw
xX=x— —1
ok,
o’

o

’

‘. 1
f—t—z—

(A.4)

assume the tensor 0%w/0kok to be diagonal in this coordinate system and introduce:
a = —2(0w[0|P|5)/(0°w|0k),
b = 2(30/01P10)[(9%[0k ) [¥l5,
c = (02w/6k5)/(62w/6k§), (A.5)

to finally obtain
oy o’y a*y

4 —5 4c—— +b¥+a|PP¥ =0, )
lat ax2 ¢ ayz +ll| ! (A6)

(two space coordinates arr assumed to describe the dynamics completely).

APPENDIX B
From (2.7)
oD, = —ad* —bd*+A%07?, (B.1)

a b A?
192 =B~ Z‘pb 5452— —2-q§“2. (B.2)

1. Subtract  times (B.2) from (B.1), divide result by &2 and average over a period to obtain:
Bau—3%ba,—3 A%0_, = %. (B.3)
2. Add } times (B.2) to (B.1), divide result by @2®2 and average over a period:
—ba—2 aoy,+Ba_, = 0. (B.4)
3. Multiply (B.2) by &2 and use &* calculated from (B.1) in result: '

b A?
1 ¢2p* = Bp*—1 @*(— DD, —bP*+ AP %)~ 5—(—¢¢xx—bd>2+ 55) ~-14%, (BS5)
P i

b b? b A*
122l ) — — DD, =B+ — | P*~2 A%+ — —. B.6
2 x 4 xx 4(1 xX 4a 4 4(1:@2 ( )

Divide through by 1 &2 and take average over a period:

b? , bA? b "
4B+ —) o, —3A4%a— G, = — |- +{DP*>}. (B.7)
a a

a /



Equation (B.4) can be used to remove « in (B.3) and (B.7), yielding:

Z 3aB
et oo e
3B b b>  9a & b
28 el gy - —(P?
LA< ’ a), e 2w |0 ot
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(B.8)

This allows us to calculate o_, and «, in terms of known constants and {®*} (one can
show that the determinant is nonsingular when all 45,, are different and b # 0). The value
of o follows from (B.4). Multiplication of (B.2) by ®;2®~* then ylelds the remaining o,

oy = —(4Bd—,2A2cx_,_2_—2boc2—2),
o . -2

1 ol = 1
oz_'4=A—2 2Bo_ , —+ dol, — ba— 22/

1 .
ag = — (4Ba, —2A%0—2ba, —2{ D).
a
Thus we have all relevant o, in terms of 4, B, ($>) and y = (1/¢2>. '

APPENDIX C

Calculation of 4,. We will need two identities:
1. Add 1 times (B.1) to (B.2) and take average over a period:

al{P*y = £ B—% h(P>>.
2. Multiply (B.9) by o _, and subtract it from 4o times (B.11):

—ao_ 50, +2A4%0_ 40+ 2ba’ + 209 — 2boyct.— —24%% , —2a_,+aca, = 0.

Now from (4.16), (4.17) and (4.18):
/ @ 4 b 2 4 2
Ay = — z(054—m<<15 »)— ;(az*oK@ 2)+alP*) 4 b{P*)
+4a(4+Dyo) {ad® +bd|¥ _,>
1 . i
= £(4Boc—aoz4—2a2)+4A(A+Doo) ad> +bd|¥ _3),

using (B.9) and (4.10):

ba_,a ao, a0 _ 0
Ala_ 2<boc——22+—2 ~—-2-—%>
o

o .
(y+A2a 4—A2 )

(B.9)

(B.10)

(B.11)

(C.1)

(C2)

(C.3)
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and finally, when we write this as one fraction and use (C.2)

S0

+A*a
B ST el
o

APPENDIX D
Specify a = —1, b = 1,

0 < & < 0% < 92 < 92,

<1¢)2>_§ f{;d _fﬁdx d® dx fﬁd‘ﬁﬁ
1275 = Q57| Pdx > dx do dd

@2

= J ~~~~~ B e Bl L _IEV_A (D.1)
o INE=2D (@3- (@3-1)_J V(1= 8D) (@3-1) (#3-1)

take 1—@% = 5%; 55 = PL—03; 2 = PI—DF; u = s/s,.
VP2 =2
2ds
Numerator = — J — e
51 . s2 s
0 (D7 +5) fle= = 1——2)
So S

1

2du 2
= J fffff ; H(m, ©);
5(PI+ uzs(z,) \/(1 u?) (1 kluz) 51@1

ol— o} o)~ &}
m = —3—2—1; 2= 22 ; (D.2)
Py D3 — P
o 2
Denominator = — K(k).
Sy
Similarly
@y2
tdt 2@
e - = 2 K(m)—2s,E(m).
PG AICE D@i—1) 5
Thus

1j@* =y = [ (m, b)/PIK(K),
(D) = @3~ (23— PDE(K)/K(K). (D.3)
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The calculations for a = +1 are a bit different. Now

P <0< 0] <9 <P

and substitution 1—®32 = —s? leads, after similar calculations, to:

Finally

[11 G.
2] A.
31 V.
[4] M.
[5] H.
[6] V.
[11 K.
[8] A.
[9] T.

[10] G.

{11] E.

2] E.

[13] E.

[14] E.

[15] D.

[16] B.
[171 D.

[18] G.
[19] E.

[20] E.

211 T.
[22] B.

<Y@*y = [](m, k)|®3K(k), (D.4)
(D) = O] +(93— PHE(K)/K(K),
o — @3 ) 93—0;
3 @E T P22’

{P*> is given in (C.1):
a(®*y = £ B—% b(®?). (D.5)
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