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LONG-RANGE AND MANY-BODY NON-ADDITIVE
DISPERSION INTERACTION DESCRIBED BY THE USE OF
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The present work deals with the evaluation of dispersion forces between two and many
interacting species; excluding and including the relativistic corrections, using the Casimir-
-Polder formula, which requires knowledge of frequency dependent dipole polarizabilities
of the interacting species. Such an expression for polarizabilities has been constructed using
Padé approximants, and known Cauchy moments of the systems.

PACS numbers: 02.90.+p, 34.20.—b, 35.10.Di, 35.20.My

1. Introduction

In this work the method of Padé approximants [1-3] has been used to discuss the
influence of retardation [4] on dispersion forces at large distances, in the evaluaticn of
the leading coefficient C,(R) in the interaction energy between two neutral spherical
systems @ and b — as given by the Casimir-Polder integral formula [5]. Such an expression
C,,(R) involves in the integrand product of frequency dependent.dipole polarizabilities
of interacting species «,(w) and ay(w). In an earlier work, using the method of Padé apbr_oxj.—
mants, convergence has been achieved in frequency dependent polarizabilities to evaluate
the dispersion interactions [2, 6, 7]. The evaluation of C,(R) as well as of the: coefficient
of the leading relativistic correction term are performed for the systems H, He and H,
by the use of Padé approximants to the polarizability. Also the n-body non-additive
dispersion interaction energy has been evaluated, and convergence in the values is obtained.

In Section 2 the formulae used to carry cut the calculations are given. In Section 3
the results are discussed.

¥ This work constitutes part of the M.Sc. thesis (Basrah University) of F. I. Suleman.
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2. The formulae used

The leading term in the very-long range interaction potential appropriate for two
neutral, spherical systems is given in [5]

C..(R
vm = — 20, M
where
%
Cal®) = — j 0, (iy)2(iy)P(YR/C) exp (—2yR/c)dy, )

where c is the velocity of light, P(x) is a fourth-degree polynomial.
P(x) = x*+2x*+5x> +6x+3. )

a{iy) and «,(iy) are the dynamic dipole polarizabilities at imaginary frequency.

It is desirable to obtain approximate analytic representations valid for small and large
intermolecular separation. Langhoff [8] has worked out an expansion for the general form
of the Casimir-Polder formula in the limit as R — 0,

R 2
jim C(R) = C&— W4 (7) + ... )

R—0

R 2
w (——) being the leading term in the relativistic correction to the energy, where
@
@«
4 _ L 3l pr , ;
Wop = — | ¥ o, (iy)o(iy)dy- 4
o

Using the Casimir-Polder integral formula, it is easy to discuss many body non-
-additive interactions for such distances where retardation effects are neglected. The leading
term in the long-range non-additive interaction energy between n neutral systems (atoms
or molecules) Ay, 4,, ..., A, depends on the coefficient 7y, (9)

o

3 .
e = V(Alﬁ AZ’_ i An) = _7? jaA‘(iy)“Az(iy) o aA,.(iy)dy' (6)

0

The above expression is a generalization of the Casimir-Polder formula involving
many centers. The s#-body interaction energy can be given by

AE, = 0(Ay, A, ... AYpm D
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where ¢ depends on the distances between the nuclei of n systems; and y, depends on the

type of interacting systems.

In order to carry out the above mentioned calculations, we have chosen some analyticak
expression to the polarizabilities a(w); Padé approximants which give a suitablp expression
for the polarizability. They are used to construct upper and lower limits to the polarizability
[1-3, 6, 7). The [n, n—1] Padé approximant is a ratlo of two polynomials. Th¢ coefficients
of those polynomials can be evaluated by solving a set of coupled equations (for details see

Ref. [7}).

3. Results

Using the [6, 5] Padé approximants for the polarizability of the hydrogen atom,
we have evaluated the leading coefficient in the interaction energy taking the retardation
effect into account; C,(R) which is given by Eq. (2). Weddle’s method of numerical integra-
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tion has been performed. C,(R) has been evaluated for different values of the atomic
separation (R) and plotted in Fig.'l against (R). | i

Upper and lower bounds on the leading coefficient in the relativistic éorrectlon to the
energy Wa have been evaluated for different combinations of H, He an H, by using up to
[6, 5] and [5 4] Padé approximants to the polanzablhty Good agreement between present
values and previous calculations as'shown on Table I, are achieved.

The non-additive interaction coefficient y, defined by Eq. (6), has been evaluated, for
atomic and molecular hydrogen and atomic helium. Such calculations have been carried
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TABLE 1
Bounds on the leading Relativistic Interaciion coefficient Wy, obtained from Padé approximart [, n—11,
i n=1-5,6
n H-H H-He H-H, He-He He-H, H,-H,
1 1.0.5298/0.3523* | 0.5867/0.3454] 0.9163/0.6033| 0.8109/0.4060| 1.0797/0.6251 1.6144/1.0516
2 0.4764/0.4303 | 0.5187/0.4444| 0.8268/0.7444| 0.6969/0.5565| 0.9533/0.8137 1.4590/1.3106
3 0.4670/0.4497 | 0.5051/0.4736 0.8104/0.7804| 0.6711/0.6074! 0.9273/0.8703| 1.4298/1.3783
4 0.4643/0.4563 | 0.5007/0.4847, 0.8062/0.7921] 0.6623/0.6282 0.9196/0,8907| 1.4233/1.3992
5 0.4633/0.4590 | 0.4986/0.4878) 0.8048/0.7371) 0.6575/0.6311; 0.9163/0.7888| 1.4218/1.2138
6 0.4629/0.4603 l
others® 0.4628 | 0.503 0.6643 |

2 Caleulated values are written as a/b, where a is the upper bound and b the lower bound.
b Given by Ref. [11].

TABLE 11

V3, Va, Vs and y’é‘ for interacting hydrogen atoms as given by [1, 0, [2, 11, [3, 21, [4, 31, [5, 4} and [6, 5] Padé
approximants fo the polarizability. Calculated values are written as'a/b where a is the upper bound and b

the lower bound

nE Vs

1 21.16/21.09
2 21.72/21.61
3 21.65/21.64
4 21.64/21.64
5 21.64/21.64
6 21.64/21.64

i
l

Va

Vs

$0.61/79.08
80.80/80.56
80.63/80.61
80.62/80.62
80.62/80.62
20.62/80.62

356.78/311.40
316.67/316.06
316.20/316.17
316.18/316.18
316.18/316.18
316.18/316.18

% . refers to the interaction coeffiicent between n systems.
*% p refers to the order of Padé a approximant.

1444.98/1261.15
1278.57/1276.88
1277.21/1277.16
1277.17/1277.17
1277.17/1277.17
1277.17/1277.17

TABLE I

Va, Va, Vs, and 7’2 for interacting helium atoms as given by [1,0], {2, 1], [3, 2], [4, 3] and [5, 4] Padé approxi-
mantis to the polarizability. Calculated values are written as a/b where a is the upper bound and b the lower

(S S

1.598/1.269
1.345/1.325
'1.333/1.330
1.332/1.331
1.332/1.331

* The same as in Table II.
*#¥ The same ‘as in Table IL

bound
Va i Vs
|

1.760/1.398 ] 2.036/1.617
1.458/1.446 |  1.671/1.662
1.450/1.449 1 1.665/1.664
1.449/1.449 1.664/1.664
1.449/1.449 | 1.664/1.664

2.422/1.923
1.976/1.969
1.970/1.970
1.970/1.970
1.970/1.970
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TABLE IV

V3, Ya, Vs and ye for interacting hydrogen molecules as given by [1, 0}, [2, 11, [3, 2], [4, 3] and [5, 4] Padé

approximants to the polarizability. Calculated values are written as a/b where a is the upper bound and b
the lower bound

5 [
g ! ¥3 Pa Vs Y6
|
'_ | |
1 | 49.67/43.05 l 216.30/187.49 989.08/857.34 4652.04/4032.42
2 ’ 44.58/44.30 192.39/191.67 | 874.95/872.80 4100.38/4093.37
3 44.41/44.38 191.88/191.84 873.33/873.24 4094.83/4094.61
4 44.39/44.39 191.86/191.85 873.27/873.26 4094.68/4094.66
5 44.39/44.36 191.86/191.81 873.27/873.19 4094.67/4094.49

# The same as in Table II.
** The same as in Table II.

out with the use of [1, 01, [2, 11, I3, 21, [4, 31, [5, 4], and [6, 5] Padé approximants. Only
the interaction energy that arises from the interaction between the dipoles in the systems
_ has been considered. Lower and upper bounds to v, for the three systems (H, H, and He)
are presented in Tables II-IV. Amos and Yoffe [10] have obtained y, as 171 for the hydrogen
molecule. Our estimate by [5, 4] Padé approximant is 191.86/191.81. Convergence is
achieved in y, by proceeding to [5,4] and [6, 5] Padé approximants.
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