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N
The potential of mean force is obtained for two charged hard spheres immersed in an
ideal dipolar gas. The ions and solvent particles have the same hard sphere diameters and
the ions have equal charges of opposite signs. It is found that the longest-range part of the
potential of the mean force obtained from molecular theory is the same as the interaction
energy obtained from macroscopic electrostatics when the polar fluid is treated as a dielectric

. continuum.

1. Introduction

The properties of ionic solutions and partially ionized plasma are average values
from the configurations of the neutral (solvent) molecules and the ions. The most important
quantity is the average potential acting between two ions held at fixed positions while
all the other particles are free to move under the mnfluence of thermal agitation. If the
average force of attraction between two ions « and B is written as dv,4(ry,)/0r,, this
then defines the potential of mean force between the ions. Such a potential is arbitrary
to the extent of an additive constant. The system is defined by three pair potentials, ¢y,
%, and gpp, which are the ion-ion, lon-solvent, and solvent-solvent interactions, respec-
tively. These are: i
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where fi, and i, are unit vectors associated with the dipoles u; and g, . r is directed along
the intermolecular vector ry;, and 7y is in the direction of ry, a vector directed from the
ion to the solvent particle.

TIn this paper the potential of the average force is defined by [1]

[ dr"°dQ™ exp (—fpy)

€Xp [_—ﬁwaﬂ(r12)] a j dl‘N.DdszD exp ('—ﬁ(ﬁD) s (4)
where f = 1/kT and the potential energy ¢y is given by
2 Np -
¢y = pu(12)+ '21 kZ1 Pi(ik) + ¢p. &)
Np
Pp = kZl @pp(kl). (6)

Here we will consider the potential of the mean force for two charged hard spheres
immersed in an ideal dipolar gas made of permanent dipoles.

2. A single pair of ions in an ideal dipolar gas

Suppose that two ions o and f§, immersed in a solvent, are at a distance r,, from,one
another. For an ideal dipolar gas ¢p = 0 and the integration in Eq. (4) over the dQ"®
and dr'® may be made (see Appendix A for details) and leads to

exp [~ Bou(12)] [Qun(ri2)]"™

eXp [“ﬁ’/’aﬁ(ﬁz)] === T‘WV)ND ’ ‘ (7)
where V is the volume of the sample. The first term in Qup(ri2) is equal to
(4n)* 1 { ] :
- EJ 713drys | T23dras exp {—Blons(13) + Pus(23)]} = 4n(V =7 0); @
12 - :

where
4750'3 3+TEO'2T —7'67‘3 12 .
/ 12 12/ ‘ B (9)

"//e("iz) = {2 . 47ws/3 .

is the excluded volume for a dipole when two ions « and f§ are at a distance ry, from one
another. So we can write the Qp(ry,) in the form of

QlD("li)_ = 47'5[V;‘f(712)], : (10)
fr) = %A an

where fo(r12) = ¥ (r12), f1. f2, ... are the terms with / = 1,2, ... in Qyp divided by —4n.
Then,

Np
oxp [~ Bpup(rs)] = exp [—Bpu(12)] [1 . (’V”)] . o)
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As Np — 00, V=00 and Np/V = QD = const we obtain

exp [— ﬁ%ﬁ("ﬂ)] = €Xp [ ﬁ‘Pn("m)] exp [—opf(ri2)], 13)
or
Bwap(r12) = Bou(ria)+ opf(riz)- 14
The contributions of fi(r;,) and f5(r;,) are equal
4r 2 L ‘
Ji(ri) = — T (ﬁlv‘)z[(qazz+Q¢2f)140+‘1a(1,3(2131 —7%2133)], (15)
12 4! :
4n 3 arc 4 Ay 2 2 2 4
fa(ryn) = — 7‘“ a (Bw [(Qa +qﬂ)180+qaqﬁ(2162 + A0 —4r 064 +712166)
12 02
+2(‘1:‘1,3+%‘12) I, +153—rf2173)]: (16)
where
Ly = [ 713drys § rydrys exp {—BLoas(13)+ pus(23) ]} 115733 (17)

As ry5 = o0 the Iy/ry, — 2/c and the Io/ry, — 2/56°. So these terms and ¥~, contribute
to the constant in y,, as r;, — 0. If we want Bw,p(ri2) = 0 as ry, — 00 we must subtract
the constant. After subtraction of the constant term, one may show that as ry, — o0,
the most dominant term will be proportional to ry,!. That term in; thIS model interaction
exists only for fi(r,,), that is, for r;, > 26

2y —riyl55 = 4, : ) (18)

and the term with g,q, is proportional to r7,". But for ¢ < r,, < 20

[

' r r '
2y —r3,0, = ~;—2 (4— J—2>. ‘ (19)

We have no terms proportional to ri,'. The integral I, is equal to

T2 ("12+20') ("12‘!‘30') 712+0'
— 1ln for o< L2
T | o 4o(ry,+0) ; K5I &40
40 T 5 20
T2 o” 1, FTiato (20)
2— =3 +-2‘11’l for Fi2 > 20
o ri2—0 Fi2—0

and gives the contribution to the “cavity term”. This is because the ion f shields ion «
for dipoles and the ion « shields ion § for dipoles.

3. Discussion

The results reported concern ions having the same hard sphere diameter, o, as the
solvent particles. The system can then be characterized by a reduced density op = Nypo?/V,
a reduced solvent dipole moment u* defined by u*? = fu?/o3, and a reduced ionic charge
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g* defined by ¢*? = pg* o, where u and g are the corresponding dipole moments and
charges. The numerical calculations were done for small g, u* = 1.0, and ¢*2 = 188.0.
For this, u*, ¢*2 and gp = 0.8 were carried out using Monte Carlo calculations [2] to
obtain the interionic potential of mean force. The potential observed of the average force
is quite unlike that of the primitive model for small separations. This paper concerns
investigation on thg nature of the solvent-averaged eclectrostatic pair interaction im an
ideal dipolar solvent for short and long separations between ions.
In f(r,,) only f,(r;,) contains the term with ri;' (for r,, > 26) and this corresponds
to (1—e=1), where ¢ is given by the Debye formula ;
e—1 d4n ' ,
= o @1
In Fig. 1 are compared the ABy,y(r12) = Byup(r12)—Bg (1) obtained from Eq. (14)
for p; = 0.01 up to term f,(ry,) and the same quantity obtained by Patey and Valleau

a6y

s

Fig. 1. ABpap(riz) = Pap(ri2)— BwEN(r1,) obtained from Eq. '(14‘) for op = 0.01 up to the term f3(r12)
and obtained by the Monte Carlo method [2] for ¢f = 0.8

[2] for o = 0.8. The qualitative behaviour is similar because we have a negative value
of APy,, for small values of r;, and a positive value of ABy,, for larger values of ry,.
We may not obtain 4py,, for on = 0.8 because our model is very crude. For r;, > 20
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the departure from the primitive model is influenced by the “cavity term” in f,(ry,), which
for large value; of r,, and small densities is consistent with Jepsen and Friedman [3] and
Stell [4] and is proportional to rg;.
For large ry, the term with g2qj is of the order of i3, the term (g;q, +q,q7) is of the
order of ry;’, and they are consistent with the results obtained previously by Stecki [5].
Bellemans and Stecki [6] outlined a general formalism appropriate to the problem
of the free energy of charging the set of ions. For a system containing two ions « and f§
the free energy of éharging Wenlrys ¥, 4, qg) is equal to the potential of average force
between the two ions «-and f, which is given by Eq. (14). One may decompose W, (r,,
¥g, 4,5 9p) into three terms [6]

I/Vch(".a: rﬁa qgn qﬂ) = w(la) =+ W(1ﬂ) + W(Zaﬂ)(ra; rﬁ)’ (22)

where w{” and w{ is the solvation free energy of ion « and ion B, respectively, and wi®
is the potential of the average force between ions « and f so that w@)(r,,) - 0 as r,, — c0.
' Nienhuis and Deutch [7] also considered the potential of the mean force and found
that the longest-range part of the potential of the mean force obtained from a molecular
.theory is the same as the interaction energy obtained from macroscopic electrostatics
when the polar fluid is treated as a dielectric continuum.

In this paper the potential of the average force between two ions in an ideal dipolar
gas is considered in a canonical ensemble. One may treat the same problem in a grand
canonical ensemble. Then the potential of average force will be a function of distance F1a,
temperature T and fugacity z. Expressing the fugacity z by density ¢ one may obtain the
same result as in Eq. (14).

The author thanks Professor J. Stecki for suggesting the problem and for many
helpful discussions and also Doc. dr hab. J. S. Brzosko for his interest in this work.

APPENDIX A

The integral to be calculated is

* @ = [exp (—Boy)dr°dQ™>, (A1)
where
2 Np

¢y = ‘P11(12)+__Z:1 kgl Pp(ik). (A2)

Then Q can be written in the form
0 = exp [—Bpn(12)] {fexp [ B ._Zl pi(i3)]dr;dQ; 1. (A3)

Now we consider the integral

T2
Op = _feXP [~-B _;1 Pip(i3)]dr;dQ,. (A4)
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X
Fig. 2. The coordinate system to calculate Qjp
To calculate Qy, we introduce the coordinate system as in Fig. 2. Then the Qy, is
equal to

Qn; = J-‘?XP { = BLons(13)+ @us(23)]} exp { Bu [ﬂs <;1_1

13

P13

+ —%1 ?23>]} dr;dQ; = jeXP { — Blons(13)+ pus(23)]}drs

Fa3

xexp{ ﬁu [( cos G5+ 2 cos 923> cos 03+ <%1_ sin 63
13

Fa3 ri3
+ 22 i 023> sin 0 os (¢3— ¢13)]} sin 0,d0,dd,. (A5)
"23
Because
2n E (=5} ¢
1 ,y k2
0 _ k=0

thus we obtain
O = 27 { drs exp {— Pl ous(13)+ Pus(23)]} sin 03d0;

X exXp { ﬁu [(— cos 0,3+ - i cos 023> cos 03]}
F13 r33 ,
2k
z (ﬁ a ) n2* 93 ( sin 0,5+ o sin 923) . (AT)
(k ') 9 ‘ r13 r23




Since

r k! (k+m+1)!

a ;. 2k . ,—0cosf3 __ 5 2m 2k+2

Jsm i e : :( e (2k+2m+2)!

0
with

s -
0 = ﬁu( cos 043+ — cos 023) ,
13 23 /

we have

(k+m+‘l)' N2k+2m
Ow = 87 Z Z kimi@k+2m+2)! PP

q: (e q1
fdr3 < cos 0,3+ —— cos 923) (T sin 0,5
O\, 23 F13

+ % sin 023) “exp { — Bl ¢us(13) + pus(23)]}.

F23

If we introduce the cylindrical coordinate system then Qy, is given by
- .

{(k+m+1)! : X
O = 87 Z Z ktm(2k+2m+2)! (B)*** fd¢3fdz3fgadg3_
k=0 m=0 )

x{ d123 " q2(z3—712) }Zm{ q:193 .
@3+23)°7 " [03+(z3—r) T2 (0 +23)?
SR R
[05+(zs—712)° T

The variables z; and g3 can be written in bipolar coordinates

} exp { — Bl pus(13)+ pas(23)1}.

2,2 2
_ FiatTi3—ro3

2

2ry,

2 2 2 \271/2
r{o+riz—r
2 2 2 12 T7Fi3— 723 4
Q3=(713—Zs)=[’”13—<' —>:I ’
27'12 X
and then,

(k+m-+1)! et
Op = 72- Z Z k'm'(2k_+2m+2)' Bw) i jd¢13fr1sd713
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(A3)

(A9)

(A10)

(Al1)

(A12)



16

2 2 \2m

{ 41 '”12+’13"'23 q 7'13 F12—733

X | Pa3drys | =5 + == — =
ri3 215 "23 2rq,

2 k
x {(q‘ + qz) [‘rl = (-r kst '””) ]} exp { — Bl@us(13) + s}

13
"13 ’23 2r2

Integrating over d¢ 3 and substituting / = k+m we obtain

_ 1672 (1+1)! G
12 Z Z k!(l—-k)!(21+2).! (ﬁ.u) V13d7‘13J‘7'23dr23

2 2 20—k 2
(111 ritris—r3s - q, "13 1 2“"23) ){<(J1 + q
3 3 3
"13 21y, I3 2ry i3 Ta3
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Fig. 3. The regions of integration of Eq. (A17)

the Qi can be written as

@ X (41D)!
Op = g)— Z ((2;_2)), (Bwy* [ r13drys f ra3dra; exp { — Bl pus(13)
1=0

1

. 2 2 \ 23k
2=

RN L)

=0 Fy2 r13 r23

2,2 2 2 22 \20-k)
(‘h Fia+¥Fi3 =723 . qa 7'13“"12“'23)
2ry,

3 i B 3
P13 2rqy : 723

(A13)

(A14)

(ALS)

(A16)
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Summing over k£ we obtain

_ @y’ E : Bw* | N
: Y 21y @i+1)! riadris | rasdras exp {—Blens(13)
2 2 M
; q q q14
+ us(23) ]} [—41— + TZ + 31 32 (P2 472, — "12):,, (A17)
Fis  Faz  TF13f23

where the regions of integration are shown in Fig. 3.
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