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OPTICAL MODEL FOR THE SCATTERING
OF INDISTINGUISHABLE MOLECULES*

By A. RaczyNski1
Institute of Physics, Nicholas Copernicus University, Toruf*¥
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The optical and transition potentials are introduced for the scattering of indistin-
guishable molecules. A self-consistent renormalised perturbation scheme is proposed and
used to obtain approximate expressions for these two operators. A close relation to the
results of the field-theoretical approach is pointed out.

PACS numbers: 34.10.+x, 34.40.+n, 34.50.—s

1. Introduction

The optical potential method appeared an elegant and useful way to describe mole-
cular collisions. In our previous papers [1, 2] we have shown how to introduce the optical
and transition potential (for elastic and inelastic scattering respectively) in the formalism
of first quantization and how to obtain the approximate formulae for these two operators
using a renormalised self-consistent perturbation scheme. This has proved to be equivalent
to the field-theoretical approach of Ficocelli Varracchio ([3-5] and the references therein).

Originally neither of the two approaches was adapted to describe collisions of identical
molecules. This problem was later discussed by Ficocelli Varracchio [5] as far as the field-
-theoretical formulation is concerned. However, it is natural to expect that using such
a sophisticated technique to handle such simple systems is not necessary. In the present
Paper we give the corresponding first-quantization optical model description of a collision
of two identical molecules. This is a continuation of what has been presented in an earlier
paper {11, though the method of introducing the optical and transition potential differs
somewhat from that of [1] (the methods can be easily proved to be equivalent).

In the first section we define the optical potential of the elastic scattering and propose
a method to derive approximations to this operator. The same method is used in the next
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section to obtain approximate formulae for the transition potential of inelastic scattering.
Finally we show the close relation of our approach to the field-theoretical treatment of
Ficocelli Varracchio [5] and also make some comments on the two approaches.

2. Elastic scattering

Consider a system of two colliding identical boson molecules (the case of fermions
can be considered in an analogous way). The hamiltonian of the system is

H = Tp+h(r))+h(r)+V(R, #1,72) = Ho+V, ®

Ty being the kinetic energy of the relative motion, & — the internal hamiltonian of each
molecule and ¥ — the interaction potential.

Let ¢,(R) be a normalized plane wave and <ri, ralogony = {rylogy ra0gy an un-
symmetrized internal state of the two molecules. Here o, denotes a set of internal quantum
numbers of a molecule and {o} is assumed to be ordered. Introduce the corresponding
symmetric and antisymmetric states

GER) = 1/4/2 ($u(R) £ du(—R) = 1/4/2 (hu(R) L - u(R)),
nEy = 1)y2 (o) o) for oy < o
InS> = |y for o = o )

The S-matrix for the elastic scattering ke, — kpooi(a; < a;)is given by the following
expression [6, 7] (with all singularities in the inverse operators treated as usual in the
scattering theory) -

2 -1
Sp = }Lm <¢kf(t)l<0<ia2(t)ii<ia%—H> S(t—1") orei()) 1wt

==

a i
+ <@g (D] LD (i o —H) 3(t—1) loneri()> a2

t— o t
t'—+—c0

a -1
= lim 1/2{¢%,(") <n?(t)li<i5—H> (t—1) Ini(t)> 1kt 3)

Summation is petformed over repeating Greek indices which take the values -+, —.
We have taken ¢ = 1/3/2(y, £ —x,)- Depending on the definition of ¢, for a given k;,
(we could have ¢z, = 1/\/2(r,—P-x,) OF i, = 1/\/2(¢ -k, —Px,)) the element of the
sum in (3) corresponding to ¢ = — may have the opposite sign. The optical potential
can be introduced in the following way. First let us use in (3) the identity

Fi =l F:! ~1 6 -1 . =1
i~ _H) =(i=-H i— —H i~ —H) , 4
(5-m) =(Gmm) () vln). @
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-1
with (i ai ——Ho) being a propagator of a free system. We get then the following expres-
t v

sion for the -matrix (S = I-9)

d -1
T = lim (-1/2) dt1<¢z‘§f(tl)l<n?(t1)lV(ia—H> 8t =) Inf () 19r(d)>- ()

t'>—ao

If we now set

a -1
(1, 1) = <l(D) (i 5 —H> 8(t—1) n}(¢)>, ©
LEX0y =i Tim G, £) Ig(r)). @)

: 1 ‘
<OV <l§t —H> o(—1) Ini(t)) = fdﬁzea(fa 11)G%(ty, 1) (3)
T = i/’2_fdtldt2<¢§f(t1)|2”(t1, 1) e (t,))

= 2mi* 1/20(ex, ~—er,) {%,1Z%(e) 1S >, )

where we have also used the fact that fy((r) = £ exp (—igy1).
The equalities (6) and (7) become after a Fourier transform

(@) = {nf| (0 +E,,~H) |}, (10)
2(@)G™ (@) = {nflV(w+Ey,,—H) M. (i1

we have

By the standard perturbation expansion of the inverse operator in the r.h.s. of (11)
and introducing the projection operators P = |n;" > {n;" |+ |n; > {nj |, Q =1I-P, one
can prove that the optical potential %° defined through (11) exists and is identical to the
Feshbach optical potential {n¢|PVP+PVQ(E— QH Q) 'QVPiny. The function f3
can be considered as a projection of the total wave function of the system onto the internal
state |n}>.

Since |27 satisfies the Dyson equation with the potential ¥

IFETD = 108> + G a2 () | i), (12)

with G§(w) = (n{(w+E, — Ho) *|n?> = 0,(w—T)"1, our approximation necessary to
calculate the transition amplitudes in (9) will consist in using approximate expressions
for 2. We will use a renormalised self-consistent perturbation scheme.

We have

(w+E,,—H)™' = (w+E, —H,— W) !
+(@+E,—Hy—W) L (V~W) (w+E,,~H)™! (13)
with
W= Ww+E,) =Y [RHZ (0 —wj;) {nY, w;; = E, —E,. 14)

nj
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If we iterate (13) in the r.h.s. of (11) we shall obtain a series of approximations to X.
The iteration scheme is somewhat complicated in the sense that to get an approximation
of the n-th order, we need ¥ in approximations of orders lower than z. The only criterion
of order is the power of V. E.g. we obtain in the first and second order

15¢%(w) = V(nf, nj) — the matrix element of V' taken with unperturbed
internal states, (15)

250(9) = 5%@)+ Y, V(ng, n}) {n's| (@ +Ep—Ho— W)™ [nDV(nj, nf).  (16)

njEn;

The operator in the second term in (16) is G"(w—w};) for the internal virtual states
of the form

Inf> = 1//2 (joje> £ ljer;)

but not for those of the form |nj > = |ajo;>. In the latter case it is equal to another Green’s
function G+ which satisfies the equation

(0—T)G* () —Z* * ()G (o) = I 17

To have in our formulae only the function G, we have to apply an extra iteration
scheme, namely that based on the relations
| - - N + +
(0—T)G*?—Z7G" = 6,5, 2, = (g g)

+—
(a)—T)G“ﬁ—(ZO{V-l-Z?)GYB = 5:1[3’ 22 — <0 2 >’

DD
& = 6-63,6, (18)
in particular
Gt = GTT—GTTEY TG -G TGP L 19)
Thus we can write
23%(w) = 129"(0))—(-";". V(ng, n)G"(w—w)V(n}, ), (20)

with further terms of (19) modifying *X etc.

The first term of (20) corresponds to the interaction of the molecules with their internal
structure being undisturbed, the second describes the influence of internal distortion of
the molecules (by taking into account internal virtual excitations). Further terms will
represent multiple virtual excitations and corrections following from the fact that the
propagator {n"|(w+E,—H) *|n}> has been replaced by G*'(w—;;). A more detailed
discussion of the optical potentials of such a general form can be found in [1-5].

For a; = a; we have instead of (3)

- ~1
Sy~ lim (e ()] <ni (O (ig—t—H) 8(t—1) [n" @) 1wt (21)

t—> o0
t'—=— o
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We are able to define only the function G+ and the optical potential Z*+ corresponding
to the one-dimensional projection P = |n;"> (n;|. The operator W is to be built as

W=y |”?>Z++(a’—wﬁ) <nfl,

nj

and the function G*+ will be used to describe the evolution of the system during virtual
excitations but not to switch from #’ to n}.

This case is similar to that of distinguishable molecules [1-4] because of the one-
-dimensional projection.

There is also-a possibility of choosing a reference state (state in which G is defined)
different from the initial state n; [4]. This would lead to a 2x 2 Green function but also
to an cxtra distorted-wave term in the final formula.

3. Inelastic scattering
The S-matrix for the inelastic process kiaya; — ko o) () # ar, a; < a;) has the
following form
L .0 o ; NN at g
Spi=1/2 lim <@g (1) Kn()li <l Py —H> o(1—1) Ini(1')) id(t')). (22)
t—w
t'>—w

Depending on the definition of ¢, for a given k, and on whether 7 < 0 OF oy > 0y
the term in (22) for ¢ = — may have the opposite sign. Our aim is to introduce the transi-
tion potential ¥(n, « n,) i.c. to write the operator in (22) as

6 -1
<{n§(D)] (i % —H) o(t—1) [nj(t)> = fG"”(t, tOV(nG < ) (1, 1)G"(t,, t)dtydt,  (23)
or, after a Fourier transform
(nl (0+(E,,+E,)/2—H) Tty = GQ”(a)—coﬁ/2)V(nj «n}) (w)Gv’(a)+coﬁ/2). (24)
Now let us introduce the vector {f; ™| as
a8 = i lim <PLEHIGH(T, 1), (25)
t'— w0
which satisfies the equation

Fig 7l = <l 1+l 12", ) G e, ) (26)

The mentioned change of sign of some terms of (22) would lead to a change of sign in (25)
and in the free term of (26) of terms for y = —.
After using the above equalities we get

Sy = —2mi - 1/20(ek,+ By, — e, — E,) St 1V (0% < m)) (e, +2)/2) 1 /2. 27)

To calculate the S-matrix elements we need an approximate form of two operators:
the optical potential X (to solve the equations (12) and (26)) and the transition potential
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V(n; < ny) (to calculate the matrix element (27)). Also the latter operator can be approxi-
mated with the help of the iteration scheme (13). Namely, if we iterate (13) in the Lh.s.
of (24) we will get the corresponding formulae for V(n; « n;) in the required order of
approximation e.g.

lV(n; - n:) (C()) = V(n‘jt'a n;)a (28)
Yk~ m)) (@) = V@ <)+ Y, V(g )G (o+(E,, +E,)2—E,)
. . nj#Ening
x V(5 n})+[V(nf, n§)—V(nf, n) ]G (0 —0p/2) V(ng, ny). (29)

For virtual states of the type |« ;>, the function G+ has again been replaced by G+
according to (19).

In (29) we recognize the term corresponding to the direct transition, terms describing
transitions through intermediate virtual states and the final-state correction. Terms of
higher orders would again describe multiple virtual transitions and some more complicated
corrections. The main formal difference between the corresponding expressions for the
case of different and identical molecules is a 2x 2 matrix character of operators in the
latter case. However, general features of the discussion of those operators remain valid
[, 2, 4].

For o, = oy our formalism differs somewhat from the above. The corresponding
S-matrix is

= . ~ Y BN a '—1 Iy ’ 179G T o \
Sp=1y2 1im (gD <nf (Dl (la—t —H) o=ty (")) 19i (). (30)
t—>w
t'—=—

Cur iteration scheme based on (13) would lead to an expression analogous to 24
but with G® replaced by G, ¢ = p = +1. In consequence the final-state distorted wave
would be propagated by G**

Thus we have instead of (25), (26)

{fi, V@) =i lim (g OGTT (1, 1), (3D
AR CHETE AR AR CR TR O (32)

Finally we obtain the S-matrix of the form

Sy = —2mid(eg, + Eny— i, — E)UN2 ity OV (g < 1) ((r, He1)/2) 1> (33)
with the transition potential having in the second order the following form

W(n} « n)(w) = Vg, n¥)+nj:;m’nf V(n}, )G (w+(E,,+E,)[2—E,)V(n5, n)

+[V(n}, nf)= V', 06 (@—0 DV (s, nd). (34)

G can -again be replaced by G, their difference modifying terms of higher orders.
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For symmetry reasons (though, as we believe, not for practical ones) it would be good
to have the corresponding formulae with the final-state distorted wave propagated not
by G but by G that is to use

GO = it{iin (b ()GHH(E; 1), (35)

Gl = < 8us + <l 712, G e ). (36)
This leads to the S-matrix
Spi = —2mid(ew, + By =, — EJUN2 G TNV (0 o m) (e, +2)12) 1F2S (37
with
W(nf < n) (@) =*V(nf « nl)(0)—V(n', 0 )G N (w—wny/2)V(n}, n),

fV(n; « m)(w) = —V(n, nf)GQ+(w—a)fi/2) V(n}’, ny). (38)

For a; = &; a 1 x 1 operator G+ would be used to describe the distorted waves in both
the initial and final state as well as the virtual transitions (see the final part of the preceding
section). a

4. Discussion

In the preceding sections we have introduced the optical model description of the
scattering of identical molecules. We have given the explicit formulae for the optical and
transition potential in the first and second order and presented the method of obtaining
approximations of higher orders. Our results clearly exhibit a similarity to those of the
field-theoretical approach [1-5].

In the framework of field theory a propagator for the elastic scattering has the following
form

G*(R,t,R', 1) = —inf| Ty (R, Oy, (R, ') |ntD, (39)

% being the field operators for the translational degrees of freedom (see [5] for details).
This propagator and our operator (6) in the position representation should be identical.
Indeed, it can be shown by an analysis of the equations of motion (following from the
Heisenberg equation) for G and for the Bethe-Salpeter amplitude

X(nf, i) (R, 1, R, 1) = {nf|Tyo(R, )9 (R, ) [y, n; # n,, (40)

that (6) and (39) have the same optical potential of the form (15), (16) etc. The amplitude
(40) is identical to the operator (23) multiplied by i (again in the position representation)
and one can show that the two operators have the same transition potential (28), (29) etc.

The field-theoretical approach to our problem has been the subject of the paper of
Ficocelli Varracchio [5] who used the state |n >+ |n;7 > = \/2[a;;> as a reference state
{which should in fact be rormalised). With the field-theoretical hamiltonian as in [5]
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(the interaction terms should in fact be divided by 2) his Green function g is related to
ours by

g = —i g Tyl Iy = 12GT+Gy)  for o # o]
and g** =G*Y, g T =gy =g =Gy’

g T =g tT=G6G"=G6G""T=G6G""=0 for o=u 4D

Of course g also contains full information about the elastic process. However, repeating
our calculations of the preceding sections for the function g with the help of (41) is more
complicated. It requires an extra renormalisation procedure because in every step there
will appear the function g, which is to be replaced by g minus terms of higher orders.

In [5] the author used another decoupling technique, namely that based on the Martin-
-Schwinger identity. Results yielded by this method are similar to those which can be
obtained for g from our formalism developed for G and the extra renormalisation. A differ-
ence between the two results is that the former leads to an additional change of sign
of some of the renormalised terms. Differences of this type appear when we examine the
renormalised equations of motion for g and the amplitudes <a,0| Ty, vy [%,0,>- The sign
in the final cxpressions depends on whether we deal separately with the amplitudes
(oo T,y (o> and oo, | Ty, py lon,e,> or use the exact fact that they differ by the
factor (+1) for u = trespectively.

A comparison of two such different renormalisation procedures can be performed
only on the level of non-renormalised formulae.

In our equations for the function g (in any approach) the virtual process 00l — OLi0L;
— a0 must be taken into account which reflects in the appearing of the terms of the type
V(ns, n)G* V(n!, nf) in the second-order approximation for the optical potential (s = i)
and the transition potential (s = f). Such terms are missing from the corresponding for-
mulae of [5] while some of them should remain also in the “diagonal approximation”.

Connected with the lack of normalisation of the reference state in [5] are also inappro-
priate numerical factors in the formulae for X and V(n, « m)".

We believe that our first-quantization approach is simpler and more natural than
the sophisticated field-theoretical formalism. Our renormalisation procedure seems also
more consistent. It also seems that the functions G+ describe the evolution of the system
in the virtual state |o,u;> better than the non-diagonal G*. For a, = o, where the final-
-state distorted wave is naturally one dimensional ([f;5¢7)), introducing the other compo-
nent (|, f;, 7’>) and then the operator ¥(n; « n}), while |n; ) = 0, is rather artificial.
It is also easier to solve a one-dimensional equation (32) than two coupled equations (36).
The last two problems appear in the field-theoretical approach which leads to final results
of the type (35)-(38).

The author thanks Professor L. Wolniewicz for a critical review of the manuscript.

1 They are, in fact, suitable for the function G but not for g.
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