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The problem of the diluted Heisenberg ferromagnet has been approached via a mean-
-field approximation for the case of general spin. The Curie temperature versus concentra-
tion curves show an upward curvature near the critical concentration which seems to be
characteristic of Heisenberg systems. This feature is found to disappear in the limit of classical
and Ising spins. The initial slope of the Te(x)/T.(1) versus x curves are compared with thosz
derived from experiments on Mn,Zn; — .F, and the agreement is found to be much better
than with a RPA treatment.

PACS numbers: 75.40.Fa, 75.10.Jm

1. Introduction

The dilute Ising ferromagnet has been the subject of intensive study for some time.
In contrast, the corresponding Heisenberg problem has been attacked far less frequently
and then usually for §' = 1/2 or classical spins. The reason for this is that the mathematically
sophisticated methods developed for the study of critical phenomena simply do not work
w¢11 for the dilute Heisenberg magnet. Series expansions do not converge sufficiently well
to allow confident extrapolation [1]. Monte Carlo methods are necessarily limited to the
classical spin case [2, 3]. There are the recently developed renormalization methods [4, 5]
or the coherent potential approximation [6], and the Green function [7] or mean-field
approaches [8]. In this work, we shall adapt the latter to study the spin and concentration
dependence of the Curie temperature of a diluted Heisenberg ferromagnet.

2. The method

The method we employ in this work is known as the Self-consistent Oguchi Second
Approximation (SCOII). In a previous publication [8a] it has been applied to the dilute
Ising magnet. To review briefly, the method is based on a trio of lattice sites. In order to
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account for the neglected interactions, an effective field is introduced which is assumed
proportional to the number of neglected nearest neighbours. This effective field is then
determined by requiring that the average of all three lattice sites be the same. This, of course,
is very similar in philosophy to the usual Bethe—Peierls—Weiss approximation.

In performing this calculation, the proper procedure is to do a thermal average for
a particular distribution of magnetic sites. Then, a configuration average over all possible
distributions should be taken keeping the number of non-magnetic sites constant. Equiv-
alently, one may construct the partition function as the weighted product of the various
configurational partition functions.

The dilution problem can be formulated rather succinctly by taking the SCOII Hamilto-
nian to be

—BH(ep, & &) = 2j,S,° (8,5, +&.8,) + 8,45 o+ 84408z + 6,455 6}

where the ¢; are independent random variables with the distribution,

. {1 with probability x @

0 with probability (i—x).

x is the concentration of magnetic ions.

The ratio of the effective fields will be taken to be proportional to the number of
neglected nearest neighbour interactions. However, the number of nearest neighbours de-
pends on the particular configuration of magnetic ions. The effective fields may thus take
on any of the values,

0< A < (n—2)a,
0 <4y 4 £(n—Da. 3)

In calculating the thermodynamic properties, a configuration average must include all of
these possibilities as well.

For the present calculation the perturbation expansion of Karplus and Schwinger [9]
will be used. The idea is to treat the Zeeman term in (1) perturbatively and retain only terms
of O(4?). This will lead to a self-consistency which is correct to linear terms in the effective
fields. When the configuration average is performed, the result will be simply to replace n
by nx. This follows immediately from the identity

. ny x n—k
2 k (k) XA —x)""" = nx. ©)

k=0
This results in a great simplification of the computation, since one can now effect the
configuration average over the possibilities (3) by making the substitution z — nx. It must
be emphasized, however, that this procedure is rigorously correct only for the calculation
of the high temperature properties, such as the transition temperature.
One must now evaluate the partition functions corresponding to the various configu-
rations of magnetic ions.

Z(ep 2, &) = tr exp (—BH(ep &, 8)- ©)
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If all three of the lattice sites are magnetic, then the partition function to second order
in the fields is, for spin Sy, (see Appendix)

1 25+1 A )
Z(1,1,1) = S\ SE+D+Cot0+ 210124
S1 S

0001 _ 2 jo (5 3 N\2 )
24iS(S+1) (do—21) )e + Z Oso(1—(Ao—4y) So(So+1)/6))
S
% exp (—2jSo(So+1)), (6)

where 0 << 8y < 28, |S1—So] < S <C|S;+8S,] and the S = 0 term (if it occurs) is to be
excluded from the first sum in (6). 4, and A, are the effective fields, assumed to be of the
form:
Ao = (n—2)xa
and
Ay = (n—1xa
with « being the internal field per spin. Finally,
o =SE+1D=S:(So+1)—S(S;+1),
0o = S(S+ 1) +S56(So+ 1)~ S1(S; +1),
and

Similarly, if either of the end lattice sites are non-magnetic, the partition function
will be the same, except that now S; takes only the single value, S,.

Z(0,1,1) = Z(1,1,0) = Z Sz(ii) (S(S+1)+(;Loao+zlaj)2/z4

N

G0 . ‘- . v e . -
ITRTENA —AI)Z) e+ Z 350(1=So(So +1) (ho—21)%/6))
X exp (= 2/So(So+1)), M
but since 6o = o; = S(S+1) in this case,

280

Z(0,1,1) = Y (2S+1)(1+S(S+1) (o +24)%24+(1; —Ag)?[24))e’®
S=1

+(1=5(So+1) (Ao —241)%/24j) exp (—2jSo(So +1)). ®
If the central lattice site is non-magnetic, then

—BH(1,0,1) = 4;S.. ®
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So,

2So S1 2S0

Z1,0,)= Y Y exp(md) = }j ((2S+1)+S(S+1) (28 +1)22/6).

S1=0 m=~81

(10)

In obtaining (10), the exponential has been expanded and the M sum evaluated using

Y m?=10QS+1)(S+DS.

m=-5
Finally, the S; sum in (10) can be done explicitly to yield
Z(1,0,1) = (2So+1)* (1 +So(So+1)41/3),
where the following identities have been employed.

280

Y S5 = 84(2S0+1).

s$=0
2So

SZO 8% = S4(280+1) (45, +1)/3,

Zzsjo S3 = S2(28,+1)%
§=0
In like manner,
Z(0,0,1) = (25,+1) (1+So(So +1)43/6),
and
Z(0,1,0) = (2So+1) (1 +So(So+ 1)A5/6).
The configurationally averaged free energy is just

< BF>C . ZN(SP’ q° r) in Z(Sp, q° r)?

where Nz, &,, &,) is the probability of occurrence.
The condition on the magnetizations to be applied here is

<<SOz>T>C = <<S12>T>C/23

an

(12)

(13)

14

(13)

(16)

an

where a subscript 7(C) denotes a thermal (configuration) average. This is, of course, consis-
tent with the arguments given in the beginning of this section for a quenched system.
From (6), (7), (8), (12), (14), (15) and (16) one obtains the self-consistency condition to
first order. From this, the equation determining the transition temperature is found to be

X}(F4[F3)+2x*(L~x) (F3/F ) —x*(1—x) {So(So+1) (n—1)/3}

—x(1—x)* {So(Se+ D)3} = 0,
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where

2S+1 Go0 ¢ _I ;
F 264 — Go+0101)[24— — 0L gl
‘253253&8+D[(% 70 oot Mo s |
S1 S

+§ 35050(So+1)/2j,

Fy =3 Y25+ +Y 5o,
S1 8 S

2So

So(So+1 . 1
Fy = .0( ot _)_|_ e’(s+1)(2S+1) [S(S+1) (2n—3)/24— ——_:I,
2; z : 8
S=1
2So X
Fy= Y (25+1)e56+0, (18)
S=0
3. Results

The solutions of this last equation are shown as functions of x for several values of
spin and the bec lattice in Figure 1. It was found that the solutions were continuous, implying
that the transition was always of second order. (Using the constant-coupling approxima-
tion, Kumar and Bhargava [10] find a 7,(x) curve that drops discontinuously to zero at
X, = 4/n, i.e., a first-order transition. Their result is unusual.) Furthermore, the present
approach does not yield a curve for 7,(x)/T, (1) versus x which is concave downward over
the whole range of concentration. This is not the usual result, but it is not unknown.
Examples of other results showing similar behavior are reproduced in Figure 2. The

17 L I T I T T T A

Te(x)|
Te (1)

0 |
.0 X 1

Fig. 1. Concentration dependence of the Curie Temperature for a dilute ferromagnet. The curves shown
represent spin values of (right to Ieft) 1/2, 1, 3/2 and 2. Note that the change in curvature disappears for
large spin values
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curves. (a), (b), and (c) are theoretical results of (@) Heap [11] using a power series (in x)
approximation to the susceptibility, () Mano [12] using a cluster approach, and (c¢) Tahir-
-Kheli et al. [6] using the coherent potential approximation. These results all apply to the
Heisenberg model, spin-1/2, for the body-centered cubic lattice. The curves (d) and (e)
are both experimental and theoretical results or anti-ferromagnets, (d) from Heikens

1.

Telx)
TolT)

03 74
02 7

o1 e
/;';
0. &g
01 ¢ o2t
ab

1 1 '
03 04 05
X

Fig. 2. Various results for the Curie temperature vs concentration. Curves a, b, and ¢ are theoretical
results for body-centered ferromagnets for spin 1/2. Also shown (d and e) are experimental and theoretical
results for antiferromagnets. See text for references. Note the presence of the upward concavities

and van Bruggen’s [13] data on Mn, Mg, _ S and is similar in appearance to data of Breed
et al. [14] on KMnyMg, _.F; and (e) is the theory (CPA-RPA) of M¢Gurn and Tahir-
-Kheli [15] compared with data of Baker et al. [16] on Mn,Zn, _,F,. In every case we note
the presence of the upward curvature in the 7T,—x curves. So, although the concave downward
behaviour appears to be more common and is intuitively expected (see Refs. [1] and [8]),
the concave upward result found here (Fig. 1) does have some precedents. Finally, it is
observed that results for the Heisenberg model are often considerably different from those
of the Ising model.

The critical concentration is that value of x for which j — oo (T, — 0). It can be found
by taking that limit in (18). A straightforward, though tedious, computation gives the
following value for the critical concentration.

x_ 2(Sy+1)
¢ 2Sy(n—1)+1"

(19)
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This value exhibits a somewhat larger spin dependence than one might intuitively expect,
but it is not unreasonable. A similar result has been reported by Elliott [17] who used the

) So+1.
constant coupling approach. (Actually, his result was x, = S (0 5 )
ol77—

Another quantity of interest is the slope of the T(x) T (1) versus concentration curve
at x = 1. For the bec lattice, the SCOII method predicts a value of 1.25 which compares
well with the value of 1.33 for Mn,Zn, - F,. The RPA [7]yields a value of 1.51 for this
quantity.

APPENDIX

Perhaps the simplest way to find the partition functions corresponding to various
configurations of magnetic ions is to utilize a representation in which one first couples
S,and S,. Thatis, let S, = &,S,+¢.S,. Similarly, §, = &,S,. The advantage of this approach
is that the effect of particular combination of &’s can be accounted for by simply adjusting
the ranges of these coupled spins.

Therefore, we consider the function,

F(X) = exp [X(4+B)], (A1)

where 4 = 27 §, - S, and B = A,S,,+A,S,,. It is our intention here to treat A as the
unperturbed Hamiltonian and B as the perturbation term. This will ultimately lead to
a power series in the effective fields.
F(X) will obey the following differential equation [9]:
d
ax
with F(0) = 1. It also follows that

[e” " F(X)] = e “*BF(X) (A2)

X
F(X) = e’ 1| AXXIBR(X"YdX'. (A3)
Q

This latter integral equation can be expanded into the usual Neumann series. We
retain here only the first two terms.

1 1 X
F(1) = e* 4 [ ' 04BeXgx [ [ (1 0ABX-X)AR XA g3 %/
o} 0 0

1 1

=e*+f e TABXGX £ L[ Bet 4. By, (A4)
0 4]
If one now defines S = §,+3,, 4 will be diagonal in an |S,S;SM ) representation. Now,
wFD) =3 5 Y (SoS SMIF(1)[S,S,SM) = ¥ T (25 +1)e’
Si § M Sy S

1 1
+HYXys e‘l"“’)‘(SOSISMIB[SOSISM>e’“’dx+% f tr Be' ™4 Be* 4y, (A5)

0S; S M 1]

where ¢ = S(S+1) ~Sy(So+ 1) (S, +1).
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Since the first integral in A5 is an odd function of M, its trace will be identically zero.
Finally, one needs to calculate
tr Bet M. Be =3 % Y |(SMIB|S'M’ )2/ TP e, (AT)
Si1 SM S'M’
The Wigner—Eckert theorem can be used to determine the M and M’ dependence of the
above matrix element. The M, S’ and M’ sums can then be evaluated using straightforward
angular momentum techniques. (See also equation (13[3]1") of Condon and Shortley).
The integral can then be evaluated, taking care to treat the S = 0 term separately. Finally,
one obtains

Do 25+

(Ao—41)"€" + z dso[1=S6(So+1) (4o _11)2/61‘] exp [ —2/So(So+1)], (A8)

N

G0y

JS(5+1)

where the definitions are those used in the text. Equations (6) and (7) can be inferred directly
from the above.

Editorial note: This article was proofread by the editors only, not by the authors.

REFERENCES

[1]1 G.S. Rushbrooke, R. A. Muse, R. L. Stevenson, K. Pirnie, J. Phys. C 5, 3371 (1972).

[2] M. A. Klenin, M. Blume, Phys. Rev. B14, 235 (1976).

[3] M. A. Klenin, Phys. Rev. B19, 3586 (1979).

[4] A. B. Harris, T. C. Lubensky, Phys. Rev. Lett. 33, 1540 (1974).

[5] G. Grinstein, A. Luther, Phys. Rev. B13, 1329 (1976).

[6] R. A, Tahir-Kheli, T. Fujiwara, R. J. Elliott, J. Phys. C11, 497 (1978).

[71 A. R. McGurn, J. Phys. C 12, 3523 (1979).

[8] H. A. Brown, a) Trans. Mo. Acad. Sci. to be published vol. 13, b) Acta Phys. Pol. ASS, 229 (1979).
[9] R. Karplus, J. Schwinger, Phys. Rev. 73, 1020 (1948).

[10] D. Kumar, R. Bhargava, J. Phys. C 8, L478 (1975).
[11] B. R. Heap, Proc. Phys. Soc. 82, 252 (1963).
[12] H. Mano, Prog. Theor. Phys. 57, 1848 (1977).

[13] H. H. Heikens, C. F. van Bruggen, Physica 86-88B, 735 (1977).

[14] D.J. Breed, K. Gilijamse, J. W. E. Sterkenburg, A. R. Miedema, J. 4ppl. Phys. 41, 1267 (1970).
[15] A. R. McGurn, R. A. Tahir-Kheli, J. Phys. C 11, 2845 (1978).

[16] J. M. Baker, J. A. J. Lourens, R. W. H. Stevenson, Proc. Phys. Soc. 77, 1038 (1961).

[17]1 R. J. Elliot, J. Phys. Chem. Solids 16, 165 (1960). ‘



