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Some exact inequalities for thermal autocorrelation funcitions have been established
and discussed. These inequalities cause the zeroes of autocorrelation functions, i.e. anti-
resonances, to appear if this function has at least two pcles, which is typical for 3He(B).
1t has been shown that the autocorrelation functions of density and transversal current for
Balian-Werthamer systems fulfil these inequalities, at least in the quasihomogeneous regime.

1

The negative sign of static autocorrelation functions at the vanishing temperature
has been exploited by Leggett [1] in his microscopic proof of Pomeranchuk inequalities
[2] for normal Landau Fermi liquids [3, 4]. In paper [5] it has been found that the expansion
coefficients of such functions, with respect to the inverse squared frequency, if they exist,
should be positive. Morcover, from the last conditions, applied to a normal Fermi liquid,
the Pomeranchuk inequalities have been, obtained [5]. Both types of inequalities result
from the spectral representation of those functions but, nevertheless, the fact that they
lead to the same restrictions on Landau parameters [3] is not obvious.

In the paper [5] there appeared the possibility that both types of inequalities lead to
the same restrictions on .Landau parameters for paramagnetic and normal Fermi liquids
only. This has been confirmed by Kotodziejczak [6], for the simplest model of ferromagnetic
Fermi liquid, with spherical Fermi surfaces for up and down spins and with a broken
spin-rotation symmetry in the effective interaction of quasiparticles. It was stated, that the
inequalities discussed in [5] give richer restrictions on Landau parameters than the static
inequalities.

The density and transversal current autocorrelation functions for Balian-Werthamer
systems [7], i.e. for 3He(B), were investigated by the author [8] in the quasihomogeneous
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regime, i.e. for kv < [w| (k — the wave vector, v — the Fermi velocity, i = 1). We restricted
ourselves to the terms of the order of (kv/w)?. This did not allow us to check if the density
autocorrelation function fulfiis ail proper inequalitics though so did the autocorrelation
function of transversal current. Our present task consists in examining of the properiies
of the density autocorrelation function. It is necessary to take into account also the terms
of the order of (kv/w)*, [8]. They correspond to the fourth-order perturbation term in
our perturbation procedu-e and lead to very complicated caiculations. In order to facilitate
them, let us equate all Landau parameters to zero. On the other hand, on¢ can show that
the very big parameter 4, will not influence our calculations, [9]. Note also, that our
analysis [8] was performed without any restrictions imposed on Landau parameters.

In paper [8], it was observed that the inequalities for autocorrelation functions,
mentioned here, can be extended to nonzero temperatures. On the other hand, the proof
of this statement has not been completed in [8].- Hence, to start with, that proof opens
further calculations.

2

We restrict ourselves to consideration of retarded autocorrelation functions, i.e.
Kx—x',t—1) = —i0(t—1') {[&(x, 1), &X', ), 1)

where 0 is Heaviside’s step function, { — one-particle Hermitian second-quantized operator
in the Heisenberg picture, <...) denotes averaging over grand-canonical ensemble and
[..., ...]—the commutator. Let us confine ourselves to such &, that Pé(x, 1) = +&(—x, )P,
where P is the operator of spatial inversion. In fact, our confinement is physically meaning-
less, because we usually consider avtocorrelation functions of even operators, such as
particle density, or odd operators, such as components of current. On the other hand,
everybody can combine in ¢ the particle density and the component of current. For our
class of operators ¢, K, is an even function of the variable x— «/, for translationally invariant
systems, provided that the density matrix is inversionally invariant. This last fact may
not hold for liquid and solid crystals. On the other hand, for both phases of the super-
fluid *He, all the vectors determining their possible anisotropy has an axial character.
Hence, one can conclude that the equilibrium density matrices of *He(4) and B commute
with the operator P. Hence, for such systems as well as for ordinary liquids, the Fourier
transforms of the functions (1) are even functions of the wave vector k.

The space-time Fourier transforms of. the function (1) has the following spectral
representation (cf. [10], formula (3))

' 2w
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Here f = 1/kyT, ¢ is the grand-statisiical sum, the summation over n, m goes over -all
states of the system, with energies E,, E,, § = 0%, w,, = E,~E,, and &, denote the
!
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nm matrix element of the spatial Fourier transform of the Hermitian operator ¢&. Taking
into account that K.(—k, ) = K.(k, w) and that &_,,,, = &, replacing the summation
variable n by m and vice versa, one can rewrite (2) in the form

2w
Kk, w) = —o~" T | . 3
sk, ®) 0 E e " [E l(cu+i5)2—co,,2m (3)

nmn

Adding formulae (2) and (3), one finds

) | —~BEm __ _~BEn 2 DOy
K{(k: CU) =@ Z (e ) léknml ( +l5) “Cl)nm (4)

This formula has been used in the paper [8]. It is easy to see, that only the symmetric part
of the matrix |guml® €. [Epuml® = S kml* + | mel 21, gives the contribution to the sum
(4). The formula (4) can be also rewritten in the form

—_ ! —_— a)n"l
Kok, 0) = 20" Z (PP e 5, e (5)

where the primmed sum is restricted to w,,, > 0. As the direct result of the formulae @)
and (5), one finds that

(1) K(k,0) <0,

(ii) the expansion coefficients of Kk, w) with respect to inverse squared.  are positive,
if they exist,

(iii) the sign of residues of K,(k, w) coincides with the sign of w.

. Such properties of autocorrelation functions were used by the author [8] in the discus-
sion of autocorreiation functions for *He(B). These inequalities result from an absence of
the occupancy inversion in the system; the detailed form of the grand-partition function
was not important in the proof. The inequalities of (7), with the help of the Ward identi-
ties, cf. e.g. [11], for appropriate - operators reproduce the conditions of thermodynamic
stability.

The inequalities (i)-(iii) allow one to make some conclusions about mutual positions
of zeroes and poles of the functions Kk, o). Accordmg to {(iii), Kk, ») tends to minus
infinity if o tends to the positive pole w, for w <! @, and is coming back from plus infinity
for o > w,. Hence, and from (i), one finds that Kg(k, ) does not have any zeroes on
the interval between @ = 0 and the first positive pole, or has there an even number of
zeroes. The same reasons cause the K(k, ) to have one zero, or an odd number of zeroes,
on the interval between two adjacent positive poles or negative poles. Moreover, for w
exceeding the greatest pole of K.(k, w), this function does not have any zeroes or has an
even number of them, cf. (if). Note, that analogous rules for the negative semiaxis » could
be also established due to the obvious w-symmetry of the function (5).
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3

For Balian-Werthamer systems, i.e. *He(B), the autocorrelation functions of density,
longitudinal spin and transversal spin should have their poles in the acoustic region, i.c.
for w, kv < 4 (v — the Fermi velocity, 4 — the energy gap) and also the poles with a gap,
for kv < 4, cf. [12, 8, 13]. Hence, each of these functions should have one or an odd number
of zeroes lying between the acoustic pole and the pole with a gap. Let us add, that for
the autocorrelation function of transvsrsal current the acoustic pole disappears, at least
at sufficiently low temperatures [8, 14]. » )

According to our result [8], the density autocorrelation function has only one zero
outside the acoustic region. This function, taken with an accuracy up to the terms of the
order of (kvjw)?, does not allow one to determine why its zero lies in the proper interval
ie. between @ = 0 and the pole with a gap. This fact is not affected by values of Landau
parameters, provided that we restrict ourselves to only one interaction harmonic in the
pairing channel. Now, we are going to discuss the above function, S°°(k, w), with an
accuracy up to (kv/w)*, but for vanishing Landau amplitudes.- According to our results,
[8, 15], S°°(k, w) at vanishing Landau amplitudes can be expressed as follows

SOk, w) = v{<Q1>+[D{(g)* +B{gl—w))*
—20<gy <g(l—w»](BD-CH 7'} ©)

Let us explain the symbols used. v is the density of states on the Fermi surface per unit
volume, <...> denotes the average over spherical angles, g — the Maki-Ebisawa function
[16] multiplied by 242. The function g depends on dimensionless variables f = ®/24 and
u = kv[24; its angular dependence is connected with the variable uw, where w = cos 0
and § — the spherical angle. The remaining symbols are defined as follows

B = (—u*w)g), C = <1—w)(E—u’w)g),
D= C—(ng(l—w%)?, Q1) = Luw(t—uw) '(1—g)—gd. @)

In order to perform our task we have to expand the function g on the power series with
respect to uw. With an accuracy sufficient for us, we have

¢ = gotguw+ giutwt = go(1+4u’w + A utw?), 8)

where

go = | [the) (f2=D)""?hdf, w= 42T, h= (-7,

ey 8

817 if{th(“f)'(fz"1)_1/2[2t_2h+(5t2——3)t_2h2—4(1.—tz)hsj}df,

g = | {th(af)( 22 h = (T— 6t R + (1764 — 2617+ 5) *R°
1

FA(L—12) (5= Tt 2h* +16(1—12)*h5]}df. ©)
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In the immediate vicinity of 7., we have
g = md/4T (1—1*)'%, A, = —2P 121 —1?) » —5/12,

Ay = (81* =812 +3)/81*(1—1%)% — 75/32, (10)

where the limits of A, and A, are taken at t2 = 3/5. On the other hand, at T = 0 we have
go = (aresin K1 —*»)'%, A, = —(g5* +21?—1)/2t2(‘1 —1%),

A, = [8t*—812+3+3(2¢ — 1)gg /8¢ (1 — £2)%. (i1)

Substituting (8) into the elements of (6), performing the average over spherical angles and
collecting the terms up to the fourth order, we get

B = g[t"+3 ”2(12/11‘?1)'*'% uh(3 A,—4)],
C =% go[t* +1 (4, - D) +55 u*E A= 4y)],
D =3g[—t+1ul (124, -3 A, — )+ u¥(E A,—4)], - (12)
and

. u2
(&) = gol+5 uA +3u*4,), {g(1—w?)) =2g, <1+ < 4 +5% A2“4) ,

-1 4
g —1 u“ /5
Q1) = —go l:l—% “2< Otz */11> - ?(g —3-4~3 Az)] . 13)
d &0

Note, that in the formula (12) and (13) 2 = 3/5 was put in the fourth order terms, since
these formulae will be used in the vicinity of that point, for investigation of the mutual
position of the zero and pole of $°°. Taking into account (12), we find the denominator
of S§°°. With the appropriate accuracy we have'

BD—C* = %5 got™ (3 (" = D)~ w20, + 1 — 125 A3 =12 A, +4 4185 4,7

= % got’Z, (14

where
1= —§ (41—t (-1 + 3 4, (s)

The function 6, at 7> = 3/5 describes the dispersion of the lon gitudinal excitations with a gap,
for A, =0 if /> 1, [8]. This fact becomes clear also via expression (14). Calculating
the numerator of the second term in the curly bracket of (6), with the help of (12) and (13),
we obtain a very complicated expression which will not be reproduced here. On the other
hand, if we transform the curly bracket in (6) to the form of the fraction with the denomi-
nator BD—C?, then the mumerator of this fraction becomes much simpler. In particular,
all terms proportional to A and A, are cancelled in this numerator. Finally, the function (6)
taken with our accuracy, has the following form

Sk, @)fv = 5172’ [F (P =D —u’(6, — 5 go)]Z 7, (16)
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cf. (14). Looking for zeroes of (16), with the accuracy up to u*-order terms, one finds
that S99 vanishes at

t = (3/5)"[L+u’(d:—s g0)li2=o.6]- amn

Moreover, S°° has a pole at ¢ = (3/5)Y/2 (I4+u?3;]2-0.). Since go >0 for 1> < 1,
zero of $°0 lies in the proper w-interval, from the poiut of view of stability of the system.
Let us repeat that the inclusion of Landau’s parameter 4, will not affect this statement [9].
For the additional inclusion of the Landau parameter A4, it is necessary to handle a few
hundred terms in calculations analogous to those reported here. If we include also 4,,
then the corresponding number of terms grows to a few thouwsands. Hence, it is rather
impossible to give such a discussion stability of properties in an analytic way.

4

Formula (14) allows us to find the dispersion of the longitudinal excitations with a gap,
with the accuracy up to u*-order terms. Substituting there ¢ = B/5)Y2(1+8,u> +5,u%)
and looking for zeroes of (14), one finds that

3y = —[4 81— (3/9)"?6181— 1% A1~} A1 +5+ 105 Aa]le=os (18)
where &, is the derivative of §, (15) with respect to t. At T = T¢, 9, is equal to—0.0819,
at T = 06, = —0.3502 and it seems that §, remains negative in the whole interval (0, 7).

The formula (16) allows one to compute the residuum of the function S°(k, w)/v at the
pole at 7 = (3/5)*/2(146,u?). This residuum is given by 4(3/5)2gou®/81, cf. (ii).

Our final results, such as (14), (16) and (17) are surprisingly much simpler than the
intermediate ones, which have not been reproduced here. This is a rather typical situation
for Balian-Werthamer systems, cf. e.g. [8], manifesting some hidden symmetry of such
systems. ) _

Zeroes of the magnetic susceptibility of ferromagnetic metals were theoretically
predicted and called antiresonances by Kaganov [17]. They have become objects of the
experimental investigations [18].-In this paper we have proved, that the appearance of,
at least, two poles of the autocorrelation function leads to the appearance of, at least,
one antiresonance. It seems that necessary antiresonances of longitudinal and transversal
spin susceptibility of *He(B) should also be good objects of experimental investigations.

Note added in proof. Irrespective of estimations of the number of terms made at the end
of the third part of the paper, one can prove by a slightly tricky method that the residuum
of S99 is always positive for w > kv and any 4, fulfillmg Pomeranchuk inequalities.
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