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It is shown that the first equation of the equilibrium BBGKY hierarchy possesses
locally inhomogeneous solutions of the fluctuation type, which branch off smoothly from
the uniform solution, i.e., which can appear spontaneously in an initially uniform fluid.
Initial fluctuations are of the form of separate modes; in the subsequent steps these modes
are broadened and mixed together. Discussed in more detail are: fluids of hard spheres and
of adhesive hard spheres, and two-component plasma. For these fluids, solutions of the
considered type exist in sufficiently dense systems only.

PACS numbers: 05.40.+j, 64.70.Fx

1. Introduction

The first equation of the well-known equilibrium BBGKY hierarchy [1] reads:

g;ln ny(r) = —p deﬂl(S)g(r, S)(% u(lr—sl), (L.1)

with g(r, s) = ny(r, $)/n (Nni(s), ny(r) and ny(r, s) being, respectively, one- and two-par-
ticle distribution functions, u(r) — two-particle interaction potential, f = 1/k,T — inverse
temperature in energy units. It is also well-known that Eq. (1.1) has always a constant
solution n,(r) = ¢, corresponding to the uniform, translationally and rotationally invariant
fluid with local density n,(r) equal to the average (global) number density ¢. For such
afluid, the pair correlation function becomes also translationally and rotationally invariant :

gt,s) =g(r), r=|t—s|. (1.2)
The function g(r)is called the radial distribution function (RDF). The question arises wheth-
er the equation (1.1) with RDF can possess non-constant solutions for my(r), i.e., whether
an initially uniform fluid can evolve spontancously an inhomogeneity of some kind. This

* This work was partly supported through Project No W.04.3.17.
** Address: Instytut Fizyki, Uniwersytet Jagiellonski, Reymonta 4, 30-059 Krakéw, Poland.

(789)



790

question was recently examined [2-10], mainly from the point of view of crystallization.
Several articles were published, investigating the existence and properties of the solutions
to Eq. (1.1), or to other related equations [2, 7], which branch off from the constant solution,
and which possess crystalline-like symmetries. Also liquid-crystalline solutions for angular
singlet probability density have been found [9]. However, the problems of stability of these
solutions and of their symmetries are not fully understood so far [2, 7, 10].

In this paper we propose to investigate nonconstant nonperiodic rotationally invariant
solutions of Eq. (1.1), which can be interpreted as density fluctuations. The existence of
solutions for the local density of the form:

n,(#) = ny(r) # const (1,3)”

means that in an initially locally homogeneous fluid with the property (1.2) a local density
inhomogeneity can appear spontaneously. Such solutions do not destroy the global fluid
symmetry, guaranteed by the invariance of the Hamiltonian, and hence no external field
is needed to choose particular (local) broken symmetry solution. Also, one does not expect
the spontaneous local fluctuation to lower the global (the more the local) free energy,
so that the problems of stability, haunting the phase-transition theory, become meaning-
less here.

2. Expansion in the parameter of smallness

We first cast Eq. (1.1) into a more suitable form [2, 3, 5]. Write:

ny(r) = o[1+h(r)], 2.1)
with
lim —1— J'drh(r) =0, 2.2)
Vw0 V
v
and
0 0
p p(r, 5) = gr, 8) — u(ir—sl); (2.3)
v or
or
2 49 = 500 5 u0) (2.38)

for the uniform fluid. Hence Eq. (1.1) can be integrated:

in [1+h(r)] = In C,—Bo | dsh(s)y(r, s), 2.4
Cc;! = lim Il/ J dr exp {—-ﬁg f dsh(s)y(r, s)} . (2.5
Voo
v

It is seen that A(¥) = 0 is always a solution to Eq. (2.4), ie., to Eq. (1.1).
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Consider now a uniform fluid (Eq. (1.2)) and look for rotationally invariant solutions
of the type (1.3), i.e., for A(r) = A(r), r = |r|. In this case the integrals in Egs. (2.4), (2.5)
can be written in the form:

I(r) = Pe | dsh(s)y(lr—sl) = fe | dth(lr+1])y(t)

0 r+x [ee] r+x
2nfo 2nfo . ~
= __rﬁ_ dexw(x) f dyyh(y) = dexxh(x) f dyyp(y). (2.6)
0 |r=x]| 0 [r=x]

Formal properties of the branching of non-constant solutions of Eq. (2.4), especially
in the connection with the eigenvalues of the Fréchet derivative of Eq. (2.4), were discussed
in the quoted literature in a rather detailed manner and will not be repeated here. Eq. (2.4)
can also be dealt with in another way [7-9]. When we are interested in the birth of an in-
homogeneity in initially homogeneous fluid, it is reasonable to begin with A(r) different
from zero but in some sense (for example in norm, or in amplitude) small. Let us expand
formally /A(r) in powers of a formal smallness parameter o:

h(r) = ah™(F)+2h D)+ ... Q.7)

(o can be interpreted also as a measure of the distance from the bifurcation point). Insert
the expansion (2.7) into (2.4) and collect terms of the same order in g:

W) = —Be | dsh™(s)y(r, 5), (2.8)
W) = —Bo | dsh®(s)y(r, s)+% [AV@)T? 2.9)
W) = —Bo [ dsh®(s)y(r, s)+ hOWRD @) — L [AO@ )P (2.10)

etc. Constants, which should appear in the above equations, are, because of the assumed
smallness of A(r), identically equal to zero. For y uniform, 4 rotationally invariant, Eq.
(2.8) — with Eq. (2.6) — has the solution: '

W) = 3 AL sin (kir))r, (2.11)

where the amplitudes A, which are arbitrary, can be connected, for example, with the
expansion parameter «. The allowed values k; of the wavenumber % are determined as the
solutions of the equation:

1+ Bop(k) = 0, (2.12)

with (k) being the three-dimensional Fourier transform of p(r):

@

4 i
P(k) = %Jvdrr sin (kr)y(r) = jdre’k"w(r), (2.132)
0
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or, integrating by parts and making use of Eq. (2.3a),

o

Pk) = ‘;c—z Jdr[kr cos (kr)—sin (kr)]g(r)u'(r). (2.13b)
0
Eq. (2.8) is isomorphic with the linear eigenvalue problem for the Fréchet derivative of
the nonlinear equation (2.4) (cf. Refs. [S, 8]). Hence, only these solutions (2.11) of Eqg.
(2.8) which are of odd multiplicity, (i.e., with odd number of corresponding solutions
of Eq. (2.12)), will be the branching points of nonconstant solutions of the nonlinear
equation (2.4).
The three-dimensional Fourier decomposition of the solution (2.12) has the form
of separate modes:

AOky = § dre® " (r) = 207 Y, AL 0(k— k) k. (2.14)

This form of fluctuations has been used earlier in our model description of the influence
of fluid inhomogeneities on the critical properties and on the equation of state [11].

The solution (2.12) for A(r) allows us to find an analytical form of the solution for
K®(). Fourier-transforming Eq. (2.9) with the use of Eqgs. (2.6) and (2.12), we get:

on ptg
R 1 . X
h®(q) [1+Pep(@)] = o Jdpph“’(p) j dtth™(1)
T
qO j ]
o
= TN a0ART0rk, k- ) =00k — Ky = )], (2.15)
2q

i
with 6(x) being the step-function. Now, at g = ki, 1+ BeP(g) = 0. Hence, (g = k)
~ 8(g—k;) (compare with an analogous form of Eq. (2.8), and with Eq. (2.14)). The solu-
tion of Eq. (2.9) thus is:

ki +k;
, o \ sin (qr)dg
rh®(r) = E 4P sm(l\:ir)+lg AR ATPP J SR (216
* ! e 1+ pod(q)
i i,j ki—k;

where PP means the principal part of the integral. Again, A are arbitrary. Hence, the
first term of the right-hand side of the solution (2.16) adds up to the solution for KO
and causes only the renormalization of the amplitudes of unmixed modes. Second term
of the solution (2.16) broadens and mixes different initial modes.

3. Hard spheres and adhesive hard spheres
Denoting:
f(r) = exp [ fu(r)] =1, (3-1)
and

g(ry = L+, (3.2)
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Eq. (2.3a) can be written in the form:

d d
—b— y(@) = y(r) el (3.3)
For the fluid of hard spheres of diameter o,
) = =0(c—r), df(r)dr = o(r—o), (3.4
so that
By(r) = y(0)0(c—r) = 2c+0)0(c—r), r>=0, (3.5)

Integration constant which should appear in the above relation can be set equal to zero:
addition of a constant to (r) does not change the initial equation, Eq. (2.4) with (2.5).

The well-known relation (cf. e.g. Refs. [8, 12]) between g(o) and the pressure p of
the fluid of hard spheres:

B,lo = 14-2rg{o+0)/3, (3.6)
together with the best known hard-sphere equation of state [12, 13]:
Bole = (tn+n*~)/(1—n)’,  y = mga’f6, (3.7
give v
7 = 4ngc’g(c+0) = 8n*(2—n)/n(1—n)°. (3.8)
Eq. (2.12) for the fluid of hard spheres is thus:
[sin (ko) — ko cos (ka)]/(ko)® = —1/y. (3.9)

This equation has solutions for (1/7) < 0.0267... (cf. Fig. 1), i.e., for n 2 0.534... (cf. Fig. 2),
i.e., for rather high densities, near to the densities of the hard-sphere solid. Besides, these

Fig. 1. Left-hand side of Eq. (3.19) as the function of the wavenumber ka, for different temperatures 7.
Dashed line corresponds to the fluid of hard spheres
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solutions are of multiplicity two. This result seems to suggest that in the fluid of classical
hard spheres there are no density fluctuations which can branch off continuously from
the uniform solution.

Consider now the fluid of hard spheres with attraction:

J—l r<o
jy=) E e<r<a, E=é"-1, (3.10)
l 0 a<r
ie., .
f(r) = —0(c—r)+EO(F—0)6(a—r)
f'(r) = 8(r—0) [14E0(a—0)]—06(r—a)¥(a—0)E, (3.11)

where ¢ is the depth of the potential well of the width (a— o). Hence,
By(r) = ¥(0) (1+E)o(s—1)— y(@)EO(a—T7), (3.12)
and Eq. (2.12) has the form:
4m0{y(0) (14 E) [sin (ko) —ko cos (ko)]
— w(a)E[[sin (ka)—ka cos (ka)]}/k*+1 = 0. (3.13)

Baxter [14] (cf. also Ref. [15]) several years ago proposed to consider the model of adhesive
hard spheres, i.e., the potential (3.10) for which the well depth goes to infinity and the
well width goes to zero in such a way that

E = a/12t(a—0c), o—>a—0 (3.14)

(v being a dimensionless measure of the temperature), and

lim f(r) = —L+ —=d(r—a-+0). (3.15)
c—=>a—0 12

This model bas the advantage that for it the Percus-Yevick approximation [16] can be
solved exactly [14] and the obtained solution reveals qualitative features of the gas-liquid
phase transition. Especially, in the Percus-Yevick approximation in the limit (3.14), the
function y(r) becomes continuous at the point ¢ = a¢—0, and is equal to [14]:

249 A nik

- —+ (3.16)
21—y i-n 12

y(a) = y(o) =

where the parameter 4 is to be calculated from the second relation, equivalent to the Per-
cus-Yevick approximation:

y(a) = it (317
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(from the two positive roots for 4, the smaller is physical [14]). The solution (3.16) possesses
the critical point at:

T = (2—4/2)/6 = 0.0976..., 5, = (3/2—4)/2 ~ 0.1213, (3.18)
below which in the 7—# plane there is a region in which exist no real solutions for the
parameter A, and this region is interpreted as the gas-liquid transition.

Expanding the left-hand side of Eq. (3.13) into powers of (a—o0) and taking the limit
(3.14), we get, after some rearrangements:
[(1 —k*a?*/127) sin (ka)—ka cos (ka)}/(ka)* = —1/y, (3.19)
where now

= 4nQa3y(a) = 24/1n. (3.20)
Y \

The shape cf the left-hand side of Eq. (3.19), as the function of ka, is shown in Fig. 1
for a few values of the temperature 7, whereas Fig. 2 shows the shape of the right-hand
side of Eq. (3.19), as the function of #, for the same values of 7. Dashed curves in these

b7 ()

=10 -

Fig. 2. Right-hand side of Eq. (3.19) as the function of the reduced density

figures correspond to the fluid of hard spheres without attraction (¢ — o). Dot-dashed
fragment of the isotherm 7 = 0.056 in Fig. 2 corresponds to the unphysical part of the
isotherm, where (9p/dg) < 0. For t = 0.056, for 0.02 < 1 < 0.20, there are no real solu-
tions for A.

Loci of the solutions of Eq. (3.19), in the ka—n plane, are shown in Fig. 3. It is seen
that for temperatures = lower than about 0.15 (which is still fairly above the critical tempera-
ture), Eq. (3.19) has always one single solution. This means that the attractive part of the
potential, even of the extremely short range, is able to produce the density fluctuation
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Fig. 3. Solutions of Eq. (3.19)
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Fig. 4. Second-order fluctuation spectrum for adhesive hard spheres, for 7 = 7., n = 0.17. Dashed line
denotes the position of the starting mode
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branching off smoothly from the uniform fiuid. However, for low densities and/or high
temperatures, there are no such solutions.

The above results show that the density fluctuations appear first in the form of one
single mode. This single mode is broadened subsequently by the higher-order terms of the
expansion (2.7) (cf. formula (2.15)). The shape of the second-order fluctuation spectrum
h®)(q), is shown in Fig. 4, for T = 1, and # = 0.17. Dashed line in Fig. 4 denotes the posi-
tion of the starting mode. It is seen that the second-order fluctuation spectrum covers now
the whole range between ¢ = 0 and g = 2k, i.e., all wavelengths A longer than =n/k,,
where k, is the starting mode wavenumber, with however the ky-mode strongly pronounced.

4. Two-component system: monovalent plasma

Most of the formulas and results of first two sections of this paper can be easily
extended to N-component systems simply by treating quantities like n(r), h(r), H(r)
as N-component column matrices, and quantities like w(r) as Nx N square matrices,
with components n(r), v ;(r), etc., subscripts j, k indicating difierent species of the mixture.
Especially, Eq. (2.8) has now the form:

N
K(ry= =B Y ofdshi (s)y(r,s), i=1..,N, (4.12)
j=1
or, for initially uniform fluid,
N 0 r+x
0 2nf . . . .
BV = - — ng dxxip; (x) dyyh(y), i=1,..,N (4.1b)
,.
ji=1 0 |r—x]
with
d d .
ar Yi;(r) = gi;(r) ;l;uij(")a (4.2)

and p; being the average number density of the species j. This system of equations has
again the solution in the form of m separate modes:

rhP@r) = 3 AP sin (kyr), i=1,..,N (4.3)

I=1
with the conditions
ku=ky=..=ky=k 4.4)

(the same modes for all species), and with
N
AP+ Y BoAPDik) =0, i=1,.,N, I=1,..,m 4.5)
j=1

determining the mode wavenumbers, and relating amplitudes of the same mods of different
species.
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The overall density fluctuation is decribed by the function

N
h(r) = IZI hi(r), (4.6)
and we have, from Eq. (4.3),
m N
rhP@) = Y A sin(kr), A = Y AP, 4.7
=1 i=1

As an example, consider two-component diluted monovalent plasma (hydrogen
plasma, for example) with components denoted e and p. The same considerations will
apply to diluted solution of monovalent electrolyte, when fluctuations of the solvent
density are not taken into account. In this case we have:

Uoo(F) = 1, (F) = €51, ug,(r) = u(r) = —e*Ir, (4.8)
and (cf. e.g. Ref. [17])

2

ﬁe —ar
8ee(r) = g,,(r) = 1 r—(l—e )

a* = 8e’nfo,

2

ep(r) = 8pelr) = 1+ lij' (I1—e™™) (4.9)

with ¢, = ¢, = ¢. Hence

4rne*  2mpet [a*+k* k = a
D k = 0 k = 5 T : ’
wee( ) wPP( ) k2 + k I: kz a 2 k]

2 4
Pop(k) = Pp(k) = — 4—2‘; + Znﬁe [c%—;—]f arctgg — —g— - z] , 4.10)
and Egs. (4.5) read
ey o] €=l @i
Both above equations must hold simultaneously, which gives
E=+1, or A,= tA4, (4.12)
i.e.,
k*+a>=0 for A,= —4, (4.13)
and

ala®+k> kK = 2 a? ,
“ ol e arcig— — — | = —— + — for A4, = A.. (4.14)
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Neither Eq. (4.13) nor Eq. (4.14) has solutions for real positive k, i.e., according to the
BBGKY hierarchy equations, threre are no fluctuations in a dilute plasma, which fulfill
the expansion (2.7), i.e., which branch off continuously from the uniform solution.

In order to see whether such fluctuations will appear at higher densities, let us approxi-
mate roughly the shape of the radial distribution functions by:

gee(r) b gpp(r) = b[l‘—COS (al‘)]/ar,
2.,(r) = g,r) = bsin (ar)/ar, 4.15)
where parameters ¢ and b are functions of temperature and density. Relations (4.11) and

{4.12), which are valid for all densities, give now

1+ % BA[ A2 —(A*—1)6(A—1)]+BA [(/12 —Dln

A+1
,—_—I-— i —Al] =0, (4.16)
A—1

with 4 = alk, B = 2nfgbe*/a®, and with upper and lower signs referring to 4, = +4,.
For A, = A4, i.e., for the density mode, Eq. (4.16) has double solutions for B 2 1.149...
For 4, = —A4,, i.e., for the charge mode, Eq. (4.16) has one single solution for every
positive value of B, for 1 = 1.6...

5. Final remarks

Lovett a.o. [19] proposed the following, claimed to be generally valid, relation between
local density n;(r) and two-particle direct correlation function c¢(r):

) , 0
o Inn(r) = J‘dsc([r—s[) Fn n4(s). (GA))

This equation is formally very similar to Eq. (1.1) and thus its solutions can be analysed
in a manner analogous to those of Eq. (1.1). Indeed, on the basis of Eq. (5.1), Lovett [7]
discussed the problem of crystallization in analogy to an earlier analysis of Eq. (1.1) per-
formed by Raveché and Stuart [5]. Discussion of fluctuation-type behaviour leads in the
case of Eq. (5.1) again to the solutions in the form of formulas and equations (2.7)~(2.13a),
with function — By(r) replaced by the function c(r). Consequently, the equation (2.12)
determining the wavenumbers k; of the arising initial modes is now:

1—gc(k) = 0. (5.2)

However, this condition means that Eq. (5.1) admits fluctuation-type solutions only at the
points of mechanical instability. For the fluid of hard spheres, Eq. (5.2) is never fulfilled
(cf. e.g. Ref. [7]). From thé¢ thermodynamic arguments, Eq. (5.2) has always solution k = 0,
but solely at the critical point and on the spinodal line, i.e., at the limit of stability with
respect to the gas-liquid phase transition. For adhesive hard spheres, Eq. (5.2) has no
solutions for k£ # 0, at least when ¢(r) is calculated in the Percus-Yevick approximation [14].
Hence, it seems that Eq. (5.1) does not describe the appearance of small spontaneous
fluctuations in an otherwise stable, globally uniform fluid.
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On the other hand, the results of the preceding Sections show that indeed the BBGKY
hierarchy, Eq. (1.1), admits inhomeogeneous solutions of the fluctuation type, which branch
off smoothly from the uniform solution, i.e., which can appear spontancously in an initially
uniform fluid. However, both for short-range and for long-range interparticle interactions,
discussed in more detail in this paper, such solutions do not exist in diluted fluids and
appear solely above some threshold density. This observation is valid only for initially
small fluctuations, evolving in accordance with the expansion (2.7) from the uniform
fluid, and -hence the question of the existence of gross fluctuations in diluted systems is not
answered here. The same remark is true for the discussion of Eq. (5.1).

The lowest density at which fluctuation of the type discussed in this paper can appear
is determined by the first zero of Eq. (2.12) (or Eqs. (4.5)). The appearance of such a zero
was sometimes interpreted as the instability (the so-called Kirkwood instability) with-
respect to the crystal formation. This problem — for hard spheres, Eq. (3.9) — was discussed
by Kunkin and Frisch [18] who showed that such interpretation is incorrect, and especially
that such zeros do not describe the instability, in the nonuniform fluid, with respect to the
perturbation of wavelength greater than the critical one. However, they were not able
to find any consistent interpretation of such instabilities. The results presented in this work
suggest that these zeros can be interpreted as the bifurcation points of spontaneous fluctua-
tions arising in the uniform fluid, i.e., points at which the initially homogeneous fluid
becomes unstable with respect to the spontaneous formation of inhomogeneities of appro-
priate wavelength.

REFERENCES

[11 T. L. Hill, Statistical Mechanics, McGraw-Hill, New York 1956.

[2] J. D. Weeks, S. A. Rice, J. J. Kozak, J. Chem. Phys. 52, 2416 (1970).
[3]1 J. J. Kozak, S. A. Rice, J. D. Weeks, Physica 54, 573 (1971).

[4] H. L. Lemberg, S. A. Rice, Physica 63, 48 (1973).

[5] H. J. Raveché, C. A. Stuart, J. Chem. Phys. 63, 1099 (1975).

[6] N. Grewe, W. Klein, J. Math. Phys. 18, 1735 (1977).

[71 R. Lovett, J. Chem. Phys. 66, 1225 (1977).

[81 H. J. Raveché, R. F. Kayser, Jr., J. Chem. Phys. 68, 3632 (1978).

[9] R. F. Kayser, Jr., H. J. Raveché, Phys. Rev. Al17, 2067 (1978)."

[10] T. Yoshida, H. Kudo, Progr. Theor. Phys. 59, 393 (1978).

[11] A. Fulinski, Acta Phys. Pol. A56, 467 (1979); in Moder#n Trends in the Theory of Condensed Matter
(Ed. by A. Pekalski, J. Przystawa), Lecture Notes in Physics No 115, Springer-Verlag, Berlin-Heidel-
berg-New York 1980, p. 163.

[12] J. A. Barker, D. Henderson, Ann. Rev. Phys. Chem. 23,439 (1972).

[13] N.-F. Carnahan, K. E. Starling, J. Chem. Phys. 51, 635 (1969).

[14] R.J. Baxter, Australian J. Phys. 21, 563 (1968); J. Chem. Phys. 49, 2770 (1968); in: Physical Chemistry.
An Advanced Treatise, Vol. VIlIa, (Ed. by D. Henderson), Acad. Press, New York 1971, Ch. 4.

[15] J. Jelinek, 1. Nezbeda, Physica 84A, 175 (1976).

[16] J. K. Percus, G. J. Yevick, Phys. Rev. 110, 1 (1958). ‘

[17]1 J.-L. Delcroix, in: La théorie des gas neutres et ionisés, (Ed. by C.de Witt, J. F. Deltoeuf), Hermann,
Paris 1960, p. 185.

[18] W. Kunkin, H. L. Frisch, J. Chem. Phys. 50, 1817 (1969).

[19] R. Lovett, C. V. Mou, F. P. Buff, J. Chem. Phys. 65, 570 (1976).



