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A MODIFIED FIELEK MODEL AND PHONON DISPERSION
IN BCC TRANSITION METALS
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The Fielek model is modified to account for crystal equilibrium and the Cauchy dis-
.crepancy in transition metals. The model assumes the core-core interactions to be purely
central and the d-shell-d-shell interactions to be purely angular, both extending out to first
neighbours only. The volume interactions are represented on the lines of the Bhatia scheme,
modified to include the Umklapp processes and the effect of exchange and correlations
among the electrons. The coupling between the core and d-shell is expressed based on the
lines of the Fielek model. The simple model, employing a minimum number of input
data is used to predict the dispersion relations in complicated metals like BCC Zirconium
and Tantalum with a reasonable degree of success.

PACS numbers: 63.20.Dj, 71.38.+i

1. Introduction

Recently Fielek [1] has described a model for non-simple metals, which assumes the
Core-core interaction to be bond streching-type as given by the axially symmetric scheme
(Lehman et al. [2]) and volume interactions on the basis of Krebs [3] scheme. The model
has been applied extensively (Jani and Gohel [4], Singh et al. [5-8]). All these - studies
require a critical review along the following lines.

(1) The Fielek model and its subsequent applications assume the core-conduction
electron interaction of a vanishing degree. Because of the presence of intervening loosely
coupled d-shell electrons, this interaction becomes small but its magnitude remains effec-
tive for its adequate considerations.

(if) All the studies reported so far consider the lattice equilibrium separately under
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the energies due to cores and d-shells. It may be mentioned that the combined effect of all
the possible volume-dependent energies associated with the cores, that the d-shell electrons
and the conduction electrons should be considered in order to arrive at the physically
realistic equilibrium condition.

(iii) Most of the studies quoted above consider the core-core and d-shell-d-shell
interactions to be purely of the bond stretching type. It is true that the former interactions
are essentially central (Rathore and Verma [9-11], Rathore [12], Upadhyaya [13]), but
the latter interactions should be related to the charge distribution of the d-electroms.
Actually the cubic field in metals removs=s the five fold degeneracy and destroys the spheri-
city of the d-shell charges. This non-sphericity of overlapping d-shell charges clearly de-
mands the inclusion of angular forces within the system.

(iv) In the Fielek model the volume interactions among the core-conduction electrons
and the d-shell-conduction clectrons are accounted for based on Krebs [3] scheme which
suffers the deficiency of general inequilibrium (Cochran [14]). Moreover costly and time
consuming computation is needed to sum up the series involved. In view of the recent
reports on the inclusion of the equilibrium condition (Fielek [15, 16]. Shukla [17]), it is
somewhat difficult and obscure to consider the equilibrium on this basis. Actually a simpler
equilibrium condition, consistent with a simple scheme for the volume interactions is
needed to describe the coupling between the cores and the electrons. ‘

(v) In the Fielek model the Cauchy discrepancy is wholly attributed to the volume
interaction among d-shell and conduction electrons. It may be more realistic to consider
the contributions of the pressure due to conduction electrons (Rathore and Agrawal [18])
and that due to the angular interactions among d-shells in addition to the usual volume
interaction. Moreover, a consideration of the actual amount of the discrepancy and its
variation for the transition metals support this view (Hautecler and Van-Dingenen [19],
Overton [20]).

In view of these remarks, it is thought worth while to modify the Fielek model for
transition metals. The model considered here takes into account that:

(a) Core-core interactions are purely central and extend out to first neighbours only.
The first derivative of the core-core coupling energy does not vanish because this energy
is only a part of the total energy of the system. Further, the limited range of the energy
is supported by the pseudopotential studies of Resolt and Taylor [21] and Degens et al. [22].

(b) d-shell-d-shell interactions are purely angular and couple only the immediate
neighbours. For this purpose we have employed the best (Khanna and Rathore [23])
angular scheme of Clark et al. [24].

(c) The volume interactions on the lines of Bhatia’s [25] scheme, which is modified
to include (i) the actual form of the Bardeen [26] factor, first derived by Bross and Bohn
[27] and later by Ramamurthy [28] and successfully appiied by Goel et al. [29-32] and
Ramamurthy and Neelkandan [33]. The inclusion of this factor makes the expression
less dependent on Umklapp proceses and more symmetrical in reciprocal space. (ii) the
screening parameter is modified properly in the light of recent reports (Singwi et al. [34])
on dielectric screening. The inclusion of &(g) needed to correct the screening for exchange
and correlation effects of conduction electrons.
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(d) A realistic equilibrium condition involving the volume-dependent energy due to
cores and conduction electrons.

(e) The interactions among the core and d-shells as suggested by Fielek [1].

The model is adopted to calculate the dispersion relations in BCC Zirconium (B-Zr)

and Tantalum (Ta).

2. Theory
The usual determinant Ieading to the dispersion relations may be written as
|D(q)—4r*MvI| = 0, €H)
where M is the mass of the core, vis the dispersion frequency and 7 is the unit matrix of the

order three. The didgonal and off-diagonal elements of the matrix D(p) are expressed as

N - K
D, (q) = ¥ (By+20) (1 —C,CyC)+K+CE(q)+ N

Daﬁ(a) = % (B _“1)SaSpSya 2

where C, = cos (3aq,), S, = sin (3aq,), q, is the a-component of the phonon wave vector
g, a is the lattice constant and

1[0, (2%,
=) () @

where ¢, is the core-core potential coupling the immediate neighbours. CE(q) is the matrix
element representing the volume interaction among core and conduction electrons. KX is
the coupling constant for core and d-shells. N is given by the determinant,

[D'(q)—NI| = 0, 4

where
Dy(q) = —167,(1—C,C4C,) +27,(4C5,— Cy5—C2,)+K—DE(q),
Dp(q) = 8715545, )
Wheie C,, = cos (ag,) and y, is the angular force constant of the Clark et al. [24] type.
DE(g) is the matrix element accounting for the volume interaction among d-shell and

conduction electrons. The elements for the dynamical matrices CE((}) and DE(&) are written
based on Bhatia’s expression [25] i.e.,

- K2e(q)Cq,q,9G*
CEaﬂ(q) = ~2 ; /32 » (6)
(KZe(q)+1g|%)a
and
~  K2e(q)Dq,q,QG’
DE,(4) = = (7

(K2e(q)+1g)%a ’
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where C and D are the deformation parameters for core-conduction electrons and d-shell
-conduction electron potentials. K, is the screening parameter evaluated in the Bohm-Pine
[35, 36] limit, Q is the atomic volume, G? is the Bardeen factor evaluated by solving the
following integral over the actual atomic cell.
{ exp (iq - Hdz
G2 =" =—_: 8
= ®

and &(q) is the dielectric function given as:

&(q) = en(q) [1-G(9)]+1, ®
- 2Kgpme? 4K2—¢> |2K
o = 1 s fi St | |
G(q) = A[1—exp {—B(q/Ky)*}], (11)
where
Kp = 3n*ZjQ)'3, (12)

mis the mass of electron, e is its charge and the parameters 4 and B are taken from the work
of Singwi et al. [34] for the inter spatial electron distant three, which is proper in view of
its atomic volume and the valence of the metals under consideration.

For considering the equilibrium, the total energy ¢ for the system may be written as

(:bT = ¢c+¢d+¢e' (13)

The energy of core (¢,) is already included in equation (2). The energy of d-shells
(¢o) could not be expressed explicitly because of its obscure nature. The energy of conduc-
tion electrons (¢p.) comprises of Fermi, exchange and correlation parts. The Fermi and the
exchange parts are explicable in definite form but the correlation part has been the subject
of studies for the last forty five years. The study due to Rathore and Agrawal [18] has
presénted a detailed and conclusive analysis of ¢, in relation with the Cohesion and the
Cauchy-discrepancy in metals. From this study we have inferred that the correlation
part of the electron energy ¢an suitably be given by the expression of Wigner and Seitz [37]
at electron separation three.

For the general equilibrium of the Jattice, the volume derivative of qST should vanish i.e.,

a
oy = EPe’ (14)

where P is the pressure associated with the electrons and given as

ad)e
P=— > (15)
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Further more, the deformation parameter, C, associated with the volume interactions
among core and conduction electrons may be expressed as:

0P,
C=—a0 =,
o (16)

3. Calculations and results

The model defines the dispersion relations in terms of six disposable parameters
(o1, Bs, K, 71, C, D). Two of these parameters are calculated using equations (14) and
(16). Three of the model parameters are evaluated from elastic relations, which are obtained
by comparing equation (1) with the Christoffel elastic equation in a long wave limit. The
last of the model parameters is evaluated by the knowledge of an experimental frequency
(vr,) for the transverse mode at point (100).

TABLE I
Input data for f-Zr and Ta
B-Zirconium (f-Zr) ‘ Tantalum (Ta)
Input data References ! Input data l References

C11 = 0.783 C11 = 2.609 '

Cip = 0.503} % 1012 dyne/cm? [401 Cys == 1.574} X 10'2 dyne/cm? [411

Cya = 0.29 Caqa = 0.818

a =3.64x10%cm i a =33x10"%cm

m = 151.4252X10-2% gm m = 300.377 X 10-%4 gm

y1 = 4.69T.Hz [38] y1 = 5.03T.Hz [39]
TABLE II

Computed model parameters (10* dyne/cm)

p-Zr Ta
a; = —0.8401 ’ ay = —1.4525
B = 2.5336 1 = 5.4166
K = —82.407 K= —1311.96
y1 = 0.2433 y; = 0.5125
C = 0.2606 C = 0.2953
D = —0.8991 D = 0.490

Input data and computed model parameters for p-Zirconium and Tantalum are listed
in Table I and II, The calculated dispersion curves are shown by solid lines in the figure
for p-Zr and Ta, respectively. The experimental data from Stassis et al. [38] and Woods
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139] for B-Zr and Ta, respectively, are also plotted with the curves for comparison. To
test the utility of the present model we have shown the calculated curves of the original
Fielek [1] model by dotted lines.
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Fig. 1 and 2. Dispersion curves for §-Zr and Ta, respectively. theoretical results of the present
model, - theoretical results of the original Ficlek model, and ®, A, A — experimental points

4. Conclusions

A close inspection of the figure reveals that our model presents a simple successful
description of phonon dispersion in complicated metals like -Zr and Ta. The model
using the minimum number of input data appears to be siperior than the original Fielek
model. In addition, the model incorporates the indispensable condition for lattice equili-
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rium with all the effective interactions among the constituents of the transition metals.
The Cauchy discrepancy is expressed as

aCy,—aCyy = C+D—2aP,—8K,. (17)

It is therefore obvious that the electron pressure (P,), and the angular interactions are
equally effective along with the usual volume interaction in determining the discrepancy.

The slight deviations of our curves in the proximity of the zone boundary may be
attributed to the deficiency of the Bhatia [25] scheme. However, these deviations loose
their importance in view of the experimental errors and the different frequencies at which
the input data used are measured.

Editorial note: This article was proofread by the editors only, not by the authors.
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