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By applying the linear theory of spin waves to the two sublattice antiferromagnet with
single-ion orthorhombic and exchange anisotropy the formulas are obtained governing
the dependences of thermodynamic quantities on the temperature. It is shown that the magne-
tization components may depend on the temperature in the SF <> P phase transition vicinity
as T2 or T%/2 depending on whether the exchange anisotropy and/or single-ion anisotropy
constants perpendicular to the easy direction are equal to zero or not. These results confirm
the conclusions suggested by other authors.

PACS numbers: 75.50.Ee, 75.30.Et, 75.30.Ds, 75.10.Dg

1. Introduction

It is known that the behavior of an antiferromagnet in a homogeneous external magne-
tic field depends strongly upon the value of the exchange and anisotropy constants as well
as on the direction of the external field. In a uniaxial antiferromagnet in the presence of
the field parallel to the easy direction we will deal with the two phase transitions previously
presented [1-6] that is, the first-order transition between the antiferromagnetic phase,
AF, and the spin-flop, SF, and the second-order phase transition between the spin-flop
phase and paramagnetic phase, P. On the other hand, there is only one second-order phase.
transition between the SF and P phase when the field is perpendicular to the easy axis.
Another case occurs when the exchange anisotropy appears with the single-ion orthorhom-
bic anisotropy. As has been shown [6-8], there may occur three second-order phase tran-
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sitions in the presence of the field parallel to the easy axis: AF <> CS, CS «»SF, SF«P.
This depends only upon the mutual quantities of the single-ion anisotropy in the directions
parallel or perpendicular to the easy direction. On the other hand if the field is perpendicular
to the easy axis, there occurs only second-order phase transition. The AF «» SF and SF«»>P
phase transitions in the magnetic field parallel and perpendicular to the easy axis have
been investigated [9, 10]. For MnCl, - 4H,0 and CoCl, - 6H,0 the deviation of the critical
field dependence on the temperature from the T3%2.law has been shown. According to
the authors of the above paper one should take into account the next term of the expansion
proportional to " 5/2 [1-3] in order to obtain a better fit to the experimental data in a reaso-
nable range. Nevertheless, even this improved law, oT*/+BT°/%, does not fit well to some
experimental data [9, 10]. The disagreement between the T 5/2]aw and the curves obtained
in [9, 10] is explained by the existence of the perpendicular exchange anisotropy in
CoCl, - 6H,0 and the single-ion orthorhombic anisotropy in MnCl, - 4H,0. That is,
the reason why in [11] it has been suggested that the T2-law for the critical field depends
on temperature.

In this paper we will show that the presence of the perpendicular exchange anisotropy
or single-ion orthorhombic anisotropy causes the thermodynamic quantities (m—magneti-
zation, y — susceptibility, Cs — spin specific heat and &, — critical field), the dependénce
on temperature in the vicinity of the critical field may differ from those obtained previously
[1-3].

2. Hamiltonian

In our investigations we employ the spin Hamiltonian which can be represented as

H=J)Y [XS FENGINEASAH B RDY (SH*+Y. (SH*]
<Ky 3 7

—LZ[Z; (S0*+% (5971 ~uHx[; Si+2. 871 —MHZ[; Si+; Sils )

where (k, j indicates the summation restricted to the nearest neighbours, Sg, S5 (« = x, y, 2)
stand for the spin operator components in {k} and {j} sublattices each of which includes
NJ2 lattice sites. X = 1+K,/J, Z = 1+K,/J, K, >0, K, >0 are the exchange aniso-
tropy constants in the x and z-direction, J > 0 denotes the exchange constants, L, > 0
and L, > 0 are the single-ion anisotropy constants in x and z-directions, H, = Hsiny
and H, = H cos y are the components of a homogenecous magnetic field. The u stands for
the effective magnetic moment. After rotating the spin in the {j} sublattice by the angle,
¢, and the spin {k} sublattice by the angle, 8, around the Oy axis (0 is measured from the
positive z-direction, whereas @ is measured from the negative z-direction). Applying the
Holstein-Primakoff transformation to the spin operators in the sublattices we find that:

(S0)" =S¢ = 28" (b, ($)7 =57 = (28)"2a; f(ny),

SF = S—bib,=S—m, Sj=—S+aja;=S-n; 2)
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where f(n,) (1 —n, /2512, f(n)) = (1—n,;/28)*'2. Then having applied the Fourier transfor-
mation
by = (2/N)'"? } exp (~ikA)b,,
A

a; = (2/N)'? ; exp (ijd)a;, ©)

where 4 stands for the reciprocal lattice vector. The Hamiltonian (1) is expressed as
H=E,+H;+H,. 4)
E, denotes the energy of the approximate ground state and may be represented as
Ey = 3 NS?p,J[X sin 0 sin p—Z cos 6 cos @ — hy(sin 0 +sin ¢)
—h,(cos 6—cos ) —a(cos® 0+cos” p)—4(25—1)" 131, + 1), )

where h,, = uH, ., I,~1, = a = (L,~L,) (1 —35)/yoJS. The linear formula in the boson
operators in (4) is the following:

Hy = ;[“A(df +a;)+Bu(b] +by)], 6
where
o; = 7 (NS)"*yoJS[X sin ¢ cos 0+Z sin 0 cos p-+h, sin 0
—h, cos 0+2a sin 0 cos 075, o, @)
B = 3 (NS)"*poJS[X sin 6 cos ¢+Z cos 0 sin ¢— h, sin @
—h, cos g +2asin ¢ cos ¢]5, ,, 8)
and the bilinear form may be expressed as
H, =Y [“11);17/1‘1’“za;aﬁ'“sz(‘l;bﬂ"azbf)‘l‘% Bi(b, b, +b,b_))
] +2 Ba(aials+aa. )+ Byy(af by +asb,), ®

where
%y = 7oJS[Z cos ¢ cos 0 —X sin g sin 6+ h, sin ¢

—h, cos p—1,(1—3 cos® g)—1(1—3 sin? @), (10)
% = yoJS[Z cos ¢ cos 0— X sin @ sin 0— h, sin O—h,cos 0
—~1,(1-3 cos® )~ (1 -3 sin” ), (11)
B1 = —voJS[L, sin? p+1, cos® ¢], (12)
By = —voJS[L, sin® 0+1, cos? 6], (13)
U3 = 5 9oJS8,[X cos ¢ cos O—Z sin ¢ sin 617, (14)
Prs = 3 2JS3,[ X cos ¢ cos 6—Z sin ¢ sin 0+1], (15)

and y, = ) exp (id2), y,/70 = 8, (y, the number of the nearest neigbours).
g :
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On the grounds for the minimum condition for the approximate ground state energy,
E, (5), one can easily notice the disappearance of the linear terms (6) of the Hamiltonian (4)
[12, 13]. Therefore, the Hamiltonian will be presently expressed as:

H = 6o+H,. (16)

By applying the Bogolubov-Tiablikov transformation we obtain in the usual way
the spin waves energy spectra in the approximation of non-interacting waves.

E; = [P—(—=1RV?]'72, @17
where
P = %(“%"‘“g)"'“ﬁa_% (ﬁ%"‘ﬂg)—lgm, (18)
= % [(‘“% . “%) - (ﬁ% - ﬁ%)]z = ﬁﬁa(% = 0‘2)2 . “ﬁs(ﬁl - 52)2 + (003 — ﬂ1ﬁ/13)2
(004055 — PoBaz)” + 4103 — B1Bas) (02053 —BaBis)- - 19)
Thus, the Hamiltonian reads
H =Eq+Ep +; (Exsciiea +E;5¢315¢52)5 (20)
where Ep, [15] is given by
: 2
Ep = “1/2; Z,l (ar_Elr)9 (21)

and «, is expressed by (10) and (1 1). The operators, ¢;; and ¢;;, fulfil boson commutation
rules similarly as the @, and b, operators.

One can find that the condition for the spectra (17) to real for all wave vectors, 4, is
in agreement with the sufficient condition for the minimum of the approximate ground
state [6, 16]. Thus, the disappearance of the linear terms of H, (7) (8) and conditions for
the spectra to be real (17) to the same solutions and critical curves are the necessary and
sufficient conditions for the minimum of the approximate ground state [6, 16].

By applying standard methods [14] to our Hamiltonian and also using the results [6, 16]
one can obtain the two branches of the spin waves energy spectra for the field parallel and
perpendicular to the easy axis and in particular the magnetic phases (AF, CS, SF, P)
discussed in [6, 16]. In the present paper we discuss the dependence of the spin waves spectra
on &,. Table I presents the reduced coefficient, e.g. & = os/yoJS, in the spectrum. Using
this table we can express the spin waves energy spectrum in the AF phase as:

(647 = (Ep/1odS) = (X —a+ L)+ h2—12— 253
—(-){4X—a+ L2 h2+6,[[Z(X +21)—(X —2a)P—(Z+ DRI} (22)

The schematic dependence of &, on 9, for the AF place is skown in Fig. 1. It can be seen
that when the value. of h, increases, the branchcs recece from cach other and at the critical
value, A7, the distance between thiem is the lorg: Tie bracches, &;, = 0, for §, =1
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correspond to A = 0. For &, > hi &,, becomes imaginary at 5, = 1 (i.e. the AF phase
is unstable). ‘

The field dependence of the spectra for the CS phase in the field parallel to the easy
axis is shown in Fig. 2. For h, = A7 the spectra in the CS phase are the same as in the AF
phase. When the field is increasing, they approach each other and for &, = h; (upper
critical field corresponding to the CS <« SF transition) and at 6, =0 they are equal.
At §, =1 and for h, = I3, one of the branches, &,, equals 0. The ‘CS phase becomes
unstable when the value of the field exceeds /5 the &;, becomes imaginary. In the interval
h¥ < h, < K the SF phase is stable and the spectrum may be presented in the following
way:

& = [Z 421, +(—1)8,1"? {Z+2a~2aQ2 —(—1)'8,[ X —(X +2)07]}"%,  (23)

where Q, = h,/h3, b} is a critical field at the SF <P transitibn. Fig. 3 presents the
behavior of the spectrum for the SF phase. One sees that with the field increase the
branches approach each other and when the field value is equal to

5 = B{[X(Z+21L)—(Z+2a))/[(X +Z) (Z+21)—-2a]}"" 29

they join. This effect is called a degeneration. With a further increase in the field both
branches recede. When the field reaches a value of h, = h3, &,, equals 0 and (at 6, = 1)
for the feld #, > hZ, it is unreal (for the fields A, < h3, &;, Was unreal). For the fields,
h, > h3, the P phase is stable and its spectrum may be expressed as:

& = [hy= X +21,+(—=1)6,1"*x[hy— X ~2a+(— 1)'Z8, 142 (25)

This spectrum is illustrated in Fig. 4. If the field is perpendicular to the easy axis, the
spectra may be obtained by using formulas (23-25) through the application of the following
changes: X< 2Z, h,<h,, I, L.

The schematic plots given in Figs. 1-4 show that the minimum value of the spectra
occur at §, = 1, which corresponds to 4 = 0. Therefore, it seems reasonable to develop
5, with respect to A in formulas (17) which enables the application of low temperature
thermodynamics.

3. Determination of the temperature dependence on thermodynamic quantities

By using the diagonal form of the Hamiltenian (20) we determine the spin specific
heat, Cy, the reduced magnetization components and the magnetic susceptibility tensor.
The thermodynamic potential for the Hamiltonian (20) is expressed as follows:

F = —kT InTrexp (— H/kT) = Eo+Ep
2
+kTY Y In[t—exp (—&4/7), (26)
A r=1

where k stands for the Boltzmann constant, © = kT}y,JS. In a standard way we derive
the formulas for the magnetization components, the parallel m! and the perpendicular
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m* to the direction of the external magnetic field:

2
ml(z) = ml(1+18)—1/NS Z Z [<n.>+%] <0;52,) , 27
expl
r=1

A

2
1 /0¢,;,
m'(7) = m3(1+48)— /NS Z Z [<n>+4] —< ) : (28)
- ey h 0)) expl

2
<nr> = ; Z‘l exp (—nglr/’r) (29)

where

and we introduced the polar coordinate system h, = hsiny, h, = hcosy. It is worth
noting that the derivatives in (27) and (28) are calculated explicitly with respect to 4 and Y
occurring in &,,. One the other hand, the specific heat may be expressed as:

CS = kd[;glr<nlr>]/dr- (30)

In order to make other calculations we pass from the sums to integrals by the following
correspondence

= o)V L da, (31)

where V stands for the crystal volume. Then, we use the long wave approximation which
has been already mentioned in the discussion of the spin wave energy spectrum. This
discussion pointed out that at least one of the spectrum branches reaches the minimum
for 1 = 0. Therefore, we develop ¢, into a series'in the powers of 4. When assuming for
simplicity the cubic lattice, we have

S, 1—t(a )+ ..., (32)
where a, is (magnetic) lattice constant. By employing (32) to (17) we get

éa).r = [@@(%r_*_dr(all)Z]l/zs (33)
where
& = 63(0, = 0).

Then by using the approximations (31)~(33), one obtains the dependence of the magneti-

zation m'(t = [|; 1), susceptibility, ', on the temperature
2 @
i o0&
Aml(zy = — E &84 0') K (e
i (T) 27‘[25 T Or&'r oh . n 1(" Or/z.)
¥ n=1 -

E (20 (%4 ; 172K, (0 o,/7) (34)
" \ea,)\ i )., toRANCulT )

n=1
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2

1 z . [1[26,, zw i |
Aml(T) = ZHZST gSrAr [z(ﬁ) { n lKl(n(o@o,./T))}
expl
1

r=1 n=

N 3t\ 104, “2K (n84,f) 35
24.) h (6)} ) h 2(nGor/T) ¢ |- (35)
n=1
The spin specific heat is expressed as
2 o
Cs = (1200) ¥, 65,473 Y 07 Ky(n6o,0)], (36)
r=1 w=1

where K;, K,, K, are the Bessel functions of the Mc Donald type.

We shall not specify here the explicit form of the coefficients in formulae (34-36) for
all the magnetic phases, but confine ourselves to examining the behaviour of the thermo-
dynamical quantities described by (34-36) in both cases: in the vicinity of the critical curves
and far from them. In the first case, which corresponds to né,,/t < 1, we have the following
formulae for the magnetization components

2
2 . -3/2 085,
Aml(z) = (1%/24S) 4, —) (37
0l Jexm
r=1
2 2
L (862,
Am’(7) = (12/24S) z 47307 = (—"—) . (38)
h 0)} expl
r=1
On the other hand, far from the critical curves (n&,,/t > 1), one obtains from (34-36)
that
3/2 : 3/2 2
T & o6 &o
Aml(r) = — i -4 I/ —f>, 39
() S Z (27:A,> < Oh Jexp A (39)
r=1
3/2 2 3/2 2
T (77@0,. 1 6&0, (@mor
Am*(7) = — — -Z i 40
"=y Z (m,) h ( & ) 2\ e .
r=1 ’
where Z,(x) = ), n~’-exp(—nx). The specific heat for the case néo.lt <1 is
n=1 .

2
Cs = (120%/48) - * - Y, 47°7, (41)
r=1
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whereas, when né,,/t > 1 one has

2
- Eor V' Eor
Cy =kt~ V% E <2n‘;) -23,2<7°). (42)
1

As concerns the magnetic susceptibility, near the critical curves its components read

2
A7) = 30 %) Z St (2—413 022) ( . Qg—)] (43)
r:ZI o 2 2
4l = 3n7%@)? z Foia7 (24% afh) = (%) . )
2 ) i s
A7) = 3nm %) Z Sorar (2715;1 dfv) = (0%) 45)

r=

where £(») = Z,(0). On can easily prove that Axﬁ(r), Axﬁ(r)_ and Ayi(r) tend to +oo
because &,,> — oo for h(y) — h(y). This is in agreement with the experimental data [17].

4. Final remarks

It is worth while to emphasize that the formulae for thermodynamical quantities
such as the magnetization, m = (ml(r)m”(r)), susceptibility tensor, y = (x”(r)ﬁ(r)xﬁ(r)),
and spin specific heat, Cy(t), calculated in this paper are valid for the whole field range
(Egs. (34)(36)) in contrast to the results obtained in [1-3], restricted either to the fields
from the vicinity of the critical ones or to the fields far from them. Moreover, the Hamilto-
nian we use includes the transversal exchange and single-ion anisotropy (K, and L, in
our notation) which is absent in the considerations of [1, 2]. Therefore, our temperature
dependence of Cg, m and y in the neigbourhood of the critical fields differs from that
obtained in [I, 2]. In particular, this is clearly seen near the critical field 43, separating
the phase, P, from SF. According to our estimations the temperature dependence for
the magnetization in this region is governed by the T*law, whereas according to [1, 2]
by the 73/2 one. The correspondence (7'3/2-law) can be obtained by putting &, = A2 and
K, = L, = 0 into Eqgs. (33). In this case the coefficient, 4,, is equal to zero, and there-
fore, a further term in the expansion of 6, (Egs. (32)) in the power of 4 is required. This
leads to &, ~ A* and, consequently, to the 73/2-law as in [, 2]. From the physical point
of view it is only important that the presence of a transversal anisotropy (exchange and
or single-ion) yields the 7>-like dependence of the magnetization and susceptibility on the
temperature instead of the 7'%2-law.

Though we do not present any dependence of the critical field 45 on the temperatiire,
such a dependence can be obtained easily from formulae (34)—(35) which are similar to the
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formula for the critical curve in [18]. By putting /4, = 0 in that formula, one can conclude
that A3 is proportional to T2, which corresponds to the result of [11], while according to
[1, 2] this dependence reads a2+ BT5/2, In [9, 10] compounds with transversal anisotropy
(exchange and single-ion) were investigated; it seems that the dependence of the critical
field on the temperature such as 7' is not excluded.
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