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SOLITON LIKE SOLUTION OF THE MASSIVE THIRRING MODEL
IN A SINGULAR PERTURBATION APPROACH
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A singular perturbation technique has been applied to the massive Thirring model,
as a first step for exploring the possibility of applying the technique of reductive perturbation
to extract soliton like structure from field equations of quantum field theory, for which no
other method of solution is known to exist. The results obtained have all the features of the
exact solution and are essentially non perturbative with respect to the coupling constant,
and can be used as a model for fundamental particles and quark confinement. The only
unusual feature, not found previously, is the connection between the mass and coupling
constant, which becomes essential for the existence of the solution. The physical impli-
cation of such a constraint is not yet clear, and perhaps requires further study of other
field equations by this technique. The structure of the computations suggest that the method
will be usefull in obtaining the multi-soliton structure for the g%, #3, 4 theory for which
there is no Bécklund transformation or inverse scattering technique. Also the method can
be quite successfully applied for obtaining a multisolution structure of coupled field equations
of the quantum field theory.

PACS numbers: 03.40.Kf, 03.65.Ge

1. Introduction

Recently there have been vigorous attempts to explore the soliton like solutions of
non-linear equations. The packet structure of such solutions is usefull both for the descrip-
tion of extended solutions of elementary particles [1] and interactions of nonlinear waves
[2]. Incidentally, it should be mentioned that such solutions could not be constructed unless
some technique for the exact solution of the equations or some perturbation procedure
could be devised which does not utilise the expansion in the coupling constant. It can be
easily demonstrated that the usual perturbation in the coupling constant does not yield
soliton like behaviour. The method for the exact solution was introduced by Geardner
et al. [3]and also by Lax [4]. But one should not be over enthusiastic about such mathemat-
ical recipes as they hold only for a class of nonlinear equations, and many of the equations
of quantum field theory do not fall in this category. Furthermore the above mentioned

* Address: Department of Physics, Jadavpur Unicersity, Calcutta-700032, India.
(683)



684

method is valid only in the space-one time domain, and in general not extensible to many
space variables. But reductive perturbation has been already applied in three dimensions
and yield satisfactory results [5]. At present the existence and behaviour of classical lumps
for many equations have been demonstrated only by vigorous computer experiments
though in many cases a need of analytical treatment was hardly felt. A few years back
Oikawa and Yajima [6] formulated a version of singular perturbation known as the reduc-
tive perturbation technique for the solution of highly dispersive and nonlinear equations
of plasma physics. The merit of the procedure lies in the fact that it does not rely upon
an expansion in the coupling parameter, and so there is no need for weak coupling [7].
Also the small parameter (¢) is not related in any way to the dynamics of the particular
equation under consideration and so it has a generalised character. One really proceeds
by scaling the space and time variables by ¢ and by eliminating secular terms in each order
of . In the wake of the search for soliton like solutions and bag like structure for the equa-
tions of quantum field theory, we have tried to visualise the effect of a singular perturba-
tion and a well known, exactly solvable equation — that of the Thirring model with mass.
Tn the past it has been seen that the equations of Thirring model always served as a labora-
tory for the test of any particular theory. So, such is: our motivation in the following.
As the formalism is not very popular to particle physicists we have dealt with the details
of philosophy and methodology. and now describe our results in the case of the massive
Thirring model.

2. Buasic formulation

Tt has been observed that in many classical and quantum mechanical equations the
chief trouble lies with the non existence of a small parameter, for effecting the usual form
of perturbation theory. Quite often, it may so happen that the coupling parameters occuring
in the theory (e.g. the strong interaction coupling in hadron physics, the parameters of
mode-mode coupling, or those occurring in the governing equations of plasma physics)
are quite large and usual perturbation approach is meaningless. Furthermore the trouble
with the nonlinear equations is that they possess many types of solutions of which only
the soliton like solution is of importance to us. One straightforward approach to these
types of solution is by the method of exact solution. Unfortunately, only a few equations
admit such solutions. So what is essential is a perturbation theory which is not in any dyna-
mical parameter leading directly to the soliton like structures. This is the reductive perturba-
tive approach.

In this technique the small parameter ¢ is the scaling length of the space and time var-
iable, introduced to separate the slow and rapid variations of the dynamical quantities
over a wide range. All the quantities are considered to be expansible in powers of &, that
is, Za”zpn(?j, 7) where (&, ) are the usual shifted and stretched variables written in terms of
(x and ?). Usually one sets
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and the nonlinear field U(x, 7) is supposed to be a combination of # “quasi-simple” waves
in every order of &. That is one sets ’

U= Uy+eU,+&°U,+ ... (2)

and each U; is assumed to be of the above form. The explicite functions ¢ (x, 7) are intro-
duced in ¢; to account for the variation of the velocity of the waves over space-time, due to
interaction. Lastly, we will see that these yields the usual expressions for the phase shift
and time delay for the scattering of soliton, as obtained from the exact solutions. Suppose
for simplicity that we consider a two-soliton situation. Then one can explain the origin
of the factor ' ~* as follows. The variation in the wave velocity due to the two wave interac-
tion is expected to be proportional to the product of wave amplitude and the interaction
time. The former is of the order &. The latter is considered to be the time during
which the two waves pass through each other and then estimated by dividing the
width of the wave (~O(e™“) with their relative velocity (~O(1)) i.e. being of the order
¢~ % Therefore the variation in the wave velocity is of the order &, 7% = &' ™% A similar
consideration holds for many wave interactions. Once the parameter ¢ is fixed one has fo
set the equation under consideration in the form;

v A ou B({U) =0 3

ot * ox +B(U) =0, S
where U is column vector and 4 and B metric functions of U. The search for the soliton
solution starts by finding some U, such that

B(U,) = 0, 4)

where U, is a constant vector. Then one sets

U= U0+ Z & Z U‘lx,n({fla 523 T)Zl,na (5)

a=1 In=—a
for the determination of the space-time structure of the functions U,(j,). The ansatz (5) is
valid in the case of two ‘“‘quasi-simple waves with

o

és 8[X—;~st— 2 srwgr)(élz 62’ T)—'YS],

r=0

T = g%, 6)

along with

Zy, = exp [ilxq +inx,],
X, = kx—og+ Y QU E,, 1),
r=1
o= (22 1,2 %)
A' = 2 S = > >
: ok Ji—r,

Y1, ¥, are arbitrary constants and Q, v are again introduced to account for the frequency
shifts and the orbit modification due to nonlinear interaction. Substitution of the form (5)
along with (6) and (7) in the above equation (3) yiclds in each order of & matrix equations
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for the determination of U{j}. These matrix equations can yield a nonlinear solution only
if the determinant of the coefficients vanish. In the zero order case this essentially yields the
linearised dispersion relation. It is quite easy to observe that such a method can be general-
ised to study the interaction of more than two quasi-simple waves in the case of both non-
linear and highly dispersive equations. It will turn out later that these “quasi-simple”
waves are nothing but solitons. One of the most interesting properties of the quasi-simple
waves is that they are always localized in space, that is the amplitudes go to zero as
x — Foa. Furthermore, a peculiar feature that has become prominent is that almost all
the non-integrable (in the sense that they are not amenable to the inverse scattering analysis)
non-linear partial differential equations are reducible to a non-linear Schroedinger equation
in some order of reductive perturbation, whose exact multisoliton solutions are known.
In quantum field theory, which can represent the physical situation, we work in a four
dimensional world, and up till now there is no known method of solution of the
field equations which will lead to soliton like structures and hence quark confinement.
Up till now the most exhaustively studied ficld theoretical model is the Sine-Gordon (SG)
equation [8], but with one space and one time domain. At this point one important aspect
of the SG equation is worth mentioning. It has been found that though the SG equation
is completely integrable but the corresponding ¢* theory

3

@—a)p = g(¢— %)

is not, though it can be considered as an approximate version of the SG system. Reductive
perturbation may yield some clue to these important and crucial properties of the nonlinear
equations. So that in the absence of any inverse scattering formalism for the nonlinear
equations the reductive perturbation technique seems to be the only tool for the introduc-
tion of solitons for such equations.

3. Application to Thirring model

The equations of the massive Thirring model [9]

(Yu0u+m)y + 8@y, )1,y = 0, ®
which can be put into the form (3) with;

; (41
= U(x,t); U= )
Y (x, 1) (%)

4= (é _?); B = (28919, +m) (Zj:) )

where we have used the usual representation of y, in two dimensional space time. The
determinant condition yeilds
1 , 1
©) _ . . 10
U —m B UO,O u (2g$1) 3 ( )
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along with the non-trival condition

g=mkz. 11)
This condition which is nothing but a restriction on the allowed value of the parameters,
is the only unexpected feature of the application of the singular perturbation to the Thirring
model. If one then proceeds to the second order in & one obtains;

U(l) aU(l)
30 (A, —A4y)

0
Wo,oUSy — (Al — Ao)
1

+3 ), VVB, Ugl—)z',o —wUb =0,
o
Wy, = —i(log +nwp)] +i(lk, +nks)Ag-+VBo. (12)

But the equation gets simplified as U§)) is constant. Also it is important to notice that
Det (Ws,.0) = 0. So proceeding as in reference [4] we can obtain

1
Voo 2m |’ Ry m/ag
g 1/’

with
2

a, = i(ky—w,)+ m—, s=1,2,
2g
where Ry and R, are the eigenvectors of W, , and W, ; required for proceeding with
higher order calculation. It is rather important to notice that none of the results derived
above are defined for g = 0, suggesting that it is impossible to deduce the above results
in the usual perturbation analysis about g = 0. Now proceeding to the third order in & we
obtain;

aU(Z) U(Z) 8U(1)
Wy oULy— (-4 Lo (i I—A
1,0 ( 1 0) 661 (2 0) afz 6‘5
a (0) 6w(°) aU(l)
Ad—A +(A,I—A
[(1 0) 2, + (A1 —A4y) 2] 3,
o0 oV
[(111 Ag) —— 3z, +(A,1—Ay) a2 :|U(1{())+ ZVVBO: U(12—)t',n U(l)
2
ILn
+5 Y VVB: U2y e USUR = 0. (13)

U,
Muttiplying equation (13) by L, (row vector corresponding to (R,) from the left and using
Uglt)) = ¢1(619 52’ T)Rly

U&I = ¢,(&;, &€, DR,
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Uy =0 for [ll+]n] # 1,

. ¢
LiWio =0, (4—42,) isl =0,
dpy dR,
U = R, —i 7L
Uil ¢1 (C1, &2 DRy —1 dE, dkl
6(,25(12) 04 i dzwl 52¢1
Ay—2A AP+l 22—~ -
(41—25) o, + A5 T[(% 2 e ﬁél +io || (bJ
(1) a (0) a¢
+i{(/11 ﬂz) +181l¢2[ +A —‘¢1 [(/%1_42) As] “a’é—l =0, (14
. 1

where the coefficients occurring in equation (14) are calenlated from equation (8, 12) of
reference [7]. As the calculations are quite straightforward and lengthy we just quote
some results for A, A,, 4,

m2\ ! 4m 2m m32gT1
A1=< ) [4g———~+—(2 T+ (—g)]
aj ‘71 ay 2ayg

m*\"! 12m*>  4m* _ m m?
A, = {1+ e 6g+ - F— (2g+1)+ (2g+1)

1 ay alg ayq

m*\"'r_ om? _ 2m? _ om*
aj 2aig aj aji
After the coefficients are known, the most important step follows, that of imposing non-
-secularity on the solution of equation (14), which yields

8, i d*w, 6%¢,

T3 IR e o2 +ioy |’y = 0, (162)
i 1

29V
(A —A2) 3z, +Bil¢al*+4, =0, (16b)
ow (0)
(A —1a) z’g +A, =0, (16c)
"qs(Z)
(a=2) 2 + gD = 0 (164)

determining ¢?, ¢{», Q) and $,. Similar equations could be set up for ¢, and its
associated quantities. Equation (16a) is the non-lincar Schrodinger equation having
the well known soliton solution;

¢(x, 1) = Qoeia(x’t) sech® [x —7t],
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2

_ — . . d
where ¢ is the instantaneous phase g,, # all are obtainable in terms of %_dP—I and o;.
1

Similar results are also obtained for ¢,. Corresponding to these solitons, our original
equation (8) will have solutions with similar properties.

4. Discussion

Some pertinent questions can be raised about the results obtained in the preceding
paragraphs. The most important point is the relation between mass and coupling constant
obtained in equation (11) in the course of computation. As in the usual case the self interac-
ting Fermi field can have any value of mass and coupling constant, one can raise the question
of the significance of such a result. However, one should remember that in general there
does not exist any criterion, for judging the applicability of the reductive perturbation
technique to a nonlinear equation. So that equation (11) yields really the sector in the
values of m and g in which the method is applicable to this particular equation. But one
should keep in mind that this type of restriction may not occur in other cases. Except for
this point the solutions have all the features of exact solutions obtained via the inverse
scattering transform, (IST). Though for a long time IST for the Thirring model was un-
known, it has been recently discovered by Kaup et al. [10]. Furthermore, it has been found,
to the surprise of all the investigators that the reductive perturbation reduces the original
nonlinear equation to a nonlinear Schrc‘jdinge‘r equation, whose soliton solutions are
quite well known. Lastly, one can see from our above discussions that our method will
be quite suitable for exploring the many-soliton sectors of coupled equations of the
quantum field involving a scaler field ¢ and a complex scalar field v, interacting via g1 py*
+g20*+g3(p*y)? for which uptill now no method of solution exists for even one of many
soliton sectors. Investigations of values of g;, g,, g5 and masses of ¢ and v, if any constant
of the form of equation (11) arises, are at present under consideration.

Editorial note. This article was proofread by the editors only, not by the authors.
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