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COLLISION INDUCED VIBRATIONAL TRANSITIONS IN H,
WITHIN THE BREATHING-SPHERE MODEL

By T. ORLIKOWSKI

Institute of Physics, N. Copernicus University, Torua*
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The breathing-sphere model has been employed to calculate cross sections for vibra-
tional de-excitation of the H, molecule in collisions with an atom. From these cross sections
the vibrational rate constants were computed and compared with experiment. Fairly good
agreement is obtained between the theoretical rates and experimental values.

PACS numbers: 34.50 Bz, 31.70.Hq

1. Introduction

Within the past several years a number of various semiclassical and quantum approxi-
mations in the theoretical investigations of vibrational and ro-vibrational energy transfers
in atom-molecule collisions have been developed (for a recent review see Ref. [1]). This
interest in approximate methods is caused by the fact that performing scattering calcula-
tions within the rigorous quantum close-coupling (CC) method [2] is still a tremendous
task. The computational effort increases so rapidly with the number of channels which
must be included to obtain convergent results for vibrational and ro-vibrational transi-
tions, that calculations within the CC treatment are practical only when a few internal
ro-vibrational levels are energetically accessible. One of the previous attempts to simplify
the computational work on pure vibrational transitions is the so-called breathing-sphere
(BS) approximation [3].

In this work we performed BS calculations on the He—H, system for a few energies
in the range 0.6-1.5 ¢V. In the next section we briefly outline the breathing-sphere model,
the interaction potential and some computational procedures. The last section presents
our results and compares them with experimental data.
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2. Collision model and computational procedures

2.1. Breathing-sphere equations

In the assumed collision model [3] the oscillating molecule is treated as a pulsating
sphere interacting via a spherically-symmetric potential with an incoming atom. Therefore
no rotational transitions will be induced by collisions. This collision system, after elimina-
tion of the center-of-mass motion, is described by the Schrédinger equation

h? h? ,
|:'“ —Ag— —— 4, +Vo(r)+V(R, ")J YR, r) = w(R, r), 1
2u 2m

where R is the position vector of the incident atom relative to the center-of-mass of the
molecule, r is the vibrational variable, V(R, r) is the scattering potential, V() is the vibra-
tional potential of the molecule, m is the {educed mass of the molecule, and g is the reduced
mass of the atom-molecule system.

Since the interaction potential is spherically-symmetric a solution of Eq. (1) is sought
in the form

17)
YR, 1) = Z = VR, 0), )
where x,(r) are solutions to the vibrational equation for the isolated molecule
h* a2
= 2w + Vo) —&, | 1r) = 0. (3)
A partial-wave analysis can be introduced by expanding y,(R, 0) in terms of Legendre
polynomials
FiR
nR. 0 = ) 0 o) @
1
The radial functions Fi(R) satisfy the set of coupled equations
d? I(1+1) 2u .
[W +hi— R—] Fi(R) = 2 Z <HIVR, ) I FL(R), ©
where
2
K =25 (E=e), ©)

and the coupling matrix elements are defined by

lVR, P |’ = Ix,.(r)V(R, Ar(dr. %
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The boundary conditions imposed on the scattering problem require that the solution
F; should be finite at the origin and should have the following asymptotic form for large R:

/2
Fy(R) ~ 8, exp [~i(k,R~Iz/2)] - (?)1 Shw exp [i(k, R~ In[2)], ®)

for open channels, and
FR) ~ 0, ®)
R—w
for closed channels.
As it is seen from Eq. (8) the asymptotic behavior of Fi(R) defines the scattering ma-
trix S. All observable quantities can be computed from the § matrix. The differential cross
section for vibrational excitation from level # to n’ may be written as

Ao, 1
aQ  4k?

< 2
Z QI41) (Siw = Su)Pi(cos 0)| ®
1=0

and the total cross section is given by

Gn—m’ -

v (10)

I

1

where the partial cross sections o’ _,. are defined by

oy =~ QUH+1) [Shy =Syl (11

2.2. Coupling matrix elements

For the He—H, interaction V(R, r) in Eq. (1) we have used the CI potential energy
surface computed by Tsapline and Kutzelnigg [4] and complemented by Raczkowski and
Lester [5]. The required spherically-symmetric part of this potential can be expressed in
the analytical form (energies and distances are in atomic units)

V(R, r) = (8.392—8.130x —1.754x% +3.882Rx) exp (—1.933R)

4.5314+2.171x  60.0624-155.42x
- s(R)( RE + = ) (12)
where x = r—1.406 and the switching function s(R) is defined by
s(R) = 3 [1+tanh (R—4.78)]. (13)

All parameters were determined by the least squares procedure, minimizing the root-mean-
-square (rms) deviation defined by

1 I/i'—'I7i 2-11/2
=[x2.059] W
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where N is the number of points, ¥, the “ab initio” value and V] the fitted value of the
potential. The percent rms deviation was minimized to 3 %;. With this choice of interaction
potential the coupling matrix elements in Eq. (5) were calculated in terms of matrix ele-
ments over vibrational states of the type <n|x|n’) and (n|x2|n").

Vibrational eigenfunctions were obtained as solutions of Eq. (3) in which Vy(r) was
taken to be the accurate “ab initio” Kolos-Wolniewicz potential for the X1X state of H,
including adiabatic corrections for nuclear motion [6]. The vibrational eigenproblem (3)
was solved by using the well-known method of Cooley [7], which is based on the Numerov
algorithm for a numerical solution of differential equations.

2.3. Solution of the coupled radial equations

The system of coupled differential equations (5) can be written in the matrix form

& ‘
[1 Y +W(R)] F(R) = 0. (15)

These equations were solyed by using the algorithm developed by Gordon [8]. This method
is based on an outward propagation of the solution F(R) through a series of intervals.
Within each interval the original potential is expanded into a power series

_, d’W
+1(R-R)?
R-R 2 dR2 R=R

W(R) = W(R)+(R—R)fi—z + oo (16)

where R = (R;+R;,)/2. In successive intervals the solutions are subject to a unitary
transformation M(R), which is constructed to diagonalize the coupling matrix at the
center of each interval; that is,

M} W(R)M; = W°(Ry), an

where W? is a diagonal matrix.
Within a sufficiently small interval this procedure decouples the initial equations (15)
into N ordinary differential equations

d2
1— +UR)|GR) =0, 18

[ e TUC )] ® (8)

where U(R) is the so-called reference potential, i.c. a diagonal transform of the coupling

matrix (16), and G(R) is the transformed solutions.
If the reference potential is chosen to be linear in R

Un(R) . Wn0+pn(R_R)’ (19)

where p, is a diagonal element of the transformed first derivative of the coupling matrix,-
the solution can be expressed analytically in terms of Airy functions. For the n-th channel
one has

G,,(R) - anAi [“n(R = ﬁn)] +b nB i[“n(R - ﬁn)] > (20)



641

where a, = (p,)'/? and B, = —(W2/p,+R). The coefficients @, and b, are determined by
the matching conditions on the boundaries of the intervals. The piecewise analytic solutions
(20) and their derivatives are matched between adjacent intervals and in such manner
a solution is propagated step-by-step into the asymptotic region where the S matrix can
be extracted. The advantage of this method in a multichannel problem is mainly due to
the fact that with this method it is easy to adjust the integration step size to maintain the
desired level of accuracy. The interval size is controlled and determined by the accuracy
of the polynomial approximation (16) to the original potential and is independent of the
wavelength of the channel, while in the ordinary numerical methods the step size is governed
by the wavelength. Hence, the number of steps needed in an ordinary numerical integration
is at least ten times greater.

3. Results and discussion

In this section we present results of the BS calculations for the de-excitation of the
first vibrational state of H, at total energies ranging from 0.63 to 1.5 eV. The calculated
individual partial cross sections for selected energies are shown in Fig. 1. To determine
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Fig. 1. Partial cross sections for vibrational transitions in H, induced by collisions with He

the total cross section one must sum the quantity (2/4 1)[S%,|> over all values of the orbital
angular momentum for which [S%, | is non-negligible. In Table I we list the total BS cross
sections g; ¢ at six values of total energy: 0.63, 0.75, 0.9, 1.1, 1.3 and 1.5 eV. The obtained
total cross sections are also plotted as a function of energy in Fig. 2. In order to compare
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Breathing-sphere cross sections for the vibrational de-excitation of H, colliding with He

TABLE 1

G150 [AZ]
E[eV] —
BS? BSP cce EPd
0.63 ! 0.1149 (—6) — | —_ —
0.75 0.8779 (—6) s — —
0.90 0.7300 (—5) 0.193 (—6) 0.560 (=5) 0.158 (—6)
1.1 0.4830 (—4) 0.684 (—5) 0.308 (—4) 0.104 (—4)
1.3 0.1839 (—3) 0.107 (—3) 0.112 (—3) 0.982 (—4)
1.5 0.5155 (—3) 0.743 (—3) 0.294 (—3). 0.390 (—3)

2 present calculations,

b breathing-sphere results from Ref. [11],

¢ close-coupling values of Raczkowski et al. [9],

d effective potential results of Rabitz and Zarur [11].

the present results with other theoretical calculations, we collected in Table I results ob-
tained in the previous BS calculations of Rabitz and Zarur [11], as well as in the close-cou-
pling (CC) method [9] and in the effective potential (EP) approach [11]. The only qualita-
tive agreement of various theoretical results can be due to the fact that results reported

-3k .
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Fig. 2. De-excitation cross section for H, as a function of energy

in Table T were obtained by using both different interaction potentials and different colli-

sion schemes.
Unfortunately, no direct comparison of theoretical cross sections with ‘experimental

data is possible, because experimental measurements of cross sections for collision induced
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vibrational transitions have not yet been carried out. However, extensive experimental
investigations have been performed on vibrational relaxation processes, therefore experi-
mental values of rate constants as well as relaxation times have been determined.

The transition rate constants for a process n — »’ for a system in translational equilib-
rium at temperature 7 are related to the calculated cross sections by averaging over the
distribution of the relative velocities [12]

e (T) = f° 00, (O)fe, T)do, @1)

3000 1000 296 125 66 TI[°K]
L T
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Fig. 3. The Landau-Teller diagram for theoretical and experimental rate constants for He—H,, vibrational

relaxation. The filled circles indicate the experimental points of Audibert et al. [13], the dashed line shows

the results of Dove and Teitelbaum [14] and the solid lines refer to: BS — breathing-sphere calculations

(present work), SCS — semiclassical computation of Billing {15], CS — coupled-states approximation [16],
and CC — coupled channel results from Ref, [9]
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where f(v, T) is the three-dimensional Boltzmann distribution  function

1 . 'u \3/2 . .mbz g N
fe, 1) = 4= (2nkr> - ( 2kT’> @

If the Telaxation process of a gas system is dominated by dé-excitation from the first to
the ground state, then the Landau-Teller model of relaxation could be assumed and
the relaxation time is given by the jcwo-level formula [12]

= k1o_i€01a - (23)

where ko, and k,, are the-excitation and de-excitation rate constants respectively.

With the present BS cross section data from Table I, the de-excitation rates for the
process # = 1 —» n = 0 were computed for 50 < 7" <C 3000 K. Fig. 3 compares our relaxa-
tion rates with other theoretical results, as well as with the experimental data of Audibert
et al. [13] and Dove and Teitelbaum [14]. The comparison is shown in the standard Lan-
dau-Teller diagram (log k,, versus T-1/3). The rates determined from the BS cross sections
are generally in satisfactory agreement with the experimental values from Refs. [13] and
[14], except for the low temperature region, where the computed rates are too small.
Theoretical errors could arise both from the choice of the potential surface and from the
treatment of collision dynamics. Probably this discrepancy in‘the entire considered region
of temperatures, arises from assuming elementary dynamics which does not include the
rotational structure of the hydrogen molecule. The low. temperature behavior of our re-
sults confirms the previous suggestion [10] that the vibrational relaxation is particularly
affected by coupling with rotational motion at low temperatures. As can be seen from Fig. 3
the semiclassical (SCS) rates [15] are in better agreement with experiment than those from
the coupled-states (CS) approximation [16] as well as from rigorous CC computation [9].
The CC studies of Raczkowski at al. [9] primarily explored the high temperature region
(T > 1000 K), therefore their extrapolation to low:temperatures are in doubt. Therefore
further, accurate quantum computations are still desirable, especially at low temperatures.
Nevertheless, the present work demonstrates that.the BS model correctly predicts the
essential features of the thermal vibrational relaxation. An important advantage of our
approach is the large reduction in computer time required by the scattering part of these
calculations. At the thermal energies of interest the number of coupled vibrational states
to be considered is usually small enough so that the coupled equations could be economi-
cally solved, whereas in the convéntional CC studies the resulting set of coupled equations
is considerably larger. = ‘ ’

The author is grateful to Professor L. Wolniewicz for helpful discussion and valuable
remarks.
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