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THE WEIGHTING COEFFICIENTS IN HBT METHOD AND
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The Debye characteristic temperature 0 has been calculated from elastic constant
data for a number of binary tetrahedrally bonded semiconductors. The weighting coeffi-
cients for the three principal cubic directions for these crystals, as determined by a least
square best-fit procedure based on computationally exact values of 6, have been found
to differ from those for metals and alkali halides.

PACS numbers: 63.20.-e, 62.20.Dc

1. Introduction

The Debye characteristic temperature 6 is an important parameter in the study of
a large number of solid state problems involving lattice vibrations. One of the methods
of calculating 0 is from elastic constant data using the relation

[/
0= Gk, (1)

where 4 is Planck’s constant, k is Boltzmann’s constant, and ¥V, is the atomic volume. The
velocity v,, is defined by
3
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where dQ2 denotes an element of solid angle and ¢; is the velocity which depends on the
direction and is obtained from Christoffel’s equations of elasticity theory.
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Equation (2) is not integrable analytically and numerical methods must be used for

its approximation, that is,
3
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i=1
where 7 is an integer. The solution to-equation (3) for a “large” n is considered to give
an “exact” value of 0 when substituted in (1). However, the computational labour also
increases with large values of #. In case of cubic crystals, parametrized tables [I, 2],
which are based on numerical solution of (2), can be used to obtain accurate values of 6.
The values computed by using latter tables [2] will be considered here as “exact’ and are
designated as 0 .-

In order to reduce the computational labour of solving equation (3) and the
corresponding elastic secular equation, a number of approximate methods [3, 4] have
been proposed. One of the most often used methods is due to Houston [5] and Bhatia
and Tauber [6]. In this method which is commonly referred as HBT, equation (3) is solved
only for n = 3, specifically d'™ = [100], d® = [110] and d® = [111], the three vectors
whose solid angle contains the irreducible highest cubic symmetry. Thus the computational
labour of solving the elastic secular equation for a large number of irrational directions
is avoided. Equation (3) then becomes

; Zs \ f Z?
— Wy < 1/'1;1.3) +w, < 1/17?) +Wwj ( 1/vi3> , 4
U 2 [100] / [110] — [111]

= i= =

where w, (¢« = 1, 2, 3) corresponding to d'V, d®, d® are the weighting coefficients. The
w, of [6] are exactly the same as of [5]. The HBT method has been extended by various
workers to include 5 [7], 6 [8] and 9 and 15 [9] terms. It has, however, been found [10]
that 9-term expression yields 6 values closer in agreement to g, than 15-term form.
Hence no'"’special advantage is gained in choosing additional d; on the other hand the
lower symmetry of the less rational vectors increases significantly the computational labour
in solving the elastic secular equation.

Nutkins [11] has also derived a set of w, values which should apply generally to all
cubic crystals. However, her values are quite different from those of HBT. While the two
methods weight the [100] vector exactly the same, the [110] and [111] vectors are weighted
quite differently. Nutkins’ w, minimize the [110] contribution to 6. Ledbetter [12] has
proposed a variant of Nutkins’ method to obtain a set of w, values for cubic metals. This set
agrees reasonably well with that of Nutkins. The method, though semi-empirical, has the
advantage that it gives more accurate values of 6 than the HBT three direction approxima-
tion. This method has been used to calculate the Debye temperatures of alkali halides [13].
It was found that there were considerable differences between w, for metals and those for
alkali halides. The weighting coefficients obtained by different workers are shown in Table I.

It would be reasonable to assume that w, will be the same only for such substances

3
whose ) 1 Jv? surfaces are very nearly of the same shape. Binary semiconductors having
i=1
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zinc-blende structure, particularly A™BY and A"BY'type of compounds, have similar
chemical binding. However, the reduced elastic constants [14] though same for a group
are different for the two groups. It would be reasonable to infer that for a particular group
the velocity surfaces are similar. The applicability of Ledbetter’s procedure to these two

TABLE I
Weighting coefficients w,
B S _ — | N
Author Type of substance w1 Wa | Wi
Houston [5] and !
Bhatia-Tauber [6] general 0.286 0.457 0.257
Nutkins [11] sodium 0.286 0.143 0.571
Ledbetter [12] metals 0.246 0.135 0.620
Varshni-Konti [13] NaCl type alkali halides 0.394 —0.089 0.695
CsCl, CsBr, Csl 0.408 —0.006 0.598
This paper (Table 11, group h) | ZnS type binary semi-
conductors 0.355 0.210° 0.435

groups of compounds is examined in this paper. While the main interest is in tetrahedrally
bonded zinc-blende structure semiconductors A™BY and A"BY, the results for some other
binary semiconductors viz., MgO, PbS, PbTe, Mg,Si, Mg,Ge and Mg,Sn are also included
for sake of interest. While the first three compounds have NaCl structure, the latter three
have fluorite structure.

2. Calculations and results

Except for AlSb, GaP and GaSb, the input data (single crystal elastic coefficients ¢;; and
density ¢) employed in the calculations were taken from [15]. The data for AlSb are from
[16] and those for GaP and GaSb are from [17]. The “exact” values of 0 were calculated
[15] by using parametrized tables [2]. The 0.y, values were used to determine the weighting
coefficients [12]. The results of the calculations for w, for various combinations of 19 cubic
binary semiconductors are given in Table II. The standard deviations s,,_ of the approximate
with respect to the “exact” were also cvaluated and the arithmetic mean of s,,, and s,,, is
given in the column labelled s, in Table II.

These weighting coefficients were then used to calculate the Debye temperatures.
The results aré presented in Table I11. The Debye temperatures 6,, §; and ¢, refer to the
values of 6 calculated by using w, derived from the groupings (a), (d) and (h) respectively
as referred in Table II. The entries in the columns labelled fygy and 6y were obtained
using w, of Houston—Bhatia—Tauber and Nutkins, respectively. The “exact” values of 0 are
also listed in Table III for the sake of comparison. The Debye temperatures have been
calculated to a greater number of significant figures than is warranted by the accuracy of
the experimental input data. This has been done to bring out small differences, if any,
between the different values.
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Best-fit weighting coefficients w, for cubic binary semiconductors

Compounds

AlSb, GaP, GaAs, GaSb,
InP, InAs, InSb

GaP, GaAs, GaSb

InP, InAs, InSb

B-ZnS, ZnSe, ZnTe,

| CdTe, HgTe, HgSe

—_~
=
=

0
o
® |
o |

Comparison of exact and approximate values of Ocagic for binary semiconductors

MgO, PbS, PbTe
Mg,Si, Mg,>Ge, Mg,Sn
(d) + MgO

(a) + (d)

AISb, GaSb, InSb

| ZnS, ZnSe, ZnTe

ZnTe, CdTe, HgTe
(k) + PbTe

U2

[V
AW W W WD WL

Wi

0.341

0.338
0.349

0.358
0.621
0.467
0.358
0.355
0.342
0.294
0.374
0.323

w2

0.087

0.034. ‘

0.156

0.222
—0.571
—0.442

0.222

0.210

0.108
—0.036

0.318

0.081

TABLE 1II
w3 | Sws pCt
|
0.572 0
0.628 0
0.495 0
0.420 5.10
0.949 11.74
0.975 0
0.420 4.56
0.435 2.51
0.550 0
0.742 0
0.307 10.27
0.596 2.22
TABLE HI

Compound Ocxact \ 0, ‘ 04 I 6n
AlSb 292.8 l 292.79 29322 | 293.11
GaP 443.8 443.87 444.55 444.39
GaAs 345.6 345.57 346.07 345.95
GaSb 269.2 ‘ 269.21 269.66 269.56
InP 301.1 301.10 301.06 300.98
InAs 249.6 249.45 249.58 249.50
InSb 206.0 206.06 206.13 206.07
B-ZnS 343.6 344.70 343.53 343.52
ZnSe 275.3 276.10 275.45 275.42
ZnTe 222.3 223.44 223.45 223.39
CdTe 161.7 161.48 161.42, 161.37
HgTe 140.3 141.20 140.63 140.63
HgSe 150.9 151.43 150.63 150.64
MgO 951.0 | 949.39 951.81 951.45
PbS 229.1 230.27 226.66 227.05
PbTe 177.2 175.24 169.00 169.63
Mg,Si 550.1 550.10 549.84 549.87
Mg,Ge 440.8 440.69 440.40 440.43

Mg,Sn 367.0

366.45

367.12

367.04

OupT

289.82
439.67
342.16
266.80
296.16
245.92
203.05
335.44
269.60
219.89
158.50
137.04
146.39
947.16
225.64
166.46
549.90
440.45
366.61

N

290.46
440.49
342.88
267.20
298.12,
247.13
204.12
340.34
272.86
221.25
159.73
139.30
149.24
945.07
232.01
177.76
550.29
440.91
365.72



595

3. Discussion

It is seen from Table III that generally no single set of w, exists which can give good
agreement between approximate 6 and 0..,,,, for all the tetrahedrally bonded semiconductors
considered here. Different sets of w, — groups (a) and (d) — are required for the two groups
of semiconductors. However 6, values, calculated by using the set (h) of w, (Table II), are
significantly in better agreement with 6,,,., than by any other set. The maximum difference
between 60, and 6,,,., is about 0.5% while that between Oypr and 0,,,,, or Oy and 6,,,,
is 194 and above. The 65y values are, in general, poor agreement with 6,,,., as compared
to Oy with O,

As mentioned earlier, the Debye temperatures of other binary semiconductors not
belonging to either A™BY or A"BY" were also calculated using different sets of w, only
for the sake of interest. It will be noticed from Table III that though 6, values for these
semiconductors are in closer agreement with 8,,,,, than 6,, the values of 0, and 6, themselves
differ very little. Thus the set (h) of w, can be used to obtain fairly accurate values of Debye
temperatures of cubic binary semiconductors.

As seen from Table I, the proposed set (h) of w, does not agree with any of the other
proposed sets. The weighting coefficients of HBT differ considerably with those of Nutkins
{11] and Ledbetter [12]. However, w, of [11] agree reasonably well with those of [12].
Also, as seen from Table I, there are considerable differences between w, for metals and

3
those for alkali halides. These differences may be due to different shapes of the ' 1/}
i=1

surfaces in the two cases. Although differences between w, for metals and the semi-
conductors considered here also exist, these are smaller but the relative pattern w; > w;
> W, is same. In other words, the [111] contribution to 8 is weighted most heavily. In terms
of simple ratio (w; : w,: ws) for the w,, 1.7: 1: 2 appears to be the most appropriate for
tetrahedrally bonded semiconductors. It is interesting to note that the ratio proposed
(1.8:1:4.6) in [12] for cubic metals is nearly identical with the present except for the heavier
w3 contribution.
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