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The magnetization for the Ising model with a renormalized exchange integral due
to the spin-phonon interaction is evaluated in the following situations: (a) the case of nearest
neighbours interaction; (b) the case of long-range interaction of infinite radius. The condi-
tions of the change of phase transition order are obtained. The exact temporal evolution
of the statistical expectation value of magnetization is also considered for situation (b).

PACS numbers: 75.10.Hk

The problem of the influence of the lattice vibrations on the thermodynamical behav-
iour of magnetic crystals was examined by many authors (see, e.g., [1, 21). But the only
exact result, as far as we know, was obtained by Wagner [3] for the Ising model with
the spin-phonon interaction in the harmonic approximation. He has shown that the
influence of spin displacements can be described by means of the supplementary term
of the fourth order in the spin variables, which is introduced into the Hamiltonian of
the spin subsystem.

The same result may be also obtained for the general case of the Heisenberg model
with the spin-phonon interaction under the assumption of strong correlations between
the spin and phonon subsystems [4]. In this case only a finite number of phonon modes
has to be considered. It should be emphasized that the restrictions on the number of phonon
modes is used as a standard approach to the description of a strong bond between the
phonon and the atomic subsystems in crystals [5, 6].

In this paper we continue the investigation of the models with strong bond between
phonon and spin subsystems and consider a case of the Ising Hamiltonian with spin-phonon
interaction in harmonic approximation.

Let J(f,f") be an exchange integral in the “ideal” system, i.e. in the system without
lattice vibrations. Then the spin-phonon influence on the spin subsystem may be taken
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into consideration effectively in the general case by means of the following renormaliza-
tion [4].
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Here 7 is the number of modes, m is the mass of the atom with spin S, ; is the energy
of the k-th mode, 7, is the unit vector of polarization and N is the number of lattice sites.
Such a renormalization leads to the exact result in the thermodynamical limit when
N — 0. At the same time in the phonon subsystem the following renormalization of free

phonons takes place [7]
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It should be noted that the renormalizations (1) and (2) are independent of the form
of exchange integral J(f,f"). _

Let us consider the case of the two-dimensional Ising model with the nearest neigh-
bours interaction. Then, taking into account the definition of the spontaneous magnetiza-
tion per spin of paper [8], one may obtain the following form of the renormalized exchange
integral instead of (1)

G(f, f") = J(f, f)+B(f, /)M, 3)

where M is the magnetization per spin. For the case of zero magnetic field one can use
the well-known Onsager’s solution for the spontaneous magnetization. Then we get

M = (1—sh‘4 %) 4)

where 0 is the temperature and G = J+BM?, J(f,f") = J, B(f,f") = B for the ncarest
neighbours and J(f,f") = B(f,f) = 0 for all other pairs. Unlike the usual Onsager’s
result (4) has the magnetization M on both sides. The solution of equation (4) for the
function M = M(6) is presented in figure 1.
Expressing now the temperature 6 from (4) as a function of M and expanding it near
M = 0 one may obtain
J

= M2+ 0(M*Y). 5
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From expansion (5) it is evident that for any B > 0 the phase transition of the continuous
o

is impossible. The

type into the ferromagnetic state at the critical point 4, =
arcsh 1
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Fig. 2

Fig. 1 and 2. Magnetization plotted against temperature for the cases of short range and long range
interaction correspondingly. The dashed-and-dotted line separates the stable nonirivial solutions for the
magnetization from the instable ones (dashed lines)

phase transition of the first order takes place. The point of transition 8, is calculated from
the condition of continuity for Gibbs free energy
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It lies above the critical point of the usual Onsager’s solution. It should be noted that the
obtained result is in compliance with the conclusions of papers [9, 10], obtained on the
basis of an approximate examination of the Ising model with the total set of phonon modes.

Now we consider a case of long-range interaction. For this purpose let us choose
an exchange integral of an “ideal” system in the form

JULFY = N9, (6)
where y(f, f') > 0 for all f, " and is a bounded function. Then, taking into account expres-
sion (3) for the renormalized exchange integral and the definition of “phonon function”
B(f.f"), one can obtain the following expression of long range type instead of 3)
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For the systems with long-range interaction the exact solution may be obtained on
the basis of the trial Hamiltonian method [11], established for the spin models of general
form in paper [12]. In the framework of this method the bilinear in spin operators form
of the Ising Hamiltonian with the exchange integral (7) may be approximated by the follow-
ing trial Hamiltonian

Hyja = =% fzf, G(f.f) @Sy —M)M—p ; hSy, ®

where M is the magnetization per spin for the trial Hamiltonian (8) and 4 is an external
magnetic field. It may be proved [12] that the Hamiltonian (8) describes correctly the
thermodynamical behaviour of the system with long-range renormalized interaction (7).

The correlation function on the right-hand side of (7) may be estimated on the basis
of theorem 2 of paper [13]. Then we get the form of the type of 3)

G(f,f) = G f) = NT'[n(f f)+ B fHIM]. €)
Magaetization M for the trial Hamiltonian (8) is defined by the following equation
of the Curie-Weiss type
+BMAHM +ph
0
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Expressing now the temperature as a function of M from (10) and expanding it near
M = 0 for the case of zero magnetic ficld one may obtain
0 =y+(B—3 M~ (%v— g) M*+0(M°). 11)
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From the expansion (11) one can see that as long as the phonon parameter f is less
than y/3, equation (10) with 4 = O describes the phase transition of the second order
at the critical point 6, = y as in the usual molecular field theory. The critical index for
the magnetization is 4. For § = y/3 the phase transition of the second order takes place,
which is close to the transition of the first order. The corresponding critical index is 2.
For the case f# > y/3 only the phase transition of the first order occurs (see Fig. 2). The
corresponding phase transition points for every § are determined from the condition of
the continuity of Gibbs free energy per spin, as in the previous case:

(+BM*)M
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It should be emphasized that the renormalized exchange integrals (3) and (9) are
some functions of temperature 0. Their dependence on the temperature is presented in
Fig. 3.
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Fig. 3. The temperature dependence of the exchange integral for the cases of short range and long range
interaction

For the case of the Ising model with the long-range interaction one may obtain also
the dynamical behaviour of the order parameter {s ;> on the basis of the Glauber stochastic
approach and the trial Hamiltonian method [14]. In this connection it should be noted
that [14]:

() the ground state energies for the model Ising renormalized Hamiltonian with the
long-range interaction and the trial Hamiltonian (8) coincide for any N, i.e. the model
and trial systems have identical states with the total spin ordering;

(i) Gibbs free energies per site for the model and trial systems coincide in the thermo-
dynamical limit at any closed set

O={0,h:0<6<0,0<h<w};
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(iii) the complete sets of thermodynamical parameters for the model and trial systems
asymptotically coincide (when N — o) if they are determined as the quasiaverages [15],
so the model and trial systems are thermodynamically equivalent and their Gibbs dis-
tributions in the thermodynamic limit coincide also, then the probability of the transition
from the state with the spin configuration {sy, ..., 5}, ..., Sy} to the state {s1, ..., —5;, ..., Sy}
per unit time is determined by the detailed balance principle as in [14]

2 4
wy(s)) = %{[l—sj th “h+(y+ﬁ(§sf> ) <5j>} ,

where o is a constant having the dimension of time.
Now taking into account the Pauli Master Equation we may obtain the equation
of motion for the order parameter in the following form
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Fig. 4. The temporal dependence of the magnetization for the case of long range interaction

Tts numerical solutions are presented in Fig. 4. One can see that the relaxation to the
equilibrium state reduces speed with the increase of the parameter f. In other words,
the influence of atomic vibrations leads to the strengthening of the stochasticity of the
system under consideration.

Discussion

So, as we have shown, the renormalization of the exchange integral due to the atomic
vibrations leads to the essential change of the properties of the spin subsystem near the
point of the phase transition. First, the influence of the phonon subsystem may change
the order of the transition. However, there is a significant difference between the two cases
considered above. In the case of the mearest neighbour interaction in the planar Ising
model the infinitesimally weak influence of the phonon subsystem makes the phase transi-
tion of the continuous type in the system impossible.
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When we consider the system with the long-range interaction, i.e. every particle of
the system interacts with all the particles with infinitesimally weak intensity, in order to
change the character of the transition the phonon contribution must be sufficiently large
and must be of the order of the critical temperature (it should be noted that the results
for the model with long-range interaction are valid for any dimension of the lattice).

The second case is, probably, more realistic, for near the phase transition point the
real potential of the interaction should have both short-range and long-range parts [16].
Moreover, the numerical computations for magnetic models [17] demonstrate that the
long-range interaction leads to more adequate coincidence with the experimental data.

Since we use the harmonic approximation and restrict ourselves to the linear term
in the expansion of the exchange integral with respect to the atomic displacements [4], the
phonon parameter B should be thought less than the critical temperature. Therefore, we
believe that the explanation of the existence of the magnets with the phase transition of
the first order should not be based only on the taking into account of the phonon contri-
bution (compare with Ref. [9]).

Alternatively, it is of interest that the introduction of term bilinear in magnetization
into the exchange integral may change the critical index for magnetization in the theory
of molecular field type from 5 to 4.

Our last result (the decrease of the speed of relaxation to equilibrium) is quite evident
from the physical point of view.

We are deeply grateful to Prof. N. N. Bogolubov (Jr.) for scientific support and valuable
remarks, to Prof. I. P. Pavlotsky and Prof. I. R. Ukhnovsky for helpful discussions.
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