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AN APPLICATION OF THE MODIFIED ZENER MODEL FOR
THE FERROMAGNETIC TRANSITION METALS
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The molecular field approximation is applied to the effective spin Hamiltonian pre-
viously derived from the modified Zener model. The spontaneous magnetization is calculated
and a comparison of the obtained results with the observed properties of Fe, Co and Ni
is made.

PACS numbers: 75.10.Lp, 05.50.+q

1. Introduction

For the explanation of the magnetic properties of the transition metals (TM) and
their alloys two types of models are currently applied, itinerant electron models (band
theories) [1] and those which contain localized spins interacting with the band electrons
[2, 3]. The modified Zener model (MZM) [3, 4] is of second type of models. Originally this
model was proposed by Zener to describe the mixed-valence oxides. This model can also
be applied to describe the magnetic properties of the 34 transition metals.

On the grounds of phenomenological considerations Goodenough [2] proposed that
in a crystal of TM and compounds both localized and itinerant 3d electrons can coexist.
Starting from Goodenough’s hypothesis we assume x electrons at each atom site coupled
according to Hund’s rule, to yield the spin S and the remaining n—x electrons (nis the
number of d electrons per atom) are itinerant and can hop from site to site. Within the
MZM the itinerant 3d electrons are described by the Hubbard Hamiltonian and they
couple to the localized spin § by the term —2JS,6, where g, is the itinerant electron spin
operator. Such a formulation of the problem is probably a reasonable simplification
accounting for orbital degeneracy and intra-atomic exchange interaction (Hund’s rule
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coupling). Starting from this model Hamiltonian we want to explain some of the magnetic
properties of the 3d TM and their alloys. In this paper we calculate the temperature varia-
tion of the spontaneous magnetization M. A comparison of the obtained results with the
observed properties of Fe, Co, Ni and with the previously published results is made in
Section 3. A short discussion is given in Section 4.

2. The formulation of the problem and approximations

The MZM Hamiltonian extended for the fifth-fold degenerated 3d band is given by

Ho= Y Cugaluei—20 Y, S+ U Y nym, ,—p Y Mg
Kiaih a i )
—gigH Z S;—gitsH .Zl ONig, 2 @

where standard notation is used. For details about the notation see e.g. [3].

The thermodynamic properties of the model Hamiltonian can be calculated using
Green functions (GF) technique [3]. Recently Kozarzewski [5] studied the properties
of the MZM with the help of the GF method and he obtained from (1) an effective Hamil-
tonian of localized spins (see [5] for details). The generalizations of his results for the
fifth-fold degenerated d band can be written as follows

H = W+,

where #; and # are the effective Hamiltonians for the itinerant and localized 3d electrons
respectively. The operators #; and ) are of the form

Hy =Y Erolge,s
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N, (&) is the density of the band states. The last part of the molecular field A corresponds
to the higher order with respect to J/U in the contribution to the real part of the self-energy
operator for the Green function ¢S; [S7 ) [3]. A similar form for the real part of the self-
-energy was used in [7]. The simplified effective Hamiltonian (2) will be used to obtain
the temperature dependence of the spontaneous magnetization of pure transition metals.



531

3. Results and numerical calculations
The magnetic moment per atom is defined as follows
M = giup{S; )+ g;upl0oi )5, 3)

where g; and g, are the gyromagnetic factors for localized spins and itinerant electrons
respectively. The factor 5 is due to the orbital degeneracy of the 3d band. The mean values
STy, o7y = {my,; —m;,, ;> have to be calculated from a set of two self-cosistent equations

<Siz> = SBS(Sheff/kBT) (4)

1
/ Rigz) = N Zfo(gka,l) Q)]
n = 2 {Nig 20 (6)

L

The chemical potential can be determined with the use of Eq. (6). In equations (4), (5), (6)
the standard notation (see [3]) is used. For simplicity of numerical calculations we de-
scribe the band states by the density of states in the form

lg| > W

0
N(e) = 2\/ 2 7)

o2 g <

- (7)

It is seen from Egs. (2) to (6) that the model described above has three undefined param-
eters U, J, S which can be varied. Due to the fact that the comparison of the results
with the experimental data for Fe, Co, Ni will be made, we have to determine these param-
eters from the conditions imposed upon spontaneous magnetization M at T = 0, Curie
temperature T, and the whole number of itinerant 3d electrons 7.

TABLE I
—— = — — — R
Units , Fe Co Ni
M(T = 0) uB 2.22 1.6 0.55
Te K 1040 1390 630
n — 7.2 8.4 9.45
w eV 3.22 2.64 [ 2.25
S - 3/2 1/2 1/2
Hi — 4.2 | 7.4 8.45
U | eV 3.87 3.34 3.89
J Y% | —0.066 | 0.168 —0.121

vs_/here: T. — Curie temperature, # — number of d electrons per atom, W — half width of the 4 band,
8 — size of the localized spin, 7; — number of the itinerant J electrons per atom, U, J — relevant coupling
constants.
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Tc Fig. 3

Figs 1, 2, 3. The spontancous magnerization vs. temperature for ferromagnetic 34 metals Fe, Co, Ni res-
pectively, a — calculated, b — experimental results taken from [10] for Fe, [8] for Co and [9] for Ni

The quantities M(T = 0), T,, n, W, g;, g, are well known for Fe, Co, Ni and for our
calculations suitable values are taken from [4, 6]. The explicit form of the above mentioned
three conditions used in the determination of U, J, S is simple (for the density of states (7))
and will not be presented. Using the values 1/2, 1, 3/2 for S one can easily see that only
for some values of S the solutions of these equations are reasonable. The calculated coupling
constants are collected in Table I. Numerical calculation of the magnetization M for Fe,
Co, Ni, with U, J, S taken from Table I, is presented in Figs. 1, 2, 3. For comparison
the experimental data are also depicted.

4. Discussion

We conclude that the model discussed here gives a reasonable description for iron,
cobalt and nickel. This model may be treated as a sequel to paper [4] for understanding
of MZM model for the 3d transition metals. The obtained results are unfortunately more
qualitative than quantitative. The great difference between experimental results and the
calculations given here appears for the magnetization for iron. In all cases the decrease
of magnetization M(T) in the range of T (0, 1/2T,) is too small. This fact is well known
and is caused by the kind of molecular field approximation scheme used in calculations.
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There are also some ambiguities concerning the number of itinerant 3d electrons and the
role of 4s electrons in determining of the details of the magnetization curve. One can obtain
a satisfactory fit for M(T = 0), T,, p. above T, and exchange splitting in Fe and Ni by
assuming the number of the itinerant 3d electrons to be less than one per atom. In Fe for
example we have assumed S = 1 and a free clectron like density of states. Then the experi-
mental values of M(T = 0), T, and p are obtained if J = 0.27 ¢V and depending on
the number of itinerant electrons per atom in the range 0.2 to 0.25, if U changes from
1.3 to 7.5 eV, the effective mass of an electron — from 4.8 to 1.6 and exchange splitting
at T = 0 varies from 0.8 to 2.0 ¢V. This is in striking agreement with what was suggested
by Stearns [11]. However, for these parameters the spontaneous magnetization is sub-
stantially lower in the middie of the (0, 7,) range than the observed one. The proposed
model and approximation used are probably too simple for quantitative results and a more
sophisticated theory is needed. The correct theory must consider some aspects of localized
moments which appear due to the correlation effects [4].
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