Vol. A58 (1980) ACTA PHYSICA POLONICA No i

THE RELATIONSHIP BETWEEN THE DIELECTRIC
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Using Frohlich’s model of dielectric and Mori formalism the relationship between
the dielectric relaxation time and single particle correlation time for molecules with a Sym-
metry of Cy, or higher was established. The main assumptions in this paper differ substan-
tially from those used in Kivelson and Madden’s theory, The relationship depends on long-
-range electric interactions which are introduced via local field and short-range interactions.
These are represented by Kirkwood’s coefficient. Moreover, in spite of sjmrr{etry this
depends on the dynamic correlation coefficient which appears in' Kivelson and Madden’s
relation, but in a slightly different . way,

1. Introduction

Dielectric relaxation measurements are still'a valuable source of information on the
‘molecular reorientation in a liquid. This is especially clear since a number of difficulties
with infrared absorption, Raman and Rayleigh scattering of light are revealed. The main
disadvantage of dielectric relaxation is the relation between single particle correlation timeé
(SPCT) and macroscopic correlation time (MCT) which is measured.

The most advanced theories of the dielectric - relaxation phenomenon based on linear
response formalism (1, 2] automatically involve the multiparticle microscopic correlation
time (MMCT). MMCT bridges MCT and SPCT. Before the papers of Kivelson et al.
[3, 4] the influence of short range dipole-dipole correlations concerning the relation between
MCT and SPCT were neglected and the role of local fields was intensively investigated
~([1-11] in [4]). In Kivelson and Madden [4] the Mori formalism [5] was successfully used
to overcome the probiems mentioned above. In addition, therg is the claim that the problem
of the tocal field, using the Mazur and Mandel’s macroscopic treatment of dielectrics [6],
is avoided. This seems hardiy possible because even in the static case an effective expression
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for electric polarisation requires a model for the local field [7]. Here MCT is related to
MMCT wusing Frohlich’s model of dielectrics [8], whereas, MMCT is related to the SPCT
due to application of Mori formalism with a choice of dynamical variables proposed by
Gierke [9]. For molecules with a C,, or higher symmetry it gives a workable relation
between MCT and SPCT which is slightly different than previously proposed [4].

2. The relationship between MCT and MMCT

This section is to establish the relation between MCT usually called the dielectric
relaxation time and the MMCT of dipole moments. For this purpose we found it useful
to apply Frohlich’s model of liquid dielectrics [8] first used to describe static dielectric
proper. ies. Therefore, a semi-macroscopical sphere filled with a continuous “dielectric”
substance having the susceptibility x(c0), and immersed in a real dielectric having the
susceptibility y(e), is taken into consideration. Inside the sphere discussed we assume to
have N identical “permanent” dipoles with co-ordinates s where n and o denote the
molecule and co-ordinates. Obviously these “permanent” dipole moments differ from the
gaseous dipole moments because of intermolecular. interactions. When inside the sphere
there is an average time-dependent electric field, F(¢), with co-ordinates F(t), then the
dipole moments interaction with such a field takes the form of:

N
Hw(t) = — Z,l#L'Fa(t) = —M - F(o). (2.1)

We assume that F(¢) is parallel to an external ficld characterised by the strength E(¢) and
the unit vector, e. The electric polarisation for the model described above is given by:

P() = Pu) 5 M- €3 22)

where P _(t) denotes the polarisation due to susceptibility x(o0), ¥ is the volume of the
sphere and the angular brackets with an index “ne” denote the non-equilibrium averaging.
The final results of such averaging depend on the shape of the total Hamiltonian. For our
purposes it is enough to assume that the total Hamiltonian consists of two terms. That
is, one term which is independent on F(¢) and the other which is given by (2.1). According
to [2, 3] and using the linear respons theory [5] we find that:

MZ
P(t) = y(o0)F() - M

sveT (OM* F) (1), (2.3)

where the microscopic multiparticle correlation function (MMCEF)

M(1) - M(0))

for t >0
(M 1

Gu() = 24)

0 for 1 < 0,
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* denotes a convolution and all averages marked by angular bracket; are taken for an
equilibrium state. _

Generally, a frequency dependent electric svsceptibility can be defined using the Fourier
transformations, %, of P(¢) and E(¢) as follows:

_ 07[P](w)
x(w) = oFE] (@) (2.5)
This definition when applied to (2.3) leads to:
ww@)  x(o)
(o) 5(00) : :
F| Gu , 2.6
R R G (2:6)
¢0) (o)
where
_ 07 ()
f(w)— 697[E](_w) 2.7

This characterises the dispersion of field F(¢). If F(¢) depends linearly on E(r) then,
R =FE0Ew @)

and the inverse Fourier transformation, #~1[¢{](1), characterizes the memory function
for a field of £{(z). If this field did not have a memory, the function, é(w), would be indepen-
dent of the frequency and therefore Gy (t) would be identical with the macroscopic relaxa-
tion function, MRF. It was shown [10] however that for an electromagnetlc wave having
a frequency of
Hw) = o) 29
2e(w)+&(o0)

This is a generalisation of the formula for the static case. This shows the difference between
MMCF Gy(#) and MRF Gp(2).

Now the relationship between MMCT 1, which corresponds to MMCF and the
dielectric relaxation time, (DRT) 1y, which corresponds to MRF will be established. The
partial integration of RHS of (2.6) leads to:

n{o) = 1—io }0 e Gy(t)dt. (2.10)
0

Using this formula we obtain the following for MMCT 1y

@

1—ndw
Ty = I Goy(D)dt = Tim 1)
w->0 1@

(2.11)

0
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This is almost identical with the expression introduced by Nee and Zwanzig [11] for 75’

The only difference will be the change if 5w) is replaced by:

B _ @)=~ x(0)
2(0) — x(0)

Therefore, the mentioned above relationship has the form:

e {hm EL(“’)} o (2.13)
w-0 1—n(w)

x(@)

(2.12)

which for n/w) given by (2.9) is reduced to:

&(e0)

+
2630
T = — 81( )TD = fLe(0), &(00)]p. (2.14)

1+

2¢(0)

This relationship differs greatly from the most frequently used expression proposed by
Powles [12] as well as from the others [13, 14]. The derivation of (2.14) has great advantages
over derivation of the other, mentioned above, relationships between 7y and p. These
advantages are simplicity and clearness. In addition if the Lorentz type of local field applies
to (2.13) the results obtained by Cole [2] are recovered.

It is worthwhile to find a value for the ratio of Ty/7p in (2.14) when typical values of
8(0) and &(c0) are taken into consideration. Assuming that &(0) = 5 and g(00) = 2.25 we
find that this ratio is 0.95. This suggests that 7y differs only by ‘a few per cent from 1p.
This agrees. with the suggéestions of Hill [15] that tp = Ty

3. Relation between MMCT and SMCT

In this section relationship between 7y and SMCT is discussed. Our discussion is
limited, however, to the molecules with a symmetry not lower than C,,. Following Kivelson
and Madden [4] we use the Mori formalism [5] to achieve the above relationship. On the
other hand, our ch()‘ice"of the dynamical variables is based on Gierke’s paper [9].

Let us remember the basic.equations which are important in this case. Since we have
chosen the set of primary dynamical variables, {f§™}, denoted by indices, 7, and the proper
scalar product is known, then we can construct the square matrix of the normalised correla-
tion functions, R,(¢), that contain the eclements:

PO
(f(0), 117(0))

Under the assumption that the primary variables, {f (™1, are slowly variable compared
with the secondary variables, {f$}, obtained by the projection technique [5] the matrix,

(3.1)
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R,(2), satisfies equation [16, 17]:

delt(t) = R(¥) {iy— f@(t')dt}, (3.2)
0
where the square matrices, iy, and 6(f), are defined by their elements as:
(J £2(0). £(0)) GRONERO)!
; - d 0,0 =" — 3.3).
e = (i), gy 4 O = (im0, 1000y G

It is known that such molecular properties as the dipole moment and polarisability can
be expressed in a molecular frame using spherical tensors. The co-ordinates of the spherical
tensor of the rank, /, are simply the spherical harmonics, ¥ L(Q)(m = —1, ..., D), and the
sphetical angles, @ = (g, 9), depend on the particular tensorial property of the molecule.
Under rotation the spherical tensors are transformed using irreducible representations
of the rotational group, 03. As the results in laboratory frame molecular properties of
interest are expressed by the spherical harmonics, YLI2()]. However, now the spherical
angles, Q(t), depend on the orientation of a given molecule. Therefore, Q(¢) changes with
time. Such arguments suggest the followmg primary dynamical variables:

70 = 3 V0] = Y, Od8,0) o, 0 E)

where summation occurs over all the molecules.

It was shown [8] that the time development of ¥ (f) can be expressed by co-ordinates
of angular velocity w,(¢) (« = x, y, z) taken in the molecular frame at ¢ = 0 usingan equation
containing the infinitesimal operators, I, of certain irreducible representation of OF

dYi(h)
dt

= @,(8) [T Yal()- (3.5

Consequently this type of equation describes the time development of molecular tensors

Y, (¢) in every possible nonrotating frame. Especially it is valid for a laboratory frame.

Using the projection procedure to obtain variables of rank s [5] we find that in the
case of thermodynamical equilibrium

s—1

P J(). (3.6).

o) =

Since'these variables are transformed from one (1_) to the other laboratory frame (2)
according to an irreducible representation of 07 (g e 07), then their correlation functions
hold the following relation

(f0, £ON2y = (D@t [P Trn S0, £ U0 &L
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where the star denotes a hermitian conjugate. On the other hand for an isotropic liquid
‘such correlation functions should not depend on a choice of laboratory frame. If so, the
relation (3.6) gives

‘(fim)(t),f('f)(())) ~ 5mn' (38)
Applying (3.6) and (3.5) we have
) = Y ol ] Y A2D)- (3.9
k=1

It shows that the matrix, y, in equation (3.2) is'a zero matrix. This is because the scalar
product in the numerator of (iy), (3.3) contains w,(¢) linearly. Moreover, due to relation
(3.8) the matrices R,(¢) and 6(z) in equation (3.2) are diagonal and the multiparticle
microscopic correlation function, R}°, connected with molecular dipole moments fulfils
the following equation

o0

00
Cot O °F { Jeoo(t’)‘dt'} RY(1) = —-1-1“ RY°(1). (3.10)
1

dt M

The numerator and denominator of (3.3) contain one-particle and two-particle
correlation functions taken in a laboratory frame. Therefore, we cannot apply arguments
on molecular symmetry unless mentioned above correlation functions are replaced by correla-
tion functions taken in molecular frame of molecule which is involved in a given correlation
function. Such replacement is omitted in Gierke’s paper [9] and in result some dynamical
correlation factors do not appear.

Using transformational properties, statistical equivalency of molecules as well as
molecular pairs and taking into account isotropy of liquid, we find

0 _ Il 11 . (wgl)(t)Yj(l,t)‘,'wgl)(O)Y:,(l,O))
g S ”]"'"'{ (YX(1,0), Y1(1,0)+(N—1) (Y (2, 0), Y2(1,0)

(@Y 5(2, 1), 0§ (0)Y (1, 0) }

V=D 140y, YA, 0+ (V= 1) (FA2, 0), YA(1, 0))

3.11)
where w, and Yy are additionally labelled with molecular numbers 1 or 2. Assuming that
Y! is a slow variable in comparison with w, and that molecular dipole moment is situated
along molecular z-axis (Y,(1,0) = d,,), we obtain

. = K - K | @20, 0P}, (3.12)
0

where 5 is the SPCT of the dipole moment related to an angular velocity correlation
time by Hubbard’s relation, | denotes the angular velocity coordinate which is perpendic-
ular to z-axis of molecule (1) and

K=1+WN-1)(32,0),1) (3.13)

represents Kirkwood’s coefficient.
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The result (3.12) differs only slightly (due to preintegral coefficient in the second term)
from Kivelson and Madden’s result [4]. This is because in their choice of dynamical va-
riables nonabelian character of OF has not been taken into account. This is not very im-
portant because usually X > K—1 and we expect that the integral in the second term is
much smaller than (z8)~!. If so, this term may be neglected.

4. Kirkwood’s coefficient

In this section Kirkwood’s coefficient, K, for the model of the dielectric introduced
in Section 2 is discussed. Assuming an- ellipsoidal shape of the molecule the Kirkwood
coefficient has the form [19]:

N VkT (e(O)——s(oo)) (28(0)+8(OO))
N2 [1+D(a(c0)— DT%e(0)

- 4.1)

where D denoted the depolarisation coetficient along the principal axis of ellipsoid which
is parallel to the dipole moment. The molecule has at least the symmetry of C,,, and y,
represents the length of the gaseous dipole moment.

Two of these assumptions which restrict Kirkwood’s coefficient (4.1), need special
clarification. These are:

(1) a molecular dipole is placed exactly in the centre of mentioned above ellipsoid,
(2) an effective dipole mcement, u, introduced in Section 2 depends only on instant polarisa-
tion- which is characterised by &(e0).
A localization of the dipole moment within the molecule is usually uncertain. However,
‘when we have an electrically neutral molecule its dipole moment is translationally inva-
riant. Therefore, it is always possible to put such a moment in the centre of a chosen
ellipsoid simultancously changing the higher electric moments. Dielectric relaxation does
not depend directly on higher moments because the electromagnetic wave length is many
orders higher than the linear dimension of the molecule. Obviously an indirect influence
via the reaction field is possible if the total polarizability of the molecule is treated as
a point property and usually placed in the centre of the ellipsoid is moved from the centre.
Such an effect might play an important role if only the replacement of total polarizability
would be significant compared to the size ot the ellipsoid [20]. There is no physical Justifica-
tion for such a significant replacement so that (4.1) holds possibly even for dipole mo-
ments out of the centre of the ellipsoid.

With the second restriction we must remember that the dipole of interest rotates fast
enough to cause a significant delay in the response of the other: dipole moments [10]. This
response is mainly due to short range interactions.

Taking the above intc account we may expect that the final relation

v = f[e(0), e(c0)]K 1y 4.2)

represents a very reasonable approximation. The coefficient, £, is defined by (2.14).
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5. Conclusions

1) Relation (4.2) between the SPCT (7) and MCT (z) depends on:

(a) long-range electrical interactions characterised by the coefficient fe(0), e(c0)] which
was introduced because of the local field

(b) short-range interactions which are in Kirkwood’s coefficient K.

2) Long-range electrical interactions via local field are almost negligible (Section 2).

3) The non-spherical shape of the molecule must be taken into consideration it formula
(4.1) for K'is used.

4) Relation (4.2) is valid if the second term in (3.12) can be neglected.
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