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The self-consistently renormalized spin wave theory for cubic Heisenberg ferromagnet
is extended by turning to account a selected series of dynamical diagrams containing energy
denominators. The term representing a sum of this series can be obtained only with the pro~
viso that the wave vectors are small. On doing it, this sum is subsequently assumed to be
valid for all spin wave vectors and thus it enables computation of the transition temperature
which provesto be by 3.5 per cent larger than the one derived with the aid of the high temper-
ature series expansion method. As to the magnetization series, it is found to exhibit a temper-
ature dependence similar to that due to molecular field theory and the like. On keeping
in view, however, that in the vicinity to the Curie temperature the free energy of a ferro-
magnet is for the most part contributed to by the magnons endowed with large momenta
and with large average population numbers, the magnetization critical exponent is shown
to be preferably 1/3 than 1/2.

PACS numbers: 75.30.Ds, 75.40.Fa

1. Introduction

Throughout this paper, we shall investigate the problem of applicability of the self-
-consistently renormalized spin wave theory (SCR) for cubic Heisenberg ferromagnet
close to the critical point. Such analysis for the classical limit S — oo, with S being the
resultant atomic spin quantum number, was given by Loly [1]. Jezewski [2] achieved a more
comprehensive examination of that problem. Both papers have made use of usual Bloch
theory [3].

Here, we shall aim at extending the SCR by inserting therein a series of ladder diagrams
being composed of energy denominators [4]. Since carrying out the exact summation of
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this series is clearly unfeasible, we shall do it by allowing for small spin wave vectors,
because in this case the summation procedure is performable. The sum obtained will be
assumed to hold for all wave vectors. In that way, we will be able to establish the expression
for the free energy of a ferromagnet and therefrom compute the transition temperature
proving by 10 per cent smaller and the magnetization in the critical point twice as much
as in the usual Bloch theory. Moreover, the magnetization critical exponent derived along
these lines turns out to be equal to 1/2.

On the other hand, owing to the thermal excitation close to the Curie temperature
the spin waves with very large momenta and very large mean population numbers become
predominant. Therefore, as it will be shown in Section 5 all integrations can be confined
to a small interval from zero to a wave vector A and these integrations entail reducing the
critical magnetization exponent from 1/2 to 1/3. To a certain degree, this argumentation
is connected with Kadanoff’s considerations concerning the Renormalization Group and
the Scaling Theory [5] (see also [6] and [7)).

An interesting theory using 7-matrix method and touching on the subject of thermo-
dynamics of Heisenberg ferromagnet within the entire range of temperatures from absolute
zero to the Curie temperature was formulated in papers [8], [9] and [10].

2. The Hamiltonian and the partition function of cubic Heisenberg ferromagnet

Here, we adopt Dyson’s [11] scheme of spin wave theory. As for the Hamiltonian, we
confine ourselves to Heisenberg exchange- and Zeeman spin operator terms which have
to describe the cubic isotropic ferromagnet. We obtain

H = E,+H,+H, 2.1
Ey = —LSN—1X JNS%p,, 2.2)
Hy = Z(L"‘Sz)ajab (2.3)
A
&, = JS(yo—74)s (2.4)
Vi = D, €Xpid- 4, (2.5)
]
HI . _i JNT? Z Fg.aaf+za;k—z%am (26)
Ago
I} =9+ Yisr0me—Vrso—Vi-o Q.7

where L stands for the magnetic field strength multiplied by Bohr magneton and Landé’s
isotropic factor, S is the quantum number of resultant atom spin, N determines the number
of lattice sites in the crystal under consideration, J denotes the exchange integral between
nearest neighbours, ¢, is the energy of independent spin waves, 4, ¢, ¢ are reciprocal
lattice vectors, & point from one lattice site to all its nearest neighbours and aj, a; re-
present the creation and annihilation Bose-operators of ideal spin waves, respectively.
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On neglecting kinematic interaction of spin waves, we get for the partition function
(see [12], [13], [14])

—BHo &
Z = Tr (") = ¢~ #Bo Ty (p=pitoy 11 (€ TTS(H)

Tr o~ PHo
= exp [fEo+ ), In(1+i)+ Y D,], B = 1/kT, (2.8)
A p=1
where
i, = [exp f(L+e)—1]"1 (2.9)
is the average population number of independent spin waves, and
8
S(B) = fMoe™MHo*HD _ Peyp § deH ()], (2.10)
o]
Hy(z) = eHol e "Ho (2.11)

with T being Wick’s ordering symbol [15].
The quantities

(_

D =S5
' p

B B B
b f dt, f dt, ... f duv (T[H{(z)H(z,) ... Hi(t,) Do
0 0 0

p=123, ., (2.12)

where the letter ¢ denotes that exclusively connected graphs i.e. those not divisible into
several independent parts are allowed for, and

(2.13)

may be called dynamical graphs (diagrams). They are owing to the energy operators H 1
responsible for dynamic interaction of spin waves. The graphs D, can be figured out with
the aid of the quantum field theory method developed by Maisubara [12] and by having
recourse to Thouless [13] and Wick [15] theorems. Along these lines, the average value
of Tiproduct of operators is equal to the sum of products of all possible contractions (or
Propagation functions) of pairs of them. The contractions (propagators) have the form:

ay(t,)a,(t,) = 59,,e<“fe><“‘f2>[01,2ﬁe+02,1(ﬁ9+1)], (2.14)
at)al(t,) = 5we"(’“+se)(n—’2)[01’2(ﬁg+1)+02,1ﬁg], (2.15)
a(t1)'az(z2) = at)a,1,) = 0, (2.16)

ay (1) a,(t) = 8, i, (2.17)

a(t)ai(ty = 0g,0(11,+1), (2.18)
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1, =1,

0, = 0(t;—7) = { S (2.19)
1, e=ug,
59,0’ - {0, 0 :;é o. (220)

The dots in above relations mark which pair of operators has to be contracted. The prop-
agators (2.14) and (2.15) can be graphically represented in the form of a finite line with
the arrow showing the propagation direction of a spin wave (magnon). In the case of
(2.14) the magnon endowed with the wave vector ¢ is created in the point 7, and propagates
towards the point 7, wherein it annihilates. As to the equation (2.15), the magnon moves
in the opposite direction i.e. from 7, to 7;. The contractions (2.17), (2.18) are picture das
rings and they contribute to the self-energy of a system of spin waves.

3. The dynamic diagrams comprising energy denominators

On availing ourselves of Egs (2.6), (2.12), (2.14) and (2.15), we obtain

B B

11 _ : " ' ; . % "

D, = 42 JINT? Fﬁ,afu,v_[dfl jdfz[a:+z(71) a:—1(71) a,(t1)"a{zy)
0 0

Ago
Kuv

x af, (1) (1) a,(ts) ay(ty) +ag s (T ag- ()"
X a(11) "4y (71) A (12) ap-(T2) a0, (12) "0 (T2)
+a;k+/1('51)"12‘—1(71)"%(11)""10("71)

X a,(12) a,(13) +ag s i (v1) ap- a(t1) a(71) e (1)

a-fT2)”

o 1, . z .
X afﬂ(l’z) af—x(fz) au(Tz) a ()] = %p J’N~? Tﬁ,al B

Ago
Ky

g8
x | dty | drdal (v ap_ () ae) " a (1) "l (ra) ™
o 0 '

X a;k—k(TZ)man(TZ)“av(Tl). = %‘ ﬁJZN.—Z z Fg,o'ri:+l,a—l

Aga
X (80+1+89—l_89_80)_1[(ﬁa+l+,1) (ﬁg—l_’_1)ﬁgﬁo’_ﬁa+lﬁg—l(ﬁg+ 1) (ﬁa'+ 1)]
Z { Ml 0
. %ﬁJZN_Z .0t ot+ie—4 ﬁgﬁa

sd+l+sg—l,_sg_£a'
Aga

Fl—drl—a'
- .G loto—2 —A=F
+3 BI°N? E S e T 3.H
eyt 8i-g-c—8 &
Ago
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In the above expressions four diagram parts were reduced to one term, as they all are

topologically equivalent.
In arbitrary order, the needful graph assumes the form (see [4]):

r, Tp

Fig. 1. The (p+1)-th order ladder diagram containing energy denominators

In approximation of bilinear product of average population numbers there is

1
. —1\p+1 A1 = A1+ Ao
Dp+1 - 2p+1 (JN ) Fg,qrg—ll,a-i-ll
21542, vy Ap oo
~Aa+2As —Ap—1+4i - A -1 -1
qu—lz,o-+lz I’Q—).p_l,a-liy—i»p._l g—ip,a+lp(6cr+ll+89—21_89_80) (sa+}.2+sg—lz_ag—sa)

i, p=1,23,... (32

-1
X ... (8a+lp_1+89—lp_1_89_—80) (8a+lp+gg—lp_£g—8a)
In similar approximation D, becomes
. Z R O
D, ~ L pJ*N"2 AL il (3.3)
80+Z+8g—}._8e'—86
Ags
For small ¢ and o

Toalovae-a 220 7=22) A=74/70) (L=Y/70) .

?g+’yg——)"o'+l_’h1—}. 'Vg+ya"))a+l'—yg-—}.
2x,—x,—x,) (1— 1—x,
LX) U=x) (=) (3.4)
2(1—x,)
with
X3 = /7o (3.5)
Thus,
1 _ X2, —x,—x,) (1—x,) (1—x,)
Dz—JN2§ A e o ¢ iRy 6
2 8Sﬁ Yo 1—x, Aoy (3.6)
Ago
Recurring to [4], {111 and [16], we have
r
D, = 5EDZ, (3.7

p,=Lp FZD (3.8
* T8 T \as) 7 ®)
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and so forth. Finally, we get

ry? D,
D. = e D, = .
z . 2 ,(25) 7 1-rps’ 3:9)
p=2 p=2

where for the simple cubic lattice

cos x{1—cos y)
dxdydz —~ 0.2110. 3.
(Zn) JJJ Ry S —1/3(cos x+c0s y+cos z) ( 19)

4. The free energy of cubic Heisenberg ferromagnet

Taking into account that

SN0 M L N z ,12
N E el g & (1—x,)—2N
+N” E (l—x)" ' = —1+N7! E (1-x,)"' =N~ E =0 (4.1)
y

we bring the free energy of cubic Heisenberg ferromagnet into the form

1 1 o
F = Eq+ L+g)i,— ——5— N~' &7l i, — ——5— - N7t
° E R TR z  FEtee T 4 ysTy, 25T

i ao

Xy (1—x9+1—xa)egsaﬁeﬁ‘,+ﬁ_1 YA, Infa,+(,+1)1n (i, + 11, (4.2)
o0 A

where the first, second, third and fifth terms are due to Bloch’s theory [3] and the fourth
term is the sum (3.9) of ladder diagrams which, as it was hinted at in Introduction, will
be assumed henceforth valid for all wave vectors. We treat 71, as variational parameters
i.e. we put

oF
oo, (4.3)
on,
and obtain
Laed1- L(14 222 (—x)A (1—x)%,!
& _ - X, n PSR aE— X n
* S 2285— ¢ S(2S r o e
=g tm (4.4)

n,,



515

By introducing notations

Y = Nty (1~x,)i,, (4.5)
A
V =N"1Y (1-x,)%, (4.6)
A

the renormalized average spin wave population number becomes

1

i, = B — — 4.7
" A AR R } . *.7)
P fyLtes 225-r) S 25-r s |f
The spontaneous magnetization is given by
(T) o fed (4.8)
=" ws\er),_ :

hence

i
WT) = 1- — z iz 49)

A
The quantity V gives rise to a small decrease of the transition temperature and an increase
in the magnetization at the critical point. To facilitate subsequent calculations, we put
V=0, (4.10)
and finally have

1
iy = — S RS .. (4.11)

Bllte,|1— (14212 YL,
- o 235-1)8

Thus, the renormalization factor

of2
Y, = [14— S (l—xl)} Y 4.12)

depends on the wave vector 4 and correctly describes at least the long-wave-length spin
waves. Since we supposed the factor ¥ to hold for all wave vectors, we should determine
the critical point by the condition

ors (4.13)
[ = 00, .
671)T=Tm

with T, being the transition temperature. The relation (4.13) is necessitated by infinite
gradient of a magnetization curve at the critical point i.e. by

[(7“ (T)} - —o, (4.14)
T=Tm

orT
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where T, is related to x,, by the equation
X, = lim x = lim BJyy = Butyo = JYo/kT, “4.15
T->Th T->Tm

The values of x,, and T, are listed in Table I.

_ TABLE I
Simple cubic lattice, yo = 6

S 1/2 1

Xm 6.933 | 2.293
6.144 131 | 2.128 [3]
7.140+0.036 [17]

Y 0.116 ' 0.302
0.164 131 0.368 [3]

(T 0.430 0.534
0.220 13] 0.265 31

The data in Table I are obtained by the computer “Odra 1204”. Making use of (4.15),
we get the ratio of Rushbrooke et al. [17] to our transition temperatures

T
Xro_ S 1035

.

Xs Ty

Let us now concentrate our attention on the problem of applicability of SCR to cubic
Heisenberg ferromagnet in the critical region. In actual fact, SCR fails to give reliable
information thereof, except of the Curie temperature. In particular, the spontaneous
magnetization derived by SCR does not vanish in the critical point and its temperature
dependence proves incorrect. Indeed, putting

t =1—T|T,, (4.16)

it can be shown after little algebra that the renormalization function Y, Eq. (4.5), is (see
also [2])

Y = Y(T) = Y(1) = Yy—aot"2(1+ast"2 +at+..), (4.17)
where
. -1 1—x).
Y, = TILHTI Y =N A= 5) = Bu(1=520F _q 2 (4.18)
" A
A, = x,(S—Y,), (4.19)
B, = Xpc¥ (4.20)
2
ey (4.21)

Tas-r’
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where for the simple cubic lattice ¢ = 0.5164 and
SNTE Y (1=x)[A( 4 D]g =1, — Y%, \ 12
A

Ao = | —r = T T 4.22)
PN E = e(l=x)* T (1= x,) [y + 1) @y + Do,
2
Since the spontaneous magnetization reveals the identical type of the temperature
dependence, the self-consistently renormalized spin wave theory yields incorrect critical
magnetization exponent inasmuch as it has rather to be 1/3 than 1 /2.

5. The asymptotic form of SCR in the critical region

The SCR proved to be inadequate to describing Heisenberg ferromagnet at tempera-
tures close to the critical point and we should then modify it. As mentioned in the Intro-
duction, in the vicinity to the transition temperature only small spin wave vectors play
important role. Tndeed, at low temperature small spin deviation propagating through
a crystal lattice induce in the reciprocal lattice long-wave-length spin waves. Due to ther-
mal excitation close to the critical point spin deviations become large and thus spin waves
having large momenta get predominant. We can show it as follows. Let us take into con-
sideration that according to (2.4), (2.5) the spin wave energy for the simple cubic lattice
assumes the form

&3 = 6JS[1—F (cos A, +cos A,+cos A3)], O0<A <2, i= 1,2, 3, (5.1)
where (for 2 = 1) 4, are the spin waves momenta. By (2.9) (L = 0)
iy = (exp fe;,—1) 7", (5.2)

and for A; approaching 2, 7i; tends to infinity. Therefore, all integrations in SCR over
population numbers have to be reduced to the interval (2z—J, 2n) for every component
of the wave vector. But owing to the spin wave energy periodicity with the periods 27
the integration limits must be confined to {0, 4>, where 4 is the largest spin wave vector.
Now, it can be easily verified that the renormalization factor ¥ should take the form

Y = ¢’ —d'234+0(1%), (5.3)
where ¢’ and d’ are positive constants, and

A~1t%  a>0. (5.4)

Y=N"! B L, R Y (1-
- eA(l—xQ)—B(l—xQ)Z__l - xe)
e<4

Indeed,



518

]A(l x) | 1=~ (1=x) =
. N1t + L JREn 5.5
== R ST (5.5)
<4 .
wherein
= x(S-Y). (5.6)
B = xcY. &)

After little computation work we get approximative solution

"3

A s
Y~ S— — +01°). (5.8)
xS

322 dA 3ak (301
“ 5.9
xST,, dt Jyob T=Tp

3a—1<0 (5.10)

In virtue of (4.13) and (5.6)

ay 1 fay
AT )r—r,,  Tu\dl )7z,

i.c.

and
a< 1/3. (5.11)

The critical exponent equal to 1/3 is more consistent with experimental data than the 1/2
one (e.g. see [6]).
As to the spontaneous magnetization, it can be computed as follows:

1 1 T 1
wI) =1- 5= AU —BA-x)2_y =5y 1—x,

e o< A

1—t
= [ = -
S LI
__1 .N“lz_- z—-{- (5.12)
Xm(S—Y) i (S Y)

ei

In an exact theory the first two terms in the last line of (5.10) should cancel out, whence

w(T) = E(s }) Z—~ Si ~ t'3, (5.13)
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instead of
Wiy ~ 1112 (5.149)

resulting from (4.17).

Obviously, a correct theory ought to express the Kadanoff model in terms of graphs
suppressing diagrams due to short-range spin interactions, but setting up such theory is
extremely difficult problem.

6. Conclusions

In this paper, we extended the SCR theory by adding to it a series of ladder diagrams
involving in energy denominators. This series enabled to improve the transition tempera-
ture although it entailed increasing the spontaneous magnetization close to and at the
critical point.

On the other hand, we inquired into the question of the applicability of SCR in the
critical region. The Bloch theory [3] in its usual form does not serve this purpose. Therefore,
we employed Kadanoff’s model [5] discriminating in favour of long range interactions
between localized spins at temperatures close to the transition point and thus permitting
only long spin waves. As a result of this restriction, the spontaneous magnetization turned
out to be proportional to (1—7)T,,)'? instead of (1 — TT,)*/2 according to Bloch theory [3].
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