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It is shown that Natanson’s principle in its generalized form is a most general prin-
ciple of dissipative phenomena containing as a special case the well known linear theory of
irreversible thermodynamics and potentially comprising possible non-linear theories as well.
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Eighty years ago (1896) W. Natanson published a paper “On the Laws of Irreversible
Processes” [1]. He proposed for these processes a new variational principle as a generali-
zation of the well known Hamiltonian principle. He called it the ‘“Thermokinetic Principle”
and expressed it in the following form :

t1
[ (3T —ou + ¥, Pog,+6Q) = 0. (1)
to i

Natanson’s assumptions were the following.
The state of the system is determined by independent variables ¢; and their time deriv-

d . . .
atives §; = o g;- The variables g; are quite general; for instance, one of them can be

the temperature. Thus g;s can be generalized mechanical coordinaies of the system as
well as thermodynamic parameters, describing the internal state.

g is postulated to be a function of ¢;’s and a homogeneous function of the second
order of s;’s. Hence we can assume J to be composed additively of the kinetic energy of
the system as a whole, J , and of 0, a function of the thermodynamic parameters and
a homogencous function of the second order of their time derivatives.

% is postulated to be a function of ¢;’s only. Hence we can assume it to be composed
additively of the potential energy of the system as a whole, %,,, and of its internal energy, U.

Y P,6g; means a variation of the reversible work, where P; is the “gencralized force”

i

acting on the “displacement” dg;.
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The term dQ denotes a variation of the energy exchanged as heat irreversibly with
the surrounding. Thus from the second law of thermodynamics we have

80 = 60°—6Q/, )

where 6Q° is the variation of the reversible heat and Q' of the “uncompensated heat”
of Clausius.

Natanson has shown that from his principle follow: the principle of energy conserva-
tion, the reversible dynamics, the concept of free energy, the reversible thermodynamics,
the irreversible dynamics, the irreversible hydrodynamics, the diffusion, the heat conducti-
vity, the irreversible electromagnetic phenomena and the dissipation of electromagnetic
energy.

However the idea of Natanson has not been taken up by contemporary science.

It was only in the thirtieth of this century that the problem of irreversibility became
the subject of investigations. Based on the papers of Onsager, Machlup, Prigogine, Glans-
dorff, De Groot, the new thermodynamics of irreversible processes was developed. In the
last twenty years some new variational principles have been proposed. These are: the
Onsager and Machlup principle of minimum dissipation of energy, the Prigogine principle
of minimum production of entropy in a stationary state, the Gyarmati principle of dissi-
pative processes and the equivalent Vojta’s principle.

The principle of Gyarmati [2, 3] which is a generalization of the principles of Onsager,
Machlup and Prigogine, has the form

B i[(o—y))dV =0, €))

where the lagrangian density & is a function of the local intensive parameters, I';, and of
their local gradients, VI,
L =o—yp =2, V), )

and where the local production of entropy is given by
s
g = Z X i'] i (5)
i=1

In this equation X; = VI; denotes the local thermodynamic force and J; the local con-
jugated thermodynamic flux. The local “dissipation potential”  is defined as

!
py=3 ) LiyXiXe (6)
ik=1
In a linear theory the ‘“‘phenomenological coefficients” L, are constant

L;, = const. @)
and the kinematic equations

M~

Jp =
k

L; X, 8

1

!
X; = kZ1 Ri,kJ k (9)
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are valid. The matrices L; and R, are mutually reciprocal and the Onsager—Casimir
relations

Ly = egly; &, 6 = £1 (10
are fulfilled. Then we have
J s
o = Z Ly XXy, = Z RydiJy. (11)
k=1 k=1

The Euler-Lagrange equations following from the principle (3) are

0% 0%
ovI, oI,

=0 (i=1,2,..../). (12)

From these equations the transport and kinematic equations can be deduced.
On the other hand, the Vojta principle [3, 4] has the form

iz
6 [ (c—d)dt = 0, (13)
51
where the thermodynamic lagrangian functional &% depends on the state fields, oy(r, 1),

which are intensive state variables (e.g densities) derived from extensive variables, and on
their time derivatives,

& =0-0 = L(u, a). (14)
In this equation the entropy production functional is given by
o= =22 | I salr, Noulr, Dou(r, Hdrdr’, (15)
i kK VvV
where
O [ {a;(r", 1)
ik = — I{L (16)

da(r, 1oy (r', 1) @i(r,1)=0, ar(r',t)=0

The “dissipation potential” functional, @, is defined as

=32 X T Rulr ¥l Dalr’, drar’, an

where Ry (r, r’) are the generalized phenomenological coefficients.
The Euler-Lagrange equations following from (13) are

S — —— =0 (i=1,2,../) (18)

From these equations the same transport and kinematic equations can be derived as those
following from (12).
We note, that in the Gyarmati principle we have a volume integral and the operator V,

: o I d
whereas in the Vojta principle we have a time integral and the operator 7
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We see that the dissipative phenomena can be described in the “space” or in the “time”
representation. According to Gyarmati’s opinion “it should be said that a single variational
principle exists and the forms (3) and (13) are only alternative forms of it”. This “comple-
mentarity” of the phenomenological description of macroscopic phenomena seems to be
interesting.

Now let us return to the Natanson principle. Taking the above discussion on Natan-
son’s postulates into account, we can rewrite his principle in the form

51
[ (0T y+30 =% y~6U+ Y. Pog;+6Q) = 0. (19)
to i

Suppose that the kinetic and potential energies of the system as a whole are not varied.
With (2) we have

fdt(a@ —oU+ ), P,6g;4+6Q0°—4Q") = 0. (20
Considering the well known thermodynamic relation
U=} P8q;+6Q°%  (8Q° = T3S), 03))
we have from Eq. (20)
tfldt(é@—éQ') =0, (22)
or
jldté(@—Q’) = 0. (23)

Natanson’s principle was written for global thermodynamic systems or for global
phases. In 1896 the local formulations of thermodynamics had not yet been used’. Let
us now introduce the notations @, and Q; for the local quantities of & and Q’. We have
then 0, = O,(r, 1), Q; = Qi(r, t) and

@=[04v; @ =[Qadv, (24)
14 14
where ¥ is the volume of the global system or phase. We have then
i1
J dolf (0,-0pav] = 0. (25)
to

From the physical meaning of the integrand in (23) we see that Q" is the uncompen-
sated heat of Clausius produced in a unit of time. Hence 0, is the local dissipation of

1 Only analogies between thermodynamics and dynamics but not hydrodynamics were then
looked for.
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energy in a unit of time and therefore it can be expressed as To, with ¢ being the local
production of entropy. Thus we can write

fldza[j (0,—To)dV] = 0. (26)
Denoting
0= 2 27
1= | 2N
we get
dt6(] [(©}—)T1av} = o, 29)
to v
or
5§ { [(o—0O)Tlav}dt = 0. (29)

Now we will generalize this thermokinetic principle. This will be done in two steps.
The first of them is related to the classical field theory applied to the thermodynamics of
continuous systems. We postulate namely, that @; is a function of the thermodynamic
parameters and a homogeneous function of the second order of their derivatives with respect

d . .
to time <a7t> or with respect to the space coordinates (V).

The second step goes further. We abandon the restriction of the postulate of homo-
geneity and second order of the function @, and postulate only that @ is a function of
thermodynamic parameters and of their derivatives with respect to time or with respect
to space coordinates.

We will name this generalized thermokinetic principle the generalized Natanson
principle.

Now, if this generalized principle is applied in the special case where @, is a function
of thermodynamic parameters and a homogeneous function of the second order of their
derivatives with respect to time or with respect to the space coordinates, then we can take,
for instance, for [¢7dV the equation

v

o* =3 Zk: Ij/ Ij:s,-,k(r, Ya(r, Do (v, T (r, drdr’ (30
following from (15) and form ;’[@;TdV the equation
o =1 Z ;I}f I}[ Ry (r, Tou(r, Do (r', )T (r, D)drds’ (31)
following from (17). Then from (29) we obtain
5 {[o*—0¥]dr = 0, (32)
o

that is the Vojta principle in energy representation.
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Similarly, taking for ¢ the Eq. (5) and for © the Eq. (6) we obtain from (29)

B jt1dt [ [(e—w)T]dV = 0. (33)
to 14

Hence
o j [(e—y)T]dV =0, (34)

that is the Gyarmati principle in energy representation.

In this special case we obtain also the well known Onsager’s linear thermodynamics
of irreversible processes.

(We recall that in the case of Vojta’s principle we take the quantities o; and o; as
variables, whereas in the case of Gyarmati principle we take I'; and VI;).

However the expressions (17), (6) and (15), (5) are valid under certain conditions only.
The expression for production of entropy as a sum of products of forces and fluxes is
obtained under the assumption of the validity of the hypothesis of the local equilibrium.
The dissipation potentials, as defined in Egs. (6),(17), confine the theory to the description
.of linear phenomena with linear kinematic equations, only. It is obvious that for non-linear
processes the expressions for dissipation potentials must be generalized and so must be
the kinematic equations. It may also happen (in the case of turbulent processes, such as for
instance explosive chemical reaction) that expressions (5) and (15) for the production of
entropy cease to be valid.

In these cases the validity of the restriction of homogeneity and second order of the
function @, may not be fulfilled. Then the generalized Natanson principle should be applied.
Depending on the case at hand different expressions for @, and ¢ would then be valid®.

2 In many of such cases the “universal” form of Gyarmati’s principle of irreversible processes
y

8 { lo—(y+@lav =0, (%)
Vv
where f
p=1 > RuliJp (36)
k=1
or the “universal” form of Vojta’s principle
t2
6 | lo—(P+P)ldt = 0, €
t1
where
VY= —;—Z; i[ iLik(r, rai(r, oglr’, t)dr dr’ (38)
1

may be particularly usefull. We have then in these cases

O] = y+o, 4 (39)
or

jOiTay = P+ 0% (40)
14

to be introduced in (29).
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We see that the contemporary linear thermodynamics of irreversible processes is
already contained in the generalized Natanson principle. Howevzr, the generalized Natan-
son principle may potentially comprise possible non-linear theories as well. Thus the thermo-
kinetic principle of Natanson proposed in 1896 is not only chronologically the first but
so far — in its generalized form — a most general variational principle for dissipative
processes.

I expres my deep gratitude to Professor B. Szafirski, Professor B. Sredniawa and
the late Professor J. Szarski for many valuable discussions.
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