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MODIFIED MORSE FUNCTION FOR THE COMPUTATION OF
INTERNUCLEAR DISTANCES AND CONSTRUCTION OF
POTENTIAL ENERGY CURVES FOR DIATOMIC MOLECULES
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A variation in the computational procedure for the internuclear distance (r;) and the
potential energy curve for diatomic molecules was developed based on a modification of
the original Morse function. This modified Morse function was also found to satisfy the
Varshni criterion for “true potential”. This potential was applied for species such as N,
OH and OH' because of their importance in the photo-chemistry of aeronomic phenomena
and the results were in close agreement with those based on existing computational methods.
In addition, we showed that this simpler approach gives results which agree with those of
Klein-Dunham and Vanderslice for the half width, f= (r;—ry)/2.

PACS numbers: 31.90.+s, 35.20.Dp

1. Introduction

An accurate knowledge of the internuclear distance is of fundamental importance
in-molecular spectroscopy for constructing the potential energy curves of diatomic mole-
cules. Oldenberg [1] Rydberg [2; 3] and Klein [4] were the first to set up a graphical pro-
cedure for constructing potential energy curves. However, a close scrutiny of the graphical
procedures by Rees [5] revealed a few inaccuracies and inadequacies as the ‘power
series developed for the potential energy curves of diatomic molecules that showed di-
vergence at low quantum numbers. This prompted him to put these methods in a closed
form, which, however, still remained complicated. Jarmain [6] simplified his formulae
in terms of vibrational quantum numbers and showed that his simplified potential energy
expression is mathematically identical with that of Dunham’s first approximation [7].

We, however, felt that Jarmain’s formulae for the classical turning points (ry, r,)
which involve a large number of spectroscopic constants, can be ‘replaced by a simpler
expression without an appreciable loss in accuracy. We have achieved this in Section 2
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by simply expanding the Morse function in Maclaurin’s series. In Section 3, we closely
examine the modified Morse approach with reference to Varshni’s [8] criterion to test
exactly how “true” is the modified potential. We have illustrated in Section 4 the utility
of this approach for diatomic molecules such as N,, OH and OHY, which are of importance
for our aeronomic and astrophyswal investigations [9]. We, further present in Section 5
that results for half width (ffactors) converge from three approaches Sandeman [10],
Davies—Vanderslice [11] and ours. Lastly, we present in the Appendix, a simplified pro-
cedure for the evaluation of C; coefficients of Sandeman’s formula [10] for classical turning
points.

2. Calculations for the internuclear distance and potential energy curves for N,, OH and OH*

The Morse function for the potential energy of a diatomic molecule is

U(r) = D[1—exp (—a(ri=r )T’ Q)

where D, is the dissociation energy, r; is the internuclear distance, r, is the equilibrium
distance and o is a parameter. This equation can be written also as:

—o(r;—r) = —In[1+(U/D)"] (2)
on expansion of the logarithmic function using the Maclaurin’s series, one obtains:
—a(r;—r;) = (U/D)? —% (U/D)+5 (U/DY"* + ... 3
Following Jarmain [6] we write: » .
U=oV-0XV+0 YV’ — .., 4)

where @,, © X., ®,Y, ... etc. are spectroscopic constants and V' = v+3} where v is a vibra-
tional quantum number.

For the molecules investigated viz. N,, OH and OH™, the cubic term is expected to
be insignificant and hence substituting Eq.,(4) in Eq. (3), one obtains:

_“(ri_re) = [Coev"wexevlee]l/z_% [weV_weXeV2/De]
+% [weV'—weXeVZ/De:IS/Z' . (5)

This equation was used to compute the values of turning points (r;). Eq. (5) involves
only three parameters viz. o,, X, and D,. Jarmain’s equation (Eq. (9) of his papers)
however, is based on a few more constants viz. B,, k and m. Some of ‘them are functions
of w, which lead to an extremely complicated expression for 7;. Simplicity of Eq. (5) will
therefore be of considerable help in computation of spectroscopic constants. These differ-
ences prlmarlly arlse because his starting expressions were based on the exiremely rigorous
Rydberg—Kleln formula [4], whereas we started from a semi-empirical Morse Function
only.

This approach, whether it represents a true potential function or not, can be tested
by applying Varshni’s [8] criterion. This is shown in the next section.
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3. Criterion for the potential function

Whether the potential energy curve of diatomic molecules can be represented satis-
factorily or not by a Morse function or a modified Morse function depends on a satis-
factory fit of values of experimental constants such as r, D, k., «., w,, 0 X,, @ .Y, and r,.
For most of the molecules only a few of these constants are known. Moreover, as these con-
stants are interdependent, usually any three are enough to determine the potential function,
using the form of which other constants are determined. From these several constants,
the expressions for k., r, and D, are rélatively simple and are more commonly used.

The general criterion for a satisfactory representation of any potential curve given
by Varshni [8] are adopted here. These are:

(l) U(Te)—‘U(OO) R '—De:
@D ©@ufor),=,, = 0,
(iii) (&*U[or*),=,, = k.. 6)

The potential energy curve fits accurately if all the above conditions are fulfilled.
We next want to show that our modified Morse function is satisfactory to show this.
Following Dunham [7], we can write o, and w. X, as:

o, = 6B%jw, " F, (7)

and
weXe = W/:uArg ) G’ (8)

where

= —[1+Xr /3], G=[5X*3-Y]rZ, W =21078x1071°, ©)

and
X = U"(r)/U"(r.), (10)
Y = U""(r)/U"(rc). (11)

For the Morse function, as well as for our modified Morse function, the first two
criterion of Varshni are satisfied automatically. The third gives

k, = 2D, (12)
where « is the parameter defined in our Eq. (1). The Southerland parameter is then given:by
A = kg22D, = o*r2, (13)

which is now independent of D,. In terms of this new parameter we have

«, = 6B[4'* 1]/, (14)
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and
w X, =84 W[rk-pu,. (15)

The values of «, and w X, can be computed from these equations and compared with
experimental values to test the fit of the modified Morse function.

4. The application of OH, OH* and N,

4.1. Computations for a, and o X,

The validity of our approach can easily be tested by evaluating the constants, a,, ® X,
as outlined in Section 2. We present in Table I, the results of our computations for «, for
OH, OH* and N, for a simultaneous comparison with the experimental results as well
as those obtained based on earlier theoretical approaches. It can be seen that our values
are comparable to those of others. In fact, the standard errors are smaller. In Table II, we
show the results of our computations for w X,. The values of w X, for these three mole-

TABLE 1
Calculated values of a. for different functions
Molecule
Potential function —_— — —
! N, l OH ‘ OHt
Experimental® 0.0187 0.714 0.7494
Morse? 0.01996 (+6.2) 0.714 (0.0)
Rydberg? 0.01844 (+1.4) 0.6425 (—11.1)
Third® 0.01665 (~10.9) ‘ 0.5319 (—11.5) ;
Empirical® | 0.01349 (—27.3) | 0.5207 (—24.1)
Present work 0.01727 (—8.3) | 0.6234 (—14.0) 0.6654 (—10.0)
TABLE 11
Calculated values of wcX. for different functions
Molecule
Potential function : — =
N, ' OH \ OH*t

Experimental® 14.456 82.81 \ 78.515
Morse? 17.42 (+20.5) 94.36 (+13.9) -
Rydberg® 15.97 (+10.4) | 86.5 (+4.9 —
Lippincott? 13.82 (—4.4) | 77.84 (—6.0) —
Empirical® [ 13.15 (—9.0) 80.19 (—3.2) —
Present work 14.46 (+0.06) ‘ 82.42 (0.05) 78.49 (—0.04)

2 Spectra of diatomic molecules, G. Herzberg (1958).
b Varshni, Rev. Mod. Phys. 29, 664 (1957).
Values in the brackets represent the per cent error when compared with the experimental values.
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cules are in excellent agreement with experimental values than the previous models used

in the table for comparison.
These tests, based on Varshni’s criterion, suggest that a modified Morse potential

function satisfies the criterion for the true potential.

4.2. Computations for the internuclear distance, r;

We next computed the values of r; using Eq. (5). The computations for r; and r,
are given in Tables III, IV and V for the molecules studied and are compared with computa-

TABLE III

Comparison of values of turning points from different methods for No(2'Z,+, re = 1.094 A)

t\i]:)t:)raai- Potential ri1A] r2 [A]
e —— energi/1 - -
umber »| V1 | A B c D A | B c | b
: ‘ |
0 1176.40 1.051 1.051 1.051 1.051 1.142 1.142 1.142 1.142
1 3506.87 1.023 1.022 1.023 1.023 1.180 1.180 1.180 1.180
2 5808.68 1.005 1.004 1.004 1.004 1.209 1.209 | 1.209 1.208
3 8081.55 0.991 0.990 0.990 0.989 1.234 1.233 1.234 1.233
4 10326.52 0.979 0.978 0.979 0.977 1.256 1.255 1.256 1.254
5 12540.60 0.970 0.968 | 0.968 0.966 1.278 1.277 1.277 1.274
6 | 14726.70 0.961 0.959 0.960 0.958 1.298 1.296 1.296 1.294
7 16883.95 0.953 0.951 0.951 0.949 1.317 1.315 1.315 | 1.311
8 19012.20 0.946 0.944 0.944 0.941 1.336 1.354 1.334 | 1.327
9 21181.65 0.940 0.937 0.937 0.933 1.354 1.352 | 1.350 1.343
10 | 23182.14 0.934 0.931 0.931 0.927 1.372 1.367 1.367 1.359
11| 2522372 | 0928 | 0925 | 0925 | 0925 | 1.339 | 1387 | 1388 | 1375
12 27236.38 0.923 r 0.920 0.919 0.914 1.406 1.404 1.399 1.390
13 29220.14 0.918 0.915 0.914 0;908 1.423 1.421 1.415 1.409
14 31174.98 0.914 0.910 0.909 0.902 1.440 1.438 1.431 1.417
15 33100.91 0.910 0.906 0.904 0.897 1.457 1.454 1.447 1.431
16 | 34997.93 0.906 0.902 0.899 0.892 1.473 1.471 1.462°| 1.444
17 36866.03 0.901 0.897 0.895 0.887 1.490 1.488 1.477 1.457
18 38083.23 0.899 0.894 0.890 0.882 1.507 | 1.504 1.492 1.470-

19 | 40515.20 0.895 0.890 0.886 | 0.878 1.523 1.521 1.508 | 1.481°

A — Modified Jarmain’s formula, B — Modified Morse formula of Jarmain, C — Sandeman formula
D — Present work.

tions given by Jarmain with his two different expressions and with those of Sandeman
[10]. These results can be summarised as follows:

(7) Our results are generally less compared to those of Jarmain’s, but are in very good
agreement with those of Sandeman [10].

(fi) The maximuom difference between our values and those of Jarmain’s, even at
V = 19.5,is about 1 per cent for N,, whereas we found 3 per cent for OH and 4 per cent
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TABLE 1V

Comparison of values of turning points from different methods for OH (i, re = 0.9706 A)

Vibra-

" Potential ‘ r1 [A] r2 [Al

ional

quantum energyl | P L e

pumber » | Z L] A ’ B I C ( D A B ‘ C D

| ' '

0 1846.90 0.883 | 0.882 0.883 0.882 1.080 1.079 1.080 | 1.079
1 3416.50 | 0.830 0.829 0.830 0.827 1.178 1.177 1.177 | 1.174
2 8820.44 ‘ 0.799 0.797 0.797 0.792 1.257 1.256 1.254 1.246
3 12058.80. 0.776 0.773 0.773 0.765 1.330 1.328 1.323 1.309
4 15131.40 0.750 0.754 0.752 0.743 1.399 1.398 1.386 1.365
5 | 18038.60 0.743 0.739 0.735 0.723 1.468 1.468 1.449 1.416
6 20980.10 ‘ 0.731 ‘ 0.726 0.719 | 0.706 1.537 1.539 1.508 | 1.464

A — Modified Jarmain’s formula, B — Modified Morse formula of Jarmain, C — Sandeman formula,

D —- Present work.

TABLE V
Comparison of values of turning points from different methods for OH* (°X_, re = 1.0289 A)
Vibra- | g ential ri [A] | r2 [A]
tional ;
quantum energ_yl i i i |_
number v Ulem™] | A B_ \ C D A B (© l D
- e | : o
0 1537.60 0.934 0.933 0.934 0.933 \ 1.150 1.149 1.150 1.149
1 4493.40 0.878 0.875 0.878 0.873 1.260 1.257 1.260 1.254
2 | 7292.70 ‘ 0.846 0.841 | 0.843 0.836 1.349 1.344 1.347 1.335
3 9935.00 0.823 0.817 0.818 0.806 1.430 | 1.434 | 1.425 | 1.434
4 12420.25 0.806 0.798 | 0.782 0.782 1.507 1.499 1.499 1 .467
5 14748.16 ‘ 0.792 0.784 0.779 0.761 | 1.582 1.575 1.569 1.524
6 16919.66 0781 | 0.773 l 0.762 | 0.743 | 1.656 1.648 1.644 1.576

A — Modified Jarmain’s formula, B — Modified Morse formula of Jarmain, C— Sandeman formula,

15 — Present work.

for OH* at v = 6. These differences are only between theoretical computations and can,
therefore, be considered as insignificant at this stage. Moreover, our potential function
is tested for Varshni’s criterion and, therefore, our computations can be expected to be
more reliable for the eventual comparison with experimental values. Even for v = 19,
for instance in the case of N, the maximum error in turning points does not exceed 4 per

cent.

We, therefore, plan to obtain the wave functions and intensitics as a part of our
subsequent investigations for comparison with our experimental values of intensities.
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3. Equivalence of different approach-calculations of half-widths

We next illustrate that the three approaches, viz. of Sandeman [10], Davies—Vanderslice
{11] and ours described in Section 2 coincide -the expressions. of the half-width.
() Sandeman’s [10] formula for half-width can be written as:

(ry=1)[re = (Ulag)'"* + Cy(Ulag)+ C5(Ulag)*?, (16)
(ra—rfre = —(Ulag)'? + Cy(Ulag)— C,(Ulay)*?, a7

which after subtraction leads to:

\1/2 ,
f=—r)2 = - (E) T [1+C2 <__[_]_)] e
Ao : . ag

Substituting for C, = w.X,/3B, and a, = w2/4B, and omitting the negative sign for obvious
reasons we obtain

202 B \Y? U
o) () av
(#i) The Davies—Vanderslice [11] equation for half-width is
S ==z = (a2 3 (14 3)g,b, 07, (19)
where .
g, = 2%(n !)2/(2n+1)! (20)

in which they calculated the values of b,. Thus up to the first two terms
f=P2nw)'? G gib, U+ bog, U324 )
= (B)2n°w)'/? (b, U+ 4 b, U2 1 ). o)
Substituting from their tables for
1 1

b = 1 w.X,
27 0he)? o2
and rearranging we get:

__2U”2' h .lfU
{ "( o, ) <8n2Cu) ( N 3De)' 22)
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(iii) We directly obtain from Eq. (3) by writing equations for r, and r, separately,

and subtracting:
2U12 U ,
= | — - (hj8m*Cw)'? - ( 1 .
7= (5= wmcw (14 7 e}

e

We thus illustrate, that although these approaches differ in obtaining expressions
for classical turning points, they coincide the important result, namely half-width of:

f=(ry—r)/2.

This fact, coupled with the results obtained for individual values of turning points,
illustrates the utility of our simple approach.

We thank the University Grants Commission for the financial support available to
one of us (SRG).

APPENDIX

Evaluation of the Sandeman C; coefficients

We next investigate the C; coefficients in Sandeman’s Eq. (12) (paper [10]):

R = (r;—r)[r. = i(U/ao)”z[liCl(U/a0)1/2+C2(U/aO,)-i_- el ¢ (24)
where
ag = wz / 4Be
and the other symbols have their usual meaning.
Sandeman had evaluated C; values from spectroscopic constants after an extensive
computation. We, however, felt that this was unnecessary and the same information

could have been obtained in the manner described below.
Equating and rewriting Eq. (24) we obtain

U = aoR}[1+C(Ulag)"*+C,(Ufag)+ ..]72% (25)
We note that Dunham [7] gave an expression for potential energy, U, in terms of R
directly as:
U = aoR*(1+a,R+a,R*+ ...). (26)
Comparing Egs. (25) and (26) and noting that R = (Ulap)''? to a first approximation
we find that
Ci = —a,/2 7

for other constants. These are the conversion formulae (Eq. 13) that he has derived after
much considerable labour from experimental data.



487

REFERENCES

[1} O. Oldenburg, Z. Phys. 56, 563 (1929).

f2] R. Rydberg, Z. Phys. 73, 376 (1931).

[3] R. Rydberg, Z. Phys. 80, 344 (1933).

[4] O. Klein, Z. Phys. 76, 226 (1932).

{51 A. L. G. Rees, Proc. Phys. Soc. (London) A59, 998 (1947).

[6] W. R. Jarmain, Can. J. Phys. 38, 217 (1960).

[71 J. L. Dunham, Phys. Rev. 41, 713, 721 (1932).

[8] Y. P. Varshni, Rev. Mod. Phys. 29, 664 (1957). _

[91 N. Y. Mehendale, S. R. Gogawale, A. D. Tillu, Proc. Symp. on Spectroscopic Studies of Astro-
physical Interest, Hyderabad, India 1972 p. 173.

[10] 1. Sandeman, Proc. Roy. Soc. (Edinburgh) 60, 210 (1940).

[11] R. H. Davies, J. T. Vanderslice, Can. J. Phys. 44, 219 (1966).



