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CALCULATION OF THE VALENCE-REPULSION ENERGY USING
APPROXIMATE MOLECULAR ORBITALS FITTED WITH THE
INTERMOLECULAR OVERLAP FACTOR*
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( Received November 28, 1979)

A new method for the calculation of the valence-repulsion intermolecular interaction
energy is proposed. The primary molecular orbital of the interacting molecule is substituted,
in respective formulas, by an orbital fitted using a least-square deviation method. The weight
factor used in this method depends on the approximate molecular orbital of the other mole-
cule. The valence-repulsion first order exchange energies of the interaction between two
H, molecules in the linear dimer are in agreement with the results obtained using the primary

" molecular orbitals.

PACS numbers: 34.20.—b

1. Introduction and methods

It is known that two kinds of effects can be distinguished in the interaction of two
closed-shell molecules namely “long-range interaction”, i.e., electrostatic, induction and
dispersion, and “short-range” or ‘“valence-repulsion” interaction. The “long-range”
effects can be related to some properties of the isolated molecules, i.e., multipole moments,
electric charge distribution, static and dynamic polarizabilities. Many simplified methods
using these relations have been already proposed [1-5]. However, the valence-repulsion
energy cannot be related to any known property of the interacting molecules.

Since conventional ab-initio, €.g., SCF or variation-perturbation [6] methods cannot
be effectively applied in the calculation of the valence-repulsion interaction between large
polyatomic molecules, some simplified methods have been proposed. However, the problem
of the effective calculation of the valence repulsion energy has not been solved, even for
the calculation of the first-order exchange “repulsion” energy. Let us discuss some difficul-
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ties related to this first-order exchange energy problem and propose a simple method which
seems to be useful in such calculations.

Let us comsider the interaction of two closed-shell systems, A and B. Let the wave
functions of these systems be given in the SCF MOLCAOQ approximation. These wave
functions are built of m, and m, molecular orbitals (MOs) denoted by a; and b;, which
are linear combinations of NP, and NP, primitive (e.g., simple gaussian) atomic orbitals
(AOs), contracted in NC, and NC, contracts (groups), respectively. The most time-con-
suming operation in the evaluation of the “valence-repulsion” first order exchange energy,
E, ., is the calculation of the molecular integrals of the type:

K@G,js k, D) = _‘-d"1d"zci(1)cj(1) ("1,2)_1%(2)‘31(2), 1
where the integration is over the spatial coordinates of electrons 1 and 2; ry , is the inter-
electronic distance; c,(1) is the symbol of the MO of tke electron 1, and can be either a;
or b; MO. In the process of the calculation of the K integrals the number of the molecular
integrals approximately proportional to (NP,)*(NP,)* have to be calculated first. As the
second stage, the transformation of the (NC,)*(NC,)? integrals have to be performed. Both
operations require very much computer time and memory for large basis sets, i.e., for large
NP and NC numbers.

In order to make these calculations less expensive, several methods of replacing the
primary ¢; MOs by some shorter expansions have been proposed [6-11, 12, 15-20, 23, 24].

The methods presented e.g. in Refs. [7, 8] consist in forcing the approximate MOs
to satisfy some equations fulfilled by the primary MOs. Similar in procedure is the method
of Overlap Matched Atomic Orbitals (OMAO) proposed by Cusachs et al. [12] and
discussed e.g. by Sokalski and Chojnacki [13, 14]. Since there exists no criterion which
can be used for the improvement of the approximate MOs in the methods discussed in
Refs. [6-8, 12-14], all these methods are of a limited accuracy. The same can be said about
the methods for the calculation of E,,, with the simplifications based on the Mulliken
[15] or similar approximations [16-19], the most general of them are introduced by Gole-
biewski et al. [19]. '

The methods that fit the approximate MOs to the primary ones by minimizing of
the square deviation functional, which can be used as a criterion for comparison of different
fits, offer in principle the possibility for a desirable improvement in the approximation.
The squdre deviation functional can be defined as:

SDF = [ dr(f.(r, 4)—g(r, DY’ W(r), (2)

where the W(r)is a non-negative weight function; the meaning of other symbols is given
in the Appendix. The applicability of the approximate orbital, g, to the concrete problem,
depends on the choice of the W function.

The most natural choice of W(r) appears to be W = 1. Such an approximation was
applied to determine'the AOs used in the SCF calculations [20-22] and recently to determine
the MOs used in the perturbational calculation of the intermolecular interaction energy
([11] quoted hereafter as Paper I). The methods of Clementi [23] and Ahlrichs [24] are also
special cases of this approximation. The interaction energies presented in Paper I for
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the linear H, dimer were in good agreement with the SCF results, but it seems that this
agreement is not so good when first- and second-order exchange effects are more important
than “classical” clectrostatic and induction interaction energies, e.g., in the interaction
of the rare-gas atoms. The MOs fitted with W = 1 should reproduce well the intramolecular
overlap density, a,a;, but not the intermolecular overlap density, ¢;b;, for great intermolec-
ular distance. The same can be said about the truncation of contracts performed by Go-
Iebiewski et al. [19], who retained in their contracts the terms with the biggest absolute
values of the linear coefficients.

An interesting choice of the W was proposed by Les$ [9, 10] who assumed W = (if,)~2
where r is the distance from the centre of the system. The MOs determined in such a way
were successfully used in the calculation of the interatomic interaction energy [9, 25].
The exponents of their AOs were also used for the construction of the basis set in the SCF
calcuiations ([26] and Paper I). However, this method is not free from some fundamental
shortcomings, which have not been discussed until now. Namely, if W = (rf.)-2 is inserted
in formula (2), the integrand can have singularities in all the points, where £, = 0. Moreover,
when 7 tends to infinity, the integrand either tends to infinity, whenever g_/f. tends to infin-
ity, or to a constant value, if this is not the case. Therefore, if formula (2) is strictly applied,
it is impossible to find the minimum of SDF, unless g, and f, have the same asymptotic
behaviour, which does not hold in general. In order to avoid the problems mentioned
above, the integration is limited to some finite area. The size of this area is not uniquely
defined, and this introduces some arbitrariness into the method. The method gives good
results when the primary MOs are close to the 1s atomic orbitals or contain a factor close
to the 1s AO, e.g., the 2p orbitals of the Ne atom. For molecules, especially when they do
not have high symmetry, the results can be unreliable.

In order to obtain a good approximation to the intermolecular overlap density, we
propose to approximate the ¢; MO using formula (2) and assuming W = (F(B))?, i.e.,
the weight function is the second power of some approximation to the »; MO. The justifica-
tion of such a choice of the W function is given in the Appendix.

The ¢; MO approximated in such a way depends somewhat on the orbitals of the B mol-
ecule. A similar dependence exists in the OMAO method [12], and also in the method of
Murrell and Varandas [27], who propose to replace, in formula (1), the MOs of isolated
molecules by some maximum overlap hybrids. It should be noted, however, that their
method helps to reduce the number of K integrals, but not the time needed for the calcula-
tion of each K integral. The presence of the intermolecular overlap factor in formula (2)
off.rs the possibility to obtain the maximum accuracy of the £, (e.g., @;) MO fit in the region
of its maximum overlap with the MO of the other molecule (e.g., b ), that is needed for
the proper reproduction of the g; intermolecular overlap density.

In order to test our approximation, we have performed calculations of the “valence
repulsion”, i.e., the first-order exchange interaction energy between two hydrogen mole-
cules in the linear dimer. Our primary basis set, used for the calculation of the primary
MOs, is given in Table I. It is composed of the simple spherical Gaussian Type Orbitals
(GTOs). The symbols in the first row of Table I denote the consecutive numbers of the
GTO, their centres, their exponents and their coefficients in the contract. All the values,
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TABLE 1
Primary basis set
N Centre Exp Coefficient
1 Hi 0.0948 1.0
2 | Hi 0.1988 1.0
3 H1 0.4252 1.0
4 Hi1 1.168 0.1044890
5 H1 3.676 0.0417543
6 H1 15.61 0.0102140
7 H1 143.1 0.0010082
8 HCEN 0.04129 1.0
9 HCEN 0.4958 1.0
10 HCEN 1.895 1.0
TABLE 11
Valence-repulsion energies in .10~* a.u.

d 8.5 1.5 7.0 6.5 5.5
17/11+17/11 0.060 0.420 1.095 2.830 18.096
17/11+6/6(2) 0.059 0.418 1.095 2.837 18.182

6/6(2)+6/6(2) 0.058 0.414 1.093 2.837 18.243
17/11+6/6(1) 0.057 0.392 1.056 2.789 18.204
17/11+3/3(1) 0.044 0.370 1.004 2.657 17.137
17/11 +6/6(6n) 0.029 0.267 0.766 2.238 15.506

quoted hereafter, are in atomic units, unless otherwise stated; a value of 1.4 is assumed
for the internuclear distance in the H, molecule; the GTOs are normalized. The centre,
HI, denotes one hydrogen nucleus, the centre, HCEN, denotes the centre (midpoint) of
the H, molecule. Only the GTOs numbered of 4-7 are contracted in one contract while
the others presented in Table I are uncontracted. Seven GTOs centered on the other hydro-
gen nucleus, which can be labelled H2, are not given in Table I, but they have the same
exponents and coefficients as in the respective GTOs labelled 1-7. The primary basis set was
constructed by Le$ using his method [9, 10], as an approximation of the Kolos and
Roothaan MO [28]. The energy of the ground state of the H, molecule obtained with
this basis set is E(H,) = —1.133378458.

Our approximate MOs are linear combinations of 3 or 6 GTOs. In the first case one
GTO is centered on each hydrogen nucleus and on the midpoint of the molecule, in the
second case two GTOs are centered in such a way. Since such approximated MOs have
no physical meaning, they are not presented here. Some details of the calculation of each
approximated MO are given with the description of Table II. The first-order exchange
interaction energy is calculated using the program written by Andzelm. This program was
applied previously to investigate the LiF crystal [29, 30] and in calculations for the interac-
tion energy in the H, dimer, presented in Paper I.
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2. Results and discussion

The calculated valence-repulsion or the first-order exchange interaction energies,
given in 10-* a.u., are presentgd in Table I1. The symbol on the left hand side of the first
row, d, denotes the distance between the centres (midpoints) of the H, molecules in the
linear dimer. The values of d are given in the first row, the interaction energies for a given
d are in other rows. The remaining symbols in the first column denote the MOs used in the
calculations. In order to test better the accuracy of the approximations, in some instances
the primary MO denoted by 17/11 (i.e., 17 simple GTO contracted into 11 groups-contracts)
is assumed for the 4 monomer and some approximate for the B one. The symbol 17/1
+6/6(2) denoted that the primary MO is used for the 4 monomer and the approximate
(fitted) MO, which is the linear combination of 6 contracts, each being only one simple
GTO, is used for the B monomer. The index (2) in the symbol 17/114-6/6(2) denotes the
number of non-linear parameters, which are fitted in order to minimize the SDF. The fit
is obtained as follows.

1. At first, the approximate 6-term MO is obtained from formula (2) with the “natural™
weight W = 1 and the minimization of all six non-linear parameters, which are in this.
case the GTO exponents. For each set of non-linear parameters, the coefficients at GTOs
are fitted as linear parameters in the classical least-square fit [17, 18]. The approximate
MO found in such a way is denoted in Table IT as 6/6(6n). It is presented in Paper I.

2. The new 3-term and 6-term MOs for the monomer 4 are calculated from formula (2)
with W = (Fy(B))? and F,(B) being the 6/6(6n) MO for the monomer B. All the GTO
exponents are the 6/6(6n) exponents multiplied by a common factor, which is only one
non-lincar parameter. The linear parameters are fitted similarly as those in stage 1. These
MOs are denoted as 3/3(1) and 6/6(1), respectively.

3. The improved MO for the manomer A is obtained in a similar way, as in stage 2,
but the new Fy(B) is the 6/6(1) MO calculated for d = 5.5, being the smallest d assumed
in our calculations. In this stage a new non-linear parameter is introduced, namely the
GTO exponent, being the smallest one in the 6-term orbital, is fitted independently of the
others. This MO is denoted as 6/6(2).

As can be seen in Table II, the valence-repulsion energies, E.,, calculated with the
6/6(2) MO, are in very good agreement with E,, calculated for the primary MO at all
the d values investigated in the vicinity of the van der Waals minimum, which is probably
close [31] to 7.0. This agreement holds also when the 6/6(2) MOs are assumed for both
monomers. This assumption results in a great reduction in the computation time. The
absolute value of the relative difference does not exceed in this case 2 percent, except at
, d = 8.5, where the valence-repulsion energy is small compared to the Coulomb electro-
static energy and therefore is not so important.

The agreement for the 6/6(1) and 3/3(1) MOs appears not so good, but it remains con-
siderably better than for the 6/6(6n) MO. This indicates that the present choice of the W
function results in a better accuracy of the calculated E, ., than the choice of W = 1.

.Our method can also be used to calculate the molecular integrals needed to investigate
second-order or non-additive exchange effects. It can give better results when combined
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with the method of Murrell and Varandas [27], whenever the respective procedures are
part of the interaction energy calculation programs. It holds also when the orbitals, @; and
b;, are strongly overlapping and the results are in this case probably better than when the
overlap is weak. It seems that the rational use of this method can reduce the computer
time needed for the valence-repulsion energy calculation by two orders of magnitude.
In order to save computation time, our fitting procedure should not need many non-
-linear parameters, because it requires the calculation of many overlap integrals and has
to be repeated for each non-equivalent geometrical configuration of the interacting systems.
The present calculations suggest that it is possible to obtain good results with a very limited
number of non-linear parameters. Therefore, the method seems to be very useful.

APPENDIX

Choice of the weight function

QOur aim is to approximate the primary reference molecular orbitals, (MOs), e.g.,
Ar, A), by some approximate MOs, g(r, 4). The symbol, r, denotes -here the spatial
coordinates, the index, ¢, the type of the MO (e.g., the H, MO), the symbol, 4, the label
of the MO if there are identical MOs in the investigated system (e.g., the H, number 2 in
the H, dimer). Our approximation should reproduce the product of the MOs taken from
different molecules. Let us try to fit our approximate MOs in order to minimize the square
deviation functional given by (Al), where the argument r is omtitted

SDF = | dr(fA4)fu(B)—g(A)gB))". (A1)
Using the identity: -

fLADfB)— gA)g(B) = (f{A)—gLA) (fo(B)+ 24(B))
+(fi(B) — 24(B)) (f(A) + g(4))/[2 (A2)

we can write the SDF functional as the integral over the sum of 3 terms as:
SDF = 0.25 [ dr((f.(A)— gLA))* (fi(B)+24B)* +(fu(B)— 24 B))*(f:(A) + ()
+2((f(4))? = (8L)*) (f(B)* ~ (2D)))- (A3)
As can easily be seen, the first 2 terms of the integrand in (A3) are positive, but the last
one oscillates around the zero value. Therefore, the contribution of the last term in the
integral can be neglected.

If no new simplifications were made in (A3), the g.(4) and g,(B) orbitals should be
fitted simultaneously. Such a procedure would be very time-consuming. It appears, however,
that numerical results of sufficient accuracy can be obtained when the (fy(B)+g4(B))>
and (f(4)+g.(4))? factors in (A3) are replacedgby some functions such as (Fy(B))?> and
(F(A))?, respectively. The Fy(B) and F,(4) functions can be some approximate MOs
of lower accuracy than our g,(B) and g.(4). Finally, the g(4) orbital is calculated from

the formula:
§ dr(f(A) — g (A)*(F«B))* = minimum (A4)

and a similar formula is used for g,(B).
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