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INFLUENCE OF ORDERING ON THE SPIN WAVE STIFFNESS
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An expression for the spin wave stiffness constant in a partially long range ordered
ferromagnetic alloy is derived for a four-sublattice model using the random phase approxima-
tion and the coherent potential approximation. Both the “average exchange” and the
“magnon scattering” terms are included.

PACS numbers: 75.10.-b, 75.30.Ds, 75.50.Gg

1. Introduction

Neutron inelastic scattering results on Ni,Fe by Mikke et al. [I] indicate that the
influence of -atomic ordering on the magnon energy is significant. Similar behaviour was
also investigated by Menzinger et al. [2] on Pd,Fe.

Previous works on partially long range ordered alloys, using the itinerant electron
picture, were by Morkowski [3] and Takahashi and Edwards [6]. Morkowski’s approach
is a perturbational one, where the departures from stoichiometry and from full order are
taken as small parameters. In this limit magnons for a complete ordered alloy serve as
a good starting point in the description of magnon scattering. In Takahashi and Edwards’
method the acoustic magnon energy is found from the poles of averaged over sublattices
transverse susceptibility for the single-site CPA effective medium Hamiltonian. Although
the only experimental data are for Ni;Fe and Pd;Fe in both theoretical articles referred to
above an alloy of b.c.c. structure of composition Ay 5B, 5 or close to it was considered.

In the present paper a method for calculating the spin wave stiffness constant in a four-
-sublattice system is developed. Both the “average exchange™ contribution, which reflects
the changes of the electronic structure of the ground state and the “magnon scattering”
due to the random deviations from effective medium potentials are taken into account.

The remainder of the paper is organized as follows. In Section 2 the CPA equations
to determine the coherent potentials are derived. In Section 3 the acoustic magnon opera-
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tors for an effective CPA medium are determined. In terms of these operators an effective
magnon Hamiltonian [4] is set up in Section 4. Finally the magnon energy is determined
from the poles of the magnon Green functions averaged over configurations by the method
of Kaneyoshi [7].

2. Model Hamiltonian and CPA equations

We consider a stoichiometric binary alloy AB;. In the model to be used it is assumed
that the lattice may be divided into four equivalent s.c. sublattices. Three of them are
occupied by atoms B with equal probability, hereafter denoted by p, whereas for the
fourth sublattice this probability, in general, differs and can be expressed in terms of the
parameter p as 3(1 —p). Retaining the essential features, we may significantly simplify our
problem by assuming that the Fourier transforms of the hopping integrals between any
of the two different sublattices are the same. Let us write the model Hamiltonian as the
sum of two terms, an effective medium Hamiltonian H, with effective potentials determined
in the single-site CPA and the perturbation ¥ due to the local deviations from effective
potentials.

‘H = Hy+V, 0))
H, is a configuration independent part and reads

Hy =Y ty@)al,au,+ 3, 2, 1240510810k
kAo ka AFEA

: : 4] ,(w)
+ N aIk+q1 +a§k’—q1—alk’—a}.k+: (2

ki
k'qy
where al, is the creation operator in the Bloch state on sublattice A (A = 1, 2, 3, 4). Nis the
number of all lattice sites. The effective atomic potentials 7,(w) and the intraatomic Coulomb
integrals I,(w) will be determined later by (21) and (22) in the single-site CPA. According
to the model assumptions
\ _ @), I(w)) for = 1l
(@), (@) = {(tB(w), Ij@) for i=234. @)

The Fourier transform of the nearest neighbours hopping integral ¢ is taken in the form 1z,
where

Ze =% ; exp (ik - 0), (C))

where & Tuns over nearest neighbours in the f.c.c. lattice. The configuration dependent part
of our Hamiltonian is
V=Y ¥ [to—tA@)]gulk — K)alis0 00

ak kk'o

4\ |
+ 'ﬁ Z Z [Ia”lz.(w)] Qoslkr+ks—k;— k4-)a-§.k1 +a1}:k3 ~Q2ks— A oky+- ®

@i ky,k2,k3,kq
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The subscript o takes the values 1 and 2 denoting atoms 4 and B respectively.

Pull) = Z ci% exp (ik - i) ©

is

and the random variables c* are defined as follows

)

wa _ f1 if the lattice site i, is occupied by atom w«
! 0  otherwise.

The time Fourier transform G, ,(k, @) of the retarded Green function €a,,,(1); a} 1,
for the system described by Hamiltonian Hj satisfies the following equation of motion in
the Hartree-Fock approximation

[w_zla(w)]GlM,a(k’ CO)— ;}. tszvi.l,a'(kb (D) a 51}.19 (8)
where
Z15(@) = (@) +1(w) {1y, ®

and {n,,» = <{ak,a;,>. We get the following solutions:

A).cr(k’ (D)

Gazolk, ) = )’ (10)
with
Aok, ©) = @2, (0)—2tz,
B, (k, 0) = [0—Z,(0)] [0~ 2,,(0)] -2tz [0— 2, (0)] -3z, (11)
and for 4 =2, 3,4
Aok, 0) = [0=Z1(0)] [0—Z,,(0)] -tz 00— 2 (0)] - 262}
Byo(k, @) = [0—2,(@)]*[0—2;(@)] - tz [0 — Z,(0)] [0~ Z1,(@)]
— 2 22[50—32,,(0) =22 (w)] - 3£32]. (12)

The coherent potentials are determined by the requirement that the configuration
average of the ¢ matrix for scattering from a single site on sublattice A should vanish (cf. [8]).
Namely,

<c?l> {[sald i Zlo‘(w)] 1o F).a'(w)} B + <c?_l> {{80710' — Ei.a(w)] i _Flo'(w)}— = 0 (13)
with
aio = Lo+ 1,Nps- o), (14)

where ¢, and I, are atomic potential for atom « and intraatomic potential respectively,
@ denotes the opposite atom from atom « and (n,,,) is the occupation of electrons with
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spin ¢ on the atom a, if this atom occupies the site of sublattice 1. The definition of the
function F, () is

4
Fa@) = 1 ) Gundll 0. 13)

k

Note that, as a consequence of our model assumptions, the only independent equations
(13) are for A = 1, 2. The configurational averages {c{*) are connected with the long range
order parameter p by the-relations

{et'y =3p—2; gD =1-p
el E o G e © (16)

Having in mind that CPA is a self-consistent method, it is convenient for numerical analysis
to replace the summations over k space by one dimensional integration. Observing that
the Green functions (10) are functions of z, (4) only it is useful to introduce the function
N(e) defined by the integral

By ds
@ ) Ivzl®

zZg=¢

N(e) a7n

where the integration extends over the surface of constant value z; and v is the volume of
the elementary cell. Now we can rewrite (15) as follows

Fio(0) = [ deN(e)G1s,0(, ). (18)

The total density of electron states with spin o is given by
1
0(E) = — v [Im Fy (E+i6)+3 Im F,,(E+id)]. (19)
T

Simtilarly, the conditional local densities of states g,,,(E)i.e. the density of states of electrons
with spin ¢ on the site belonging to sublattice A, if this site is occupied by an atom «, can
be expressed by

1
Qala’(E) = o ; {Im FAG(E a 15)_ T— [salo' LT Z).a(E + 15)]} ' 9 (20)

To complete the set of coupled equations let us write the standard formula for the electron
occupation nunibers
e 21
Moo = ] dEQui(E). i
All the quantities X ,,(w), 1,;, and Er. must be determined self-consistently through equations
(10), (13), (18) and (21). Using equations (9) we can write the effective atomic potentials
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and the effective intraatomic Coulomb integrals in the form:

) [Zla(a)) i Zl —a(@_)] <nl—d>
(o) =L Mae)
Z}.a(w) N z}.}— a(w)

= S 23):
B = =y 5

, 2y

ty(o) = 2;(0)—

3. Magnons in the effective medium

Let us assume that Hamiltonian H, has a ferromagnetic ground state. We can define
the magnon creation operator as follows

ﬁZr = Z b;u(p+Q3 P§ w)a;+qs+apu-—' (24)

psp

Here indices s, p label sublattices, whereas index r stands for different branches of magnon:
spectrum. Because of the w dependence the above definition differs from the usual one for
pure metals. For the sake of brevity we shall not write @ explicitly in further formulas.
The magnon amplitudes b}, (p+g, p) and the magnon energy are calculated by solving
in RPA the equation of motion for /3};, with Hamiltonian H,. We get the following set of
equations

(‘qu—Eq)bsu(p'I'q’ p)+ j.; tzp+qbi.u(p+ q, p)_ 2_; tzpbsl(p+q5 p)
s n

41, ‘
+5su W z (nk+qs+ —nks—)bss(k+Qs k) = 0’ (25)
k

where
Q= t—t,+In,_—In,,. (26):

Due to the symmetry of H, the amplitudes of the acoustical magnons satisfy
the following relations:

bi2(p+4q, p) = bys(p+4q, p) = biu(p+4, p),

by1(p+4, p) = b3 (p+q, p) = bay(p+4, p)s

bys(P+4q, p) = b32(p+4, P) = b3s(P+q, p) = baz(pP+4, p) = byu(p+g, p)
baa(p+4, D),

b,2(p+4, p) = b33(p+q, ) = bs(p+4, p)- 27y

In a semiclassical picture the above symmetry relations can be interpreted as the reflection
of “in-phase motion” of spins on different sublattices. In all considerations to follow we:
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shall be concerned only with acoustical magnons. From (25) using (27) we get equation

(28) determining in RPA the acoustic magnon energy spectrum

det [Flr(q’ Eq)_ai.r] = 0. (28)
Here the subscripts 4, r take the values I, 2 and

41 z
r;,(q,E,) = R]—' Ly(p+4, p, E) (nps— —1p4024), (29)
)4
with
(_1)l+rM-kt(p+qa D, E )
Li.r(p'*_'_q’ p, Eq) = - == - ] (30)
det I_Mu(p+q: P, Eq)]
where
ZZ 2
M11(P+q, D, Eq) = sz—Eq—t% (_p_’i-g -+ _p)
c R
A 2
+Uz3 l:2t(Zp+q p) 2t ( Pc ‘1 V f)
1
M,,(p+4q,p, q) = 342 (21)23+1)zp+q Z, = — i 7{. -
2 : L 1 p+q 212,
My(p+4, p, E)) = t°2,.4,7, L + R tuzz| 2i(zp4q—2,)— -2¢2 - + =/’

2 z§ z2 1 1
Mzz(l"l'q, b, Eq) = Qll_Eq—St —E" T R +6t Ua3Zpig2p o o —E ’ (31)

where the following abbreviations were introduced
cC = 912 _Zth"“Eq,
R ES 921+2tzp+q—Eq, (32)

and u,3, 0,3 are given below together with two other pairs of coefficients, which will be
used later (see (36))
, 1 1
=P Zp1qZp p = aF ‘1—2‘

U2dai Y 2\ ?
922—E4+t(zp+q_zp)_2tz< e + ‘RI’J')
c

N

2 2
tz _f_q+__p_ — 1tz A
( ¢ R (p+q p)

Uoph=e——— = Zz 22 ’
sz*Eq+t(Zp+q_Zp)“2t2< pc+q _RL)
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t —1z
Uy, = :(Zp—zzp+qu23)’ Vip = cp+q (1+2v,3),
t iz,
Uy = — §(2p+q“2u232p), Uy = E(1+2023)' (33)

The magnon amplitudes corresponding to the solution of equation (28) are
be(p+4, p) = d,B;(p+4, p), €0

where d, is the normalization factor and

Fll(q’ Eq)_1

41, 41,
Bsu(p'l'qs P) = le(p'"q, D, Eq)+ o Lsz(P+qs b, Eq)

(35)
N N Fu(q, Eq)
for (s, @) e {(1,1), (2,2)}, and
B, (p+4, p) = uy,B(p+4q, p)+v,B:(p+4, p) (36)

for (s, w) e {(1,2), 2, 1), 2, D)}

It is convenient to choose the normalization factor d, in such a way that operators f,, fi.
satisfy in RPA the Bose commutation rules {[B,, ﬁ}]) = Ogp-

By an expansion of (28) up to terms proportional to g squared one gets, employing
cubic symmetry, the spin wave stiffness constant in the form

Z [53#_( 1)s+u1—‘su(0 0)] [ *+G_—]

DAv.exch. S == ——— (3) s (37)
Z [30s— (= 1) 1700, 0)] 212 E L20) (154 —13-)
S, P
where the indices s, u, 5, fi take the values 1, 2 but s #§and pu # [
211" (1) (0) 1) 2
Fsu - '3—1_\]' [L (p) (nps— ps+) L (p)n ]V zp’
P
4Iu 2) (1) (0),,(2) 2
Gsp = gv {[Lsu(p)—Lsp(p)] ("ps—" ps+) Lsu DS+ iVZpI . (38)
p

The quantities L3)(p) are defined as follows

L(s(Za)(p) = Lsu(pa P, 0),

L(slu)(p) a Lsu(P+‘1: b, Eq)|q=05

0z

ptyq
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2

i)
L(szu)(p) = a_zz_' Lsu p+4,p, Eq)'q=0:

ptq
i}
L(s::a)(p) = 'a_E"q su(p'l'q’_p: Eq)lq=0' (39)

Replacing L (p+4q, p, E;) in (39) by n,,,, one can obtain the definitions of ns,.

Following Edwards and Fung [9] we call the contribution to the spin wave stiffness.
constant represented by the formula (37) the ““average exchange” contribution. This name
reflects the fact that (37) corresponds to the acoustic magnon propagating in the average
medium (in the case under consideration — in the medium determined in the single-site
CPA). Asit is well known in the single-site CPA one requires that a single scatterer imbedded
in the effective medium should produce no further scattering on the average [8]. The
vanishing of electron single-site ¢ matrix however does not imply vanishing of average
magnon ¢ matrix. To improve the description of our problem it is necessary to include
magnon scattering térms. This is the aim of the next Section.

4. Magnon scattering

The renormalization of the magnon energy due to the magnon scattering processes
can be found by a simple generalization of the method described by Morkowski in [3, 5].
It is very useful to set up the effective magnon Hamiltonian [4] in terms of magnon creation
and destruction operators ﬁ;, B, defined in the preceding Section (24), (34-36). For the
present purpose only bilinear terms in the effective Hamiltonian are needed, thus

Hee = Y, A(q, 0)B}By (40)
where 5
A(g, q') = <0 [B,, [H, B} 1110, (41)
and |0> denotes the ground state of H,. Calculations give '
A(g, 4') = Egdyq+ 2, P4~ 4)Ti(9: 4, (42

E? is the energy of magnons for an effective medium and

T..(a, q') = [t.—tx(@)1f(a, 4)+[1.— I (w)]h:(a, 9), 43)
with
fd, 4) =Y b3(p+4, Db, (0+4'; D) (Npue —Npigrs)

—bp(p+ 4, Pba(P+a, PHa—a") (Npa— —Rpigus)s

4 S 1 ’ 7
hy(g,q") = o z [6:.05(p+a, P)bis(P' + 4’5 D) (—BpigaaBp s gas

PPk
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+npl—np’+q'l+ —Npi-Tlpa- + np+ql+np'}.—)+ bfu(P’F q, P)bzu(l"l’Q', p)np’,l—(npﬂ— o np+q}.+)
+ b:l(p_'— q, p)bul(p'*' q, p+q o ql)”p’).+(np+qu+ - np/l—-)' (44)

_To calculate the magnon energy from the effective Hamiltonian we shall use the Green
function method. Let G, (@) denote the time Fourier transform of the retarded Green
function {B,(t); B})}. We get the following equation of motion

(CD i Eq)qu’(a)) s 5qq' + k; (pal(q - k) Ta}.(q, k)qu'(Cl)), (45)

where

E, = Eg"‘ Z}. 2.4(0)T,,(q; 9).

Let us define the function

2@ = 9:2@) =< P2D))s (46)

¢...) denotes configuration average. Observing that ¢,;(9)—<@,.,(9)) = —@.(g) and
using definition (46) we can rewrite equation (45) in the form

(0= E)Gag(®) = 04y + g P(q—k) (= 1)'T,4(g, k)Gig(@). 47

The magnon energies are determined by poles of the Green function averaged over configu-
rations of atoms (G, (®)). Similarly as in [3] one can observe that for 1 # p

<¢}.(k1) @l(km)(f’u(km+ 1) (pu(kn)>
= LPaks) ... Pa(kn)d {Pu(kms 1) - Pu(k,)D, (48)

due to properties of c*.

It is convenient to use the Kansyoshi iteration-decoupling procedure [7], and express
the averages of products of the stochastic functions ¢,(g) in terms of the cumulant averages
[10]. As a result we get the averaged Green function in the form

Gy (@) = 04y i E,—-T q(w)] £ (49)

The self-ensrgy part I'(w) can be written as a sum [(w) = I'{N(w)+T'P(@)+... of
contributions associated with single-site scattering, tones due to effzcts of pairs of scattering
centres etc. The single-site scattering contribution for all orders is given by

4
rd(w) = Z [Pz(x;.) Z (=t N Z T, (4> GO T, 4(k, q)

A aga k
4 n—1
+ .. Py(x;) E (=)t o hon (—1\—]) E Ty, 1(a, k)G T, ;(k k)G ...
01 . On kt .ookn—1

a9 T;z,.}.(kn—b q)+ "y (50)
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where G = (0—E)"!, P(x,) are the Matsubara—Yonezawa [10] polynomials and
x; = 3(1-p), x, = X3 = X4 = p.
We can expand f(q, ¢") and h,(g, 9°) in the long-wavelengths limit as follows

a4, 4) = - 4 +fPq"*

hia, @) = hiPq - 4'+hPq"?, (5D
where

R LN (CH O AT I

~(BL(P)*BR(P) (npa- =1y )] V21> 12,
P = —di[g Z (BL2D))* (np3- —ny s )Vz,
+3Y (Bffi’(p))2 (53 —n$) V2,12,
3 83 . ( )
P

= _nl

hP = —hP+d3 Y BD) (tpa-— 1) [3Y BApIn24 Pz,
P ]

+3 Y, BR0nG:1Vz,1%], (52)
p
and the definitions of B(')( p) are analogous to those introduced in formula (39) i.c.

Bfitl)x)(p) == Blu(p3 P),

Bf’l}l.)(p) = B}.p(p+ q, p)lqEOa
pt+q
2 .
(2)(p) = Bi.u(p+q: p)lq=0:
p+q
(3) g
20) = 35 PP+ Plemor (53)

The quantity d, is the g-independent part of the magnon normalization factor d, and
reads

dO — [Z (Bfl.(;.))2 (npl - —npl +)+3 Z (B(ZOZ))Z (np2— T np2 +)]— 1/2' (54)
r 4

Putting formula (51) into definition (43), one gets the following long-wavelength
expansion of T,,(g, g")

Ta;.(% q’) = Qg9 ° Q’+ga}.q’2, (55)
where

oy = [1,— ()} +[1, - I (0)]1SD,
L = [ta— 1)) £+ [T, — (@) ]2, (56
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Let us now turn back to the examination of poles of the Green function (49). To get
the explicit form of the spin wave stiffness constant the parabolic density of states of
unperturbed magnon states up to a certain cut-off value and vanishing density of states for
higher energies was assumed and the coefficients T,,(g, ¢') were taken in form (55). We
found the following formula for the spin wave stiffness constant, including both the
“average exchange” and the “magnon scattering” terms

D)= Do+ » > P 3(H5 2 e | 2o 50

where

Do(p) = Dyy.exen.t ; X;[(a2:—a12)+(822—€12)] (58)

5. Summary

A method for calculating the magnon energy in itinerant electron ferromagnetic
alloys AB; having a non-vanishing long-range order parameter was developed. It was.
shown that in the CPA equations for the proposed four-sublattice model it is easy to replace
the summations over k space by one dimensional integrals thus making the formulas
convenient for numerical analysis.

The problem of effect of ordering was formulated in two steps. First unperturbed
magnons have been defined but already for the effective-medium with potentials determined
in CPA. Next the renormalization of magnon energy due to the deviations from effective
potentials was calculated by a perturbational procedure. The numerical analysis of the
general formula (57) for the magnon energy stiffness constant is under way and will be
published elsewhere.

The author would like to express his thanks to Professor J. Morkowski for suggesting
the problem, as well as for many helpful discussions, critical remarks, and for reading the
manuscript.
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