Vol. A58 (1980) ACTA PHYSICA POLONICA No 4

GAPS IN THE SPINLESS COLLECTIVE EXCITATIONS OF *He-B
IN THE PRESENCE OF THE DIPOLE FORCES*
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Gaps in the density and transverse current excitations were investigated in the
presence of the Fermi-liquid and dipole interactions. It was shown that the gap in the
density excitations is always greater than the gap in the transverse current excitations,
provided that dipole forces are taken into account. The dipole correction parameter prop-
erties are discussed in detail.
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The purpose of this paper is to discuss the effects which occur in the superfluid *He-B
and which can be helpful for evaluation of the second Landau parameter F,. The precise
calculation of the F, is essential to improve the description of the response of the super-
fluid system. Now, it is known [1-4] that parameter F, is strongly connected with a gap
in the spinless, i.e., density and transverse current, collective excitation spectrum. We
discuss this problem in detail for the dipole interaction taken into account.

The spinless collective excitations can be defined by means of the poles having the
following correlation functions: density-density, density-current and current-current, [1-5].

The collective excitations which appear in the 3He-B can be classified in terms of the
two-particle states [2, 6-8]. These states have the following quantum numbers: the angular
momentum L = I, spin § = 1 and the total angular momentum- J, where 0 < J < 2
and its projection M is such that |M| < J. Collective excitations with the gap, given by
the pole of the density autocorrelation function are the excitations to the state J = 2,
M = 0. On the other hand, the colleciive excitations given by the pole of the transverse
current autocorrelation function are the excitations to the states J = 2, M = +1 [1, 2, 8].
Both kinds of excitations can be observed experimentally. They are connected with the
propagation and attenuation of the sound [2-4,9]. When investigating the density auto-
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correlation function, one obtains that the oscillations of the density are attenuated for
the frequency equal to the gap longitudinal collective excitation (J = 2, M = 0), whereas
for the frequency equal to the gap of the transverse collective excitations (J = 2, M = +1),
the homogeneous oscillations of the tramsverse current become possible. This problem
was discussed by Czerwonko [1], Wolfle [3, 4], Maki and Ebisawa [10], and Maki [8, 11].
They showed that the value of the gap can be computed from the equation
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and this frequency is identical for two kinds of the collective excitations discussed, i.e., for
J=2,M=0and J=2, M= +1. This is not surprising, because our system, in the
absence of dipole forces, is invariant under separate rotation of spin and momentum
variables and at the homogeneous limit, i.e., for £k =0, and M = 0 with M = %1 are
different components of the same representation with J = 2.

To solve such specified problems we used the microscopic formalism developed by
Czerwonko [5]. The dipole interaction, which is a weak spin interaction, can only modify
the pairing interaction, (cf. [7, 8]). Hence, the total interaction in the particle-particle
channel has the form

Vij = —3810u0:0:+% gol 60— 3(6:i— 61 (B;— P16 —1'1*], @

where g, and g, -are dimensionless factors connected with the pairing and dipole interac-
tions, respectively. Indices 7 and j define the parts of the interaction in the spin space. We
have also g; > gp > 0. This inequality allows us to restrict ourselves to the first Legendre
harmonic only of this interaction. Our further calculations are analogous to those, which
we have developed for the investigations of spin collective excitations of *He-B in [7].
Since the present calculations are very arduous and some of their interesting features can
be obtained easily [7] we omit them and restrict ourselves only to the discussion of the
imposed conditions. First of all, we emphasize that the dipole contributions to both these
cases completely coincide.

Although the dipole interaction breaks the symmetry of the system, it distinguishes
no direction. Nevertheless, we assume that our system distinguishes one macroscopic
direction k, and hence the equilibrium state is the linear combination of two-particle states
with a fixed M = 0. This problem was discussed in detail [7] recently, and as we have
shown such an approach is the most general possible. The existence of the distinguished
direction causes the collective excitations with the same M to mix mutually.

For convenience we can perform the transformation which allows us to link the separate
collective excitations with the quantum number J. The transformation changes also the
equilibrium state into the J = 0 state and strongly disturbes the interaction in the particle-
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-particle channel (cf. [7]). This causes splitting of the density oscillation gap and the trans-.
verse current oscillation gap, in spite of the great symmetry of such selected problem.
Since we search only the collective excitation gaps we can restrict ourselves to the homo-
geneous limit, (k = 0). Taking k = 0 when simultaneously the direction k is held, is
a quite justified procedure. It is equivalent to the one where we first calculate the correla~-
tion functions for an arbitrary k, and next looking for the collective excitation gaps, we-
tend to zero with k in the polar parts. Roughly speaking, we assume there exists a residual
inhomogeneity, k, which defines the direction, f, but which is so small that all the contribu-.
tions from it can be neglected. Let us write down now the denominators of the correlation
functions. We introduce them in the form of determinants
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D, is the denominator of the density autocorrelation function, whereas D, is the denomina-
tor of the transverse current autocorrelation function. Since g; < 1 and gp/g; < 1, the
term gp/g? is greater than gp/g, and could be even of the order of unity.

The form of the parameters g, and g, can be found from the zero-temperature weak-
~coupling Green’s functions formalism. Czerwonko [5] reckoned g, in the dependence on
£, and A with the assumption that the dipole interaction should be neglected. The dipole
interaction modified this dependence. and the appropriate equation has the form [7]

e§+\/s§+A2]”1

v ®

g1+3 8 = I:ln
Considering the cut-off parameter &,, we usually assume that 4 < ¢, <& (e — Fermi
energy). Leggett [12] and Wheatley [9] estimated this for 0.7 K in the temperature scale,
A = 1.75T,. We see from Eq. (5) that the inclusion of the dipole interaction leads to an
increase of 4 (4(gp) = 4(0)exp (g0/22%)). The g, value appearing in our formalism is
.diffzrent from those given by Wheatley [9] since the dipole interaction has been renormalized
together with the pairing interaction, by the introduction of the cut-off parameter &,.
‘Such renormalizing transformation was described in detail by Czerwonko [5]. The simple
.calculations allow us to prove that gp/g? is an invariant under the renormalizing transfor-
mation, i.e. gp/g7 does not depend on ¢, (cf. Appendix). The expression gp/g? is the new,
universal parameter of the developed formalism and final results depend only on it. We
<all it further by

g = golgr (6)

‘Now using Egs. (5) and (6) we can express g; and gp, on the dependence on ¢, in the form:

b +\/82+A2 1/2
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Furthering our calculations, we assume that all terms, g", for n > 2 are much smaller than
-unity and are not significant. In such a case we obtain

DII s 7‘533 and D_L = 7'555. (8)

‘Hence, for gaps of the collective excitation spectrum, we obtain two following equations:
o’ [14+5% F,F(@)] = '¢ 4*[1+3% F,F(w)] [1+9g/4F(w)], ©)

0 [14+5% F,F(0)] = # A[1+} F,F(0)] [1—3g/2F(w)]. (10)

Let us indicate the solution of these equations by w and @, and by w, the solution of
Eq. (1). The accuracy of our calculations allows us to assume that o and o, are modified,
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in comparison with ,, by quantities 1 and g, of the order of g, and can be taken in the
form:

o = o(l+4) and ;= wo(l+p). (11)

Substituting the first formula of (11) into (9) and the latter into (10), confining ourselves
to the terms up to the order of g and eliminating F, from the first order terms via equation

(1), one finds that [1]:

A= 9g/8E3/5(a)0), u= —3g/4E3,5(a70), (12)
where
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and
0o = § Quwy+3w)). (14)

Let us consider now the function E(w). This can be rewritten in the form:

E L[ de  thFTART) [, 4 o \2 P
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This function is, of course, always positive. Hence, from Egs. (11)-(15) we obtain the
following inequalities:

) < () < 60”. (16)

Investigating the function E(w), we find that its minimum value is reached for wo = 2./s4,
Le. for F, — 0. Czerwonko {1] discussed in detail the solutions of Eq. (1) as a function of
F, and temperature. According to this calculation, w, tends to 24 and the finction Efwy)
tends to infinity if F, tends to infinity. For F, tending to minus five at T = 0, i.e., to the
border of stability of the system w, tends to zero and, from Egs. (13)~(15), ), and o,
also tend to zero. According to Eq. (13), the difference w;—m, is proportional to the
function w,/E3;s(w,). This function has a sharp maximum in the vicinity of w, = 2\/§A.
This causes the dipole interaction to be the most important if F, is close to zero.
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The sole characteristic quantity modifying the results is the renormalization invariant, g.
This value should determine the magnitude of corrections connected with the dipole
interaction and, hence, decide whether the dipole interaction can be neglected or not.
The experimental results carried out so far do not permit an estimation of the parameter, g.
Egs. (9)-(14) should also allow us to determine F, more precisely [1, 9, 13]. From the
formalism developed one can find that the density autocorrelation -function discussed
vanishes in the homogeneous limit (k¥ = 0) even without the extra assumption on g"

From Eq. (3) we find also that the inclusion of the dipole interaction does not change
the zero sound spectrum. These two facts confirm the corectness of the formalism developed.
The factors n;, and 744 cannever equal zero, since w must be less than 24 in order not to
destroy the superfluidity.

The author is greatly indebted to Professor J. Czerwonko for help in the realization
of this paper. The author would like to express his gratitude to participants of the Winter
School of Theoretical Physics in Karpacz and particularly to Prof. A. J. Leggett-and Prof,
P. Wolfle for appreciation of this work, and to Dr. M. S. Wartak, Dr. K. Nagai, and
Dr. L. Jacak for discussions of this problem.

APPENDIX

The formalism developed contains an artificial parameter, so-called the cut-off param-
eter, ¢,, and connected with it the parameter, g,, ([5] and Eq. (12)). Since the final results
contain contributions proportional to the parameter, g, Eq. (6), one can ask if the final
results depend on &,. We show below that the parameter, g, does not depend on ¢,. Deriving '
the basic equations of the formalism, we apply so-called the renormalizing transformation
given by the equation: [5]

V=(@A+Va)r. (A1)

We use the matrix notation, where ¥ and I" are the renormalized and unrenormalized
interactions in the particle-particle channel, respectively. & is the cut-off kernel and if
4 <&, <& it has the form [5]

A = G~GO(le]—¢,). (A2)

We assume that the renormalization transformation does not change the interaction
structure, i.e., ¥ and’ I have the same structure. As we showed in [7], the interaction,
¥, in the presence of the dipole forces has the form:

V= —g.(1+0) [i+%ocﬁ], (A3)
then I’ has to have the form:

= —h1+p [A+y01 (A4d)
The factors, o= g,/gp)> B and y are small quantities in comparison with unity, and we

hold them only in the first order in all equations. If we substitute Egs. (A3) and (A4)
into Eq. (AI) and compare the appropriate factors standing near the Opc1'§tor, i,or, U, on
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both sides of the equation, we obtain two independent equations. Now, we can compare
the quantities of the same order in the first equation, and hence, we obtain the two following
equations:

g1 = (1—g1)h, (A5)
ugy = —ag,Lh+p(1—g0)h. (A6)
Inserting Eq. (AS) into Eq (A6) and after further calculations we obtain
LTI (AT
g h

Both renormalized parameters g; and gy, are the functions of the cut-off parameter &,.
However, according to Eq. (A7) the choice of the cut-off parameter ¢, is quite arbitrary,
thus, the parameter g(= «/g,) does not depend on &, and is the invariant of the theory.
The parameter g is always equal to /4 and independent of ¢,, although:

81 = 81(¢) and  gp = gp(ey). (A8)
The expression
gD(ep)
= (A9)
gilep)

must be independent of g, and is the invariant of the theory. The second one from the
equations previously obtained has the from:

$ogy = —tagidh+y(1—gf)h. (A10)
This equation is analogous to Eq. (A6), hence
y =28 (A1D)

Since the dipole contribution parameter g is independent of the artificial, cut-off parameter
&p, it shows its physical nature. We do not have enough information to-estimate the
parameter g, correctly. That is why we will think of g as a phenomenological parameter.
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