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The thermodynamic behaviour of a metal, i.e., an assembly of ions and electrons
having an ionic atmosphere about each ion are studied from the point of view of the Debye-
-Huckel theory of ionic solutions. To avoid an inconsistency between a partly microscopic
and partly macroscopic approach, the value of the dielectric constant, D, for the medium
in the Poisson equation is taken to be unity, i.e., the solvent is absent. The contribution due
to the ionic atmosphere in the expression for the free energy is calculated and then added
to the kinetic energy and internal energy of the assembly to obtain the total free energy. For
experimental verification the free energies ‘“‘based on H: 265” are calculated for the liquid
alkali metals for the range of temperatures from 298 K to 800 K from the expression for
free energy obtained here. Also the values of entropy at the melting points are calculated
for liquid metals and then subtracted from the accepted values of entropy for solid metals
at the melting points to obtain entropy changes. It is striking to note that the agreement
between calculated and standard values in both cases are fairly good.

PACS numbers: 61.25.Mv, 05.70.Ce

1. Introduction

In the Debye-Huckel [1] theory of ionic solutions, ions are distributed according
to the Boltzmann distribution formula and the effect of the Coulomb interaction (assumed
to be of an electrostatic nature) is taken into account through the Poisson equation. In
this theory the notion of ionic atmosphere is important. It is characterized by a certain
regularity in the distribution of ions. This notion of ionic atmosphere is also introduced
in other theories of assembly of charged particles like plasmas etc.

It is easy to see that in the Debye-Huckel theory and its modifications, the effects
of the Coulomb interaction is considered for solute ions but the effect of the solvent is
considered through the introduction of the dielectric constant in the Poisson equation.
In these theories the molecular (microscopic) structure of the solute is used but at the
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same time a macroscopic picture is taken for the solvent through the dielectric constant, D.
While the ionic picture of the solute is introduced, to take the effect of the solvent into
account through the introduction of the dielectric constant, the solvent is continuum,
appears to be a very gross approximation. Thus there is a logical i inconsistency in the theory.
So in the present work, the value of the dielectric constant is taken to be unity to avoid
an inconsistency between a partly microscopic and partly macroscopic approach. This
means that the solvent is absent or equivalently, the substances are in the pure state.
Here, as the metals are taken in pure state, there is no solvent medium, i.e., D = 1. In
this connection, it is to be mentioned that the present model is logically more consistent
as the model is fully microscopic.

With this objective in view, in the recent papers of Pal and Chakrabarti [2, 3], free
energies of the alkali halides in the solid phase were investigated for a range of temperatures
from 298 K to 800 K by the technique of the Debye-Huckel theory, after replacing the
Boltzmann distribution formula by that of Dutta-Bagchi [4] and Dutta [5] respectively.
In another paper of Pal and Chakrabarti [6], the free energies of alkali metals were in-
vestigated by the use of the distribution formula of Dutta [5]. There in all the papers
[2, 3, 6], in the Poisson equation, the dielectric constant, D, for the medium was taken
to be unity and excellent agreement was obtained between the calculated and accepted
values. In the present paper essentially the same idea is considered and the free energies
of the liquid alkali metals at different temperatures are calculated by the standard technique
of the Debye-Huckel theory. Also the entropy changes at the melting points for the liquid
alkali metals are calculated. The effect of the Coulombian interaction between the positive-
ly charged ions and the negatively charged electron gas is taken into account through
the Poisson equation. Of course, the values of the diclectric constant, D, is taken to be
unity, i.e., the solvent is absent. Here, agreement of the calculated values with the accepted
values, given in the standard tables, are satisfactory. '

2. Calculations

Assuming that the Boltzmann law of the distribution of particles in a field of varying
potential energy is applicable to ions, the time average numbers of positive ions (dn,)
and of electrons (dn_) present in the volume element dV are given by

dny = n, exp (FZ.ep/kT)dV, 1

where #,. is the number of positive ions or clectrons in a unit volume and v is the time-
-average of the electrical potential in the volume element dV. ¢, k and T have their usual
significance.

The charge density in a medium of dielectric constant, D, is given by

0= (Zidn,~Z_ dn )|dV = —(s*yp > nZ})[kT. (2)

The most direct method of evaluating y is by solving Poisson’s equation

vy = —(4mo)/D. 3)
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The solution of Poisson’s equation is given by Debye-Huckel [1] as

Ze exp (ya) exp (—x7)
D 1+ya r ’

4re? 2
= (DkT Z nizi2> . &)

12

i) = — (@)

where

The potential energy of an ion with respect to its ionic atmosphere is therefore

Z.
u; = j D—‘g dnriodr = —(ZEe*y)/D(1 +ya). (6)
r
From equation (6) the following is obtained for the potential at an ion with the charge:
VA
v = —(Zgx)/D(1+ya). (7y

The free excess energy from the potential at the point occupied by the ion using
the charging process is

w = sil Ni jf ’lp,(l)ztsdl (8),&
i=1 0
= 4 sg [(nZ?e*)/D] } (AdD[(1+Aza), )
i=1 4]

where (1) is the potential corresponding to a system with the charges AZ; and y(1) = Ay..
Thus the work required in charging a single positive ion is given as

- Z +3)_2_J_C
D(xa)®

) [xa—(xa)*/2—1n (1+xa)]. (10)

In this paper
n,=n_=mn D=1 Z,=272_ =1,

a is the radius of a sphere whose volume is equal to the volume per conduction electron,.
given by [8]

VIN = 1/n = (4na®)[3 or a = (3/4nn)'/? (11)y
and n = (0.6025x10%* x ¢,)/M so that
x> = (8ne’n)/kT 12y

W = e’g[ra—(xa)’/2~1n (1 +xa)]/(xa)>. (13)
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For one gm mole (1 . = n— = N = Avogadro number), the total work required in
charging all the positive ions is

F = N&’y[ya—(xa)’/2—In (1+ xa)]/(xa)>. (14

On adding the contribution made to the free energy by the translational motion of
the ions and contribution due to internal motions we obtain, as an expression for the free
energy of metals in vacuum,

Nh? ] Ne’x a(xa)z
ar M 2

where M is the atomic weight of metals, ¥ is the volume of metals in c.c., e is the base
of natural logarithm.

Entropy
dA Nh? 1 TNw Ne’y
Sh SRR [ SR St 1 16
(dT )V n[(2anT/N)3/2Ve] [ T aT(+ xa)] (16)

Su = Sliquid_Ssolid (17)

A= NlenI:-

EETREN 4 e 3NKT, (15
(aMETINY Ve 2 +Xa)] T )

and

dA , dA
FoU=HO-TS = HO4+T{— | ... —(FS—H3o)/T = —(H3—H2%a)/T—[—] . (18)
dT /v dT J,

3. Results

From formula (18) the numerical values of free energies “based on H3,,” are calculated
from 298 K to 800 K. The radii of the free electron spheres are slightly adjusted from
that of the exact values as in equation (11), only at room temperatures, i.e., at 298 K and
then these adjusted values are kept unaltered at other temperatures. In the previous three
Ppapers [2, 3, 6] we have considered the temiperature variation of ‘“a”. In the present
paper we neglect it as it contributes nothing significant to the results. The density, or,
-of the liquid alkali metals at different temperatures, T, are taken from Weast [9]. The
values of Hy— HJ,q of the liquid alkali metals are taken from Stull and Prophet [7].
A table of both calculated and accepted (standard) values of — (Fe— H3og)/T is given
(Table I). Also from formula (16) the numerical values of the entropy of the liquid metals
at the melting points are calculated. The values of entropy thus calculated are subtracted
from the accepted values [7, 10] of the entropy of solid metals to obtain entropy changes.
In Table IT calculated and accepted values of the entropy changes are given. A comparison
between the calculated and accepted values [7] in all the cases clearly reveal that fairly
good agreement is obtained.
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TABLE I
Free energies based on H3os for liquid alkali metals
—(F§—H3%58)/T in calories per degree mole
Metal e = -
298 K 1 400 K 500K 600 K 700 K 800K | a(A)
accepted 8.113 ! 8.405 8.951 9.557 10.158 10.734 ]
Li | L= e e -~i 1.81
calculated 8.115 1 8.594 9.103 9.590 10.043 10.462
accepted 13.827 14.130 14.693 15.314 15.928 16.514
Na | 2.3
calculated 13.838 14.210 14.653 15.091 15.508 ‘ 15.894
|
accepted 17.078 17.381 17.944 18.566 19.182 19.772
K —_ _— 2.8
calculated 17.115 17.422 17.826 1| 18.459 18.642 19.023
accepted 22.005 22.306 22.869 23.494 24.117 24.718
Cs | — 3.3
calculated 22.118 22.357 22.716 23,100 23.480 23.848
TABLE 1I
Eﬁtropy changes of melting
T Ssotia(acc) Shiquia(calc) Sm(acc) Sm(calc)
Metal (K) e.u. e.u. e.u. e.u. a(A)
Li 453.7 9.10 10.57 1.50 1.47 1.81
Na 371.0 13.35 15.07 1.70 1.71 2.30
K | 336.4 16.15 17.77 1.70 1.62 l 2.80
Rb 312.6 18.35 20.02 1.68 1.67 2.90
Cs 301.5 20.40 22.18 1.65 1.78 [ 3.30

4. Conclusion

In this paper the free energies and the entropy changes are calculated by the standard
technique of the Debye-Huckel theory of ionic solutions. However, the main difference
is that instead of the electrostatic force between the ions the force is berween the positive
ion and electron. Also when taking D = 1, the unsatisfactory feature of considering both
microscopic and macroscopic picture together was avoided and the substances are in the
pure state. The good agreement provides stronger support for our new model.
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In this connection the following points may be noted. A liquid metal is a severe test
for any liquid theory. Since the conducting (nonlocalized) electrons of a metal are spread
out over the positive ions, rather than the metal atoms, it is the metal ions which become
displaced from their lattice positions or fluidized. The force of interactions between the
atoms in a metal is electrostatic in nature and depends on the distribution of outer electrons
in space. It is the attraction between the positively charged metal ions and the negatively
charged electron gas that binds the configuration of the system. Drude [11] and Lorentz
[12] assumed that the free electrons in metals could be treated as an ideal gas of free parti-
cles when in thermal equilibrium, and obey Maxwell-Boltzmann statistics.

The author expresses his earnest gratitude to Professor M. Dutta, Professor-in-Charge
of S. N. Bose Institute of Physical Sciences and Professor, Centre of Advanced Study
in Applied Mathematics, Calcutta University, for his valuable suggestions and guidance
at every stage of the work.
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