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DESCRIPTION OF THE DOMAIN STRUCTURE IN THE THIN

FERROMAGNETIC FILM NEAR THE PHASE TRANSITION

POINT FROM A STATE-OF HOMOGENEOUS MAGNETIZATION

TO THE DOMAIN STRUCTURE INDUCED BY A CHANGE IN
THE EXTERNAL MAGNETIC 'FIELD
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On the basis of the self-consistent theory of the phase transition process from the
homogeneous magnetization state to the domain structure analytic expressions for magnet-
ization in the domain, the structure’s perlod and the domain wall’s thickness as functions
of the external field and the film thickness are derived. On the basis of analytical expressions
numerical calculations are made and the results are shown in the graphical form. The ma-
terial data for cobalt and permalloy are given. The value of the critical field is found. The
region of the external field’s intensities, for which the method presented here may be applied,
is established.

PACS numbers: 75.70.Kw, 75.60.Ch, 64.70.Kb

1. Introduction

Suppose we have a thin ferromagnetic film of thickness L with surfaces placed in
an (x, y) plane and the easy axis of magnetlzatlon perpendicular to the film plane. Suppose
an external homogeneous magnetic field H = [0, A, 0] is present. We make the assump-
tion that the thickness L is larger than the critical thickness L, and the external field H
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is less than the critical field H,. The energy F of the thin ferromagnetic film is described
by the function

F = [ {3 a(Vi)2~L pMZ— HM,—L H*MI}aV, W
v

where o is the isotropic exchange constant, f < 4= is the uniaxial anisotropy constant,
H = (0, H, 0) — the external magnetic field intensity vector, H® — the demagnetization
magnetic field vector. In order to find the demagnetization field vector H® = HY7) as
a function of the magnetization distribution M = M(r) in the film we take into account
Maxwell’s equations in quasi-static approximation

rot (H+H® =0, div(H+4nM) = 0. )

The requirement of the extremum of the energy function in the form (1), with (2) taken
into account leads (see [1, 2]) to the equation
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In the above e‘qﬁation we restrict ourselves to nonlinear term proportional to mz’. We
introduce the notation: k& = H/My; m, = M,[My; My = M = const.

2. The description of the domain structure in the thin film

As it is shown in [L] for external magnetic field values near the critical value /4, we may
investigate the solution of equation (3) in the form m,(x, z) = m(x) cos (k;z) (where
k, = n/L), assuming that m(x) is a periodic and oscillating function, which for 4 — A,
behaves-like sin (xx).

By %, we denote the external magnetic field intensity value for which the phase transi-
tion from the homogeneous magnetic state to domain structure occurs. In the interval
of the magnetic field value f—h < 4k, [4nfo/(4n+ B)1*/2 (see [1]) we can restrict ourselves
to taking into account the first harmonic cos (kz) only. Then equation (3) takes the form
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In the first step of the iteration procedure of equation (4) (see Appendix) we obtain for
the magnetization distribution the equation

*m(x)

= +Bm(x)—24m*(x) = C, ®)
o0x
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where
i i
A=+ —, (6)
o
B = o~ Y(f—h—oauxg(h)x*(h)), @)
47h
qh) = k2 ———.
olh) : a4+ h) @)
Integrating equation (5) we obtain
dm(x)\* o ) )
3 = Am”(x)—Bm*(x)+2Cm(x)+ C;, ©)
x

where. C; is the new constant. If m(x) oscillates around the value m = 0 then the constant
C must be equal to zero. The constant C, will be determined later.

The investigation of the periodic and oscillating solution satisfying the initial condi-
tion m{x = 0) = 0, leads to the result

m(x) = mg sn (kx; k), (10)
with
2 1 \/ 2
k” = 3 (B—vV B“—44C)), (11)
k* = (B—vB*—4AC,) (B+v/ B*—44C,)™ ", (12)
mg = A™ K%k (13)

In order to obtain the x = x(h) dependence we have to solve eqization (11) with regard
to k. The single-valued x = x(%) and periodic 7 (x) solution may be found if we choose

i p—h z
Ci=41 [( ) —xg(h)] 14)
20

Then the functions (%), the modulus k(4) of the elliptic integral and the amplitude mo(k)
of the magnetization are of the form

B—h h—h

k) = —— = kiB+ (15)
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KA(h) = 1= ™ *(h) = 1—4B*(h), e

8(he—h) (B—h-+2ur3(B))

ma(h) = 3 af ™ [K*(h)—x(hye *(h)] = - 17
o) = 5 af™ [k (W) —xo(h)x™“(h)] 36G—h) an

The value of the critical field &, may be determined from the condition
Kg(he) = K*(ho), (18)

which is equivalent to & = 0 or my(h) = 0. In the first approximation with regard to
the small parameter axZ(f) < B the solution of equation (18) has the form

he = B=20r5(P). (19)

So the process of solving the nonlinear equation (3) is finished. The approximate
solution describes the magnetization distribution in the x-direction. The investigation of
the magnetization heterogeneity in the perpendicular to the film plane direction has been
done in [2]. The magnetization heterogeneity distribution in the x-axis direction, computed
by us, shows the existence of domain structure with the period
hc— \ —1/2
20 ’

4 = 4K(k) <K3(ﬁ)+ (20)

where K(k) is the complete elliptic integral with modulus £ defined by equation (16).
‘Taking into account (9), (14), (17) the thickness of the domain wall
8 = 2mo(dm(x)]dx);2, may, be rewritten as

ho— 1|12
~ ] . @1

5= 2[K%(ﬁ)+

In order to illustrate the dependences magnitudes my, 4,0 on (h,—h)/f we introduce
parameter L; in the following form:

20 ‘
L, = 5 Ko(B)L. (22)

With the above notation expressions (15), (16) may be expressed as follows:

2y = 2 (51 i h°"”), (23)

20\ L B

-2
= h°_h] ) (24)

2 — — - |
K(h) = 1 [1+L1 g
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Choosing the thickness L = 20L,; for the dependences (17), (20), (21) and the ratio /4,
we obtain the following plots for them

HFJL
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Fig. 1. The plot of magnetization amplitude changes as function of the external magnetic field
Fig. 2. The plot of structure period changes as function of the external magnetic field
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Fig. 3. The plot of domain wall thickness changes as function of the external magnetic field
Flg 4. The plot of ratio d*/A* = 1/2 K(k) changes as function of the external magnetic field
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3. Concluding remarks

The dependences illustrated by Figs 1-4 describe the dimensionless magnitude, the
shapes of which are independent of the kind of the ferromagnetic material forming the
thin film. The choosing of the interval 0 < (h,—h)/f < 0.05 arises from the omitting,
in analytical calculations, the terms involving the higher harmonics in the solution of
equation (3) (see [1, 3]). To obtain real values of the magnetization in the domains
M, = Mym,, the structure period A = Wﬂ.* and the domain wall thickness
5 =1/ 2a/p6*, we must know the material constants which for instance, for permalloy
[4] « = 2.7 -10-*2cm?, B = 2.6, M, = 860 Gs. The critical value of the external field
H, = Moh, for L =20L; = 116 -10-°cm is H, = 2124 Oe. The external magnetic
field range of changes 2018 Oc¢ << H < 2124 Oe and \/ M = 1.44 -10-¢ cm. In this
range of changes H the magnetization M, changes from 0 to 387 Gs, the structure pe-
riod 39.3 - 106 < 4 < 40.5-10°cm and domain wall thickness 9.1 -10-°cm < &
<129 -10-¢cm. For cobalt with « = 1.4-10-*>cm? and f = 2.5, M, = 1400 Gs
(see [4]) we obtained the ranges of changes 3159 Oe <X H < 3325 Oe, 25.8 - 10-% cm
<A<266-10%cm, 6-10-%cm <5 <8.5-10-°cm.

APPENDIX

The differential equation (4) may be described as the integral-differential equation

62m(x) ﬁ h ﬁ , 4nh i
- m)= 2w o [ meax =0 an

In order to solve this equation we employ the successive approximation method with the
formula

Pmyn(x) B
(('3x2) + e Mgt 1H(X) —

D , 4nh
—m X)+k? ———— || mgy(x)d*x =0, (A2)
G M (TR s || ) (A2)
in which as the zero approximation m(o)(x) we choose the solution of the linear equation
moy(X) ~ sin xx. Finding the solution in the first step of the approximation procedure
we make the following approximation: ;

[ moy(x)d?*x = —&"mey(x) & — K m (%) | (A3)

which enables us to reduce equation (A1) for m;,(x) to a second order nonlinear equation
in the form (5).
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