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Within\the fine-structure energy scheme, photoelectron angular distributions in two-
-photon ionization of unpolarized ground state alkali atoms with two different light beams,
the one exciting and the other ionizing, are studied theoretically applying second-order
time-dependent perturbation method. Relevant formulae are proposed in a form directly
applicable in experiment to measure the difference between non-Coulomb phase shifts for
the $and D partial waves of the photoelectron. Emphasis is laid on disclosing analogies
between the distributions for two- and one-quantum atomic photoeffect. The pioneering
experiment of Duncanson et al. on Na atoms ionized resonantly via either the 3Py or
3Pz, state is commented.

1. Introduction

Experiments on near-resonant two—#hoton ionization of alkalis are known [1, 21
to provide valuable knowledge on two dynamical atomic parameters, namely the appro-
priate bound-free radial integrai ratio and the difference between non-Coulomb phase
shifts of the partial photoelectron waves involved, which are by no means easily calculable.
Explicitly, if a ground state alkali atom is assumed to undergo ionization via the nearly
resonant intermediate state nP;, the parameters accessible to measurement are d ;= R(nPy,
KS)/R(nP;, KD) and cos(d,—0ds), with R(nP;, KS(D)) the usual electric dipole radial
integral connecting the state nP; with the § and D continuum state, respectively, and Os.p
the non-Coulomb phase shift of those final electron states. The required near-resonance
with some nP doublet level can be produced [3] with the help of e.g. a tunable dye laser,
whereas ionization from the excited state can proceed due to the light beam of another
laser. In such two light beam experiment, information on the parameter d; alone can be
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extracted from various measurable total characteristics ¢.g. the rate of ionization, photo-
electron polarization and yield asymmetry. The relevant formulae required to this purpose
have recently been derived by us and extensively discussed elsewhere [4-8]. However, to
gain information on the parameter cos (0p— dy), strictly calculable for the hydrogen atom
only, angular distributions have to be measured. To my knowledge, only one measurement
of this type by Duncanson et al. [3] has hitherto been reported; thus, further experiments
in this field are necessary. Obviously, it is desirable to have appropriate analytical equations
for the distributions in question to this practical aim. Some have already been mentioned
by us [9], permitting the measurement of the troublesome parameter cos (5,— ) from
the spin-depolarization degree of photoelectrons produced from polérized target atoms
by linearly polarized light. In the present paper other formulae are proposed, more con-
venient in applications, since neither polarized targets nor photoelectron polarization
measurements are required in the cases to be considered in this paper.

a

2. Method of calculation

2.1. Assumptions and geometry of the process

Let the alkali atom be unpolarized in its ground state 7,S;,, and occupy the origin
of the Cartesian system XYZ. In the +Z direction two different photon beams are propa-
gating, the one exciting (labelled 1) with the frequency w,, intensity /; and polarization
1, and the other, ionizing (labelled 2) with the parameters @,, I, and e,. The frequency
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Fig. 1. Geometry of the problem (a) and reduced energy spectrum of the ionized atom (b) used in the
calculations. For explanations, see text

w,, contrary to w,, is assumed to be tuned to the vicinity of some nP doublet allowable
by the selection rules for the E1 transition. However, the detuning from exact resonance
with the component nP;, or nPs; of the nP doublet is assumed to exceed the hyperfine
splitting of the components so'that the fine structure energy scheme of the ionized atom
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is fully justified in our subsequent considerations. Furthermore, the intensities of the inci-
dent beams 1 and 2 are chosen so that the predominant way of ionization is by successive
absorption of the'energy fiw,+hew, i.e. first a photon from beam 1 and then a photon
from beam 2 in an elementary two-photon event. As regards the polarizations of the
incoming light beams, these are assumed to be elliptical but, in general, with different
ellipticities 0 <C x; << 1 and 0 << k; <1, respectively. By assumption, the major semiaxis
of the polarization ellipse of the ionizing beam 2 coincides with the X-axis, while the major
semiaxis of the exciting beam 1 is tilted at an angle y with respect to the X-axis (Fig. 1).

2.2. Transition amplitudes -

‘The quantity most fundamental to the description of the entire physics of the process
in question is the transition amplitude, to be henceforth denoted by M ;,fL for two-photon
ionization from the ground state n,S;,2(i;), where the Z-component of the valence
electron spin is y;, to the continuum |K, g;> with momentum #K and spin projection
onto the Z-axis equal to y;. Under the above assumed condition of near-resonance with
the nP doublet and within the standard second-order time-dependent perturbation approach

and fine-structure energy scheme, the following approximation

M <K, py Igz : 7]"Pj> <”Pj|g1 : ;InOSI/Z(ﬂi)>
pos = e ——— — O
W, ;— 0y
ji=1/2,3/2

holds for the transition amplitude, with ¢, - 7 and ¢, - 7 operators specific for the electric
dipole coupling between atoms and photons, and #iw, ; the energy of the intermediate
state nP; measured with respect to the ground state. We emphasize that in Eq. (1) alt off-
-near-resonant terms have been neglected in the summation over intermediate states of
the atom (Fig. 1). Such a simplification is known [10] to be quite good in the majority
of near-resonant cases.

In our previous papers [5, 8], angular momentum algebra has been carried out strictly
to reduce the definition Eq. (1) to a form including, as unknowns, only the appropriate
radial parameters and phase shifts dg j,. The equations derived there are valid for polarized
as well as unpolarized ground state alkali atoms, all conceivable experimental geometries
of the process with two light beams and all practically important combinations of polari-
Zation states of the exciting and ionizing beams. Accordingly, referring the Reader to
those papers, we shall restrict ourselves to give only the final equations for M flf)m adapted
to the geometry and light polarizations assumed above (Fig. I). For the four possible
combinations of initial and final electron spin projections onto the Z-axis, the equations
are:

4
M+ 1/2,+1/2 = — 5‘ elaS(S4_S3) {[(Zﬁl)a(lia(fi+(Z+1)a(+lia(2)]dyo,o(9f& Pz)

\/— [(v—DaC1af) +(+1)a1a2}1eP 797, o(9%, ¢2)
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+% (1= 1al}aB Y, (9%, ¢7)

+/E(+1)aHaBe Py, (9% w2}, 2

4 ,
M(Jrzi/z,—uz = - 5\/% (S4—S3)e’5D[agia(ziY2,_1(9k’, (PE)+‘1(+11‘1(+21Y2,+1('9E= D1 (3

with 9z and ¢z the polar angle and azimuth describing the trajecfory of the photoelectron
(Fig. 1) in spherical coordinates, whereas a” are the polarizational-geometrical factors
[4] attached to the v-th light beam (v = 1, 2) equal to

a® = (1 Fx,) [2(1+x2)] 222,

aQh = —(1£x,) [2(1 +K2] M2 22, @

where the double sign at the ellipticity «, corresponds to the two possible senses of elliptical
polarization of the v-th light beam. If the sense of polarization is defined according to
theé angular momentum convention, the upper sign denotes right-hand and the lower sign
left-hand elliptical polarization. Obviously, circular and linear polarizations are explicitly
included in Eq. (4) as two different limiting cases for x, = 1 and x, = 0, respectively.
Furthermore, y, z and d are atomic purely radial parameters, defined as

28,4+ S, 25,4+ S, S,—Sp
y= —, z= , d=_——, (5)
S4_S3 SZ_Sl S4_S3
with
St = R(n,S, ”P1/2)R(”P1/27 KS) (wn,1/2—0)1)_15 ©)
S; = R(noS, nP3;,)R(nPy,5, KS) (@, 3/, —®1)~ Y ©)
S; = R(UOS: nPy;)R(nPy )y, KD) (wn,1/2_w1)_1'.~ &
S, = R(n,S, ”P3/2)R(”P3/2a KD) (@n,s/z‘wﬂ_l ®

the radial matrix elements of near-resonant two-photon icnization with spin-orbit effects
in the D-continuum being disregarded. We note that the two remaining amplitudes, namely
M® 12,~172 and M3 /2,+1/2 are obtainable from Eqs (2) and (3), respectively, by the simul-
taneous interchange 4y’ — a®) and Y, > Y, _,.

As seen from Eqs (2) and (3) four unknowmns (y, z, d and cos (6,— dg)) are in general
inherent in the equation for any angular distribution. Fortunately, the number of unknown
parameters reduces to two only, namely those mentioned earlier and denoted as d .
= R(nP;, KS)/R(nP,;, KD) and cos (6,— d5), respectively, if the frequency w, of the exciting
beam 1 is near to a resonance with the component nP,,, or nP;;, of the nP doublet and,
simultaneously, the detuning from that component (by assumption exceeding its hyperfine
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structure) is much smaller than the fine-structure splitting of the doublet under considera—
tion. With those conditions, the following approximations are reliable:

y=z= -1 and d = d1/2 if w; >~ CO,,,I/Z,
y=z=+4+2 and d=d;, il ;> w,;,, (10)

permitting the determination of d; and, particularly, cos (6,~dy) by fitting the relevant
theoretical equation to the experimental curve of distributions.

Finally, we would like to emphasize that, for the light alkalis, near-resonance with
either the nP, , or nP;, state is not required in order to measure the term cos (5, —Jg),
since in the light alkalis the j-dependence of the radial wavefunctions of P discrete states
is neglegible [11] entailing d = d, = R(mP, KS)/R(nP, KD) and

_ 2[(@, 12— wl)/(a)_n@/_z__ 501)] +1
[(wn,l/Z i (01)/(wn,3/2 —ow,)]-1 ’

(11

which is always known at a fixed w,-value. 0

2.3. Rate of iomnization in a 8z, ¢p-direction

With the transition amplitudes M >, available, the angular distributions of photo-
electrons ejected from unpolarized atoms can be calculated by having recourse to the

standard formula of two-photon ionization theory [10]:

(2)9_, _,_1h/8 bz 242 1 M(2)2 12

o (9% %) = Ei; \‘ﬁ?) (arg) w10, 5 Z |M el (12)
1387234

where 0'?)(9z, pz) is the so-called generalized differential cross-section, in the sense intro-

duced by Lambropoulos and Teague [10], for photoemission of an electron in a 9z, gx-

-direction; while o =~ 1/137; ry ~ 5.29x 10~° cm; ¢ is the kinetic energy of the photo-

clectron; and Ry the Rydberg energy.

3. Results and discussion

Though light with elliptical polarization has been proved [6] to be more useful than
light with other polarizations in some two-photon ionization experiments, nonetheless
circular and linear polarizations are usually preferred by experimentators. Thus, we
intentionally restrict our discussion to those two light polarizations only.

3.1. Both light beams circularly polarized with the same helicity

Such a combination of light polarizations is the simplest to theoretical description
but, at the same time, inappropriate to the aims stated at the beginning of the present
paper. This is closely related with the fact that if two circularly polarized photons propa-
gating in the +Z-direction with the same helicity, say +1, are successively absorbed,
the magnetic quantum number of the absorbing electron has to increase by 2. Consequently,
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in the final electron state, the possible magnetic quantum numbers are +3/2 and +5/2.
Accordingly, from two partial waves, S and D, in general accessible in the continuum,
only the latter contributes to the transition amplitudes MS2), . This unavoidably leads
to distributions independent of the term cos (6, — 85) specific for the interference between S
and D photoelectron partial waves. Since the combination of polarization states of the
exciting and ionizing light beams assumed here is inapplicable to measure the term cos (6,

—0ds), we refrain from analysing this case.
3.2. Both light beams circularly polarized with opposite helicity

It is of our aim to point out in this subsection that collinear light beams with circular
polarizations can be used to measure the parameter cos (6, —J5) provided that they have
opposite helicities. If this is the case then the magnetic quantum numbers of the final
electron states have to be the same as in the ground state i.e. to amount to 4 1/2. According-
ly, in the present case the S-continuum partial wave is allowable as well in the transition
amplitudes and, consequently, the interference between S and D waves, specifically leading
to the desirable term cos (6,—Jdy), is expected to appear in the formulae for the angular
distributions. For an unpolarized atomic target interacting with a right-hand circularly
polarized exciting and left-hand circularly polarized ionizing beam, both propagating
in the same direction, the relevant formula pointing to this fact is

o .
P (9p) = i [1+B2P(cos 9g) + B4 P,(cos 7)), (13)

with ¢‘® the generalized total cross-section for the geometry and light polarizations in
question:

2n T

o® = | dog [ dSzo™(9%)
0 0

87° &

& \1/2
= 405 E§ (*ﬁ) (rg)’w;0,(S,—S3)° [5d2(22 +1)+3"+4], a4

Ry

whereas f§, and f, are two asymmetry parameters, both dependent on details of the atomic
potential, given by

g, = 3 2y2414(yz + 1)d cos (5 —dg)+5
aEI 5d*(z*+1)+y” +4
B, = L8 y*-1 i
T S+ v +4]
and P,(x) and P,(x) are Legendre polynomials of second and fourth rank, respectively:

D Py(x) = 1 (3x2—1),  Pu(x) = L (35x*—30x>+3). 17

(15)

(16)

In our opinion, in order when applying the above equations to measure the term
cos (6, —Js), two cases should be distinguished: (i) the case when the j-dependence of the



311

radial wavefunctions in P discrete states is negligible (the light alkalis) and (i) the case
when this j-dependence has to be strictly taken into account (higher excited doublets of
the heavier alkalis, particularly caesium [12]).

In the case (i), d goes over into d, = R(nP, KS)/R(nP, KD), whereas the parameters
y and z become identical and, for a fixed w;-value, non-necessarily resonant; they can be
calculated from Eq. (11) without difficulty. Accordingly, in the case (i) the asymmetry
parameter B, depends on one unknown d, only, while B, is dependent on d, as well as on
cos (8, —Jg). By fitting Eq. (13) to the curve ¢®(93), measured in experiment, both §,
and B, can be determined. In the next step, the parameter dg can be calculated from Eq. (16).
Once d2 is known then, having recourse to Eq. (15) for B, we determine the terms cos (5
—dg) with accuracy to its sign.

In the case (ii) near-resonance with the component nP; of the nP doublet is required
in order to measure first d; and then the more emibarrasing term cos (6p—90yg). To this
aim near-resonance with the state nP;,, instead of nPy,, is more favourable since now,
in conformity with the approximations (10) for y and z, both 8, and B, are nonzero and,
in practice, we can proceed exactly in the same way as described above for the case (7).
Near-resonance with the state #nP;, is not recommended since then S, = 0 and only one
equation for f,, namely (15), is available with two independent unknowns d,,, and
cos (6, — &), unfortunately. Thus, under near-resonant conditions with the state nPy,,
a complementary measurement of d,,, has to be carried out in a separate experiment
in order that the term cos (6,—ds) can be found. The parameter d,,, can be determined
e.g. from the measured value of the ratio of two generalized total cross-sections o for
two different combinations of polarization states of the exciting and ionizing light beams.
The formulae required to measure the parameter d,;, alone have recently been proposed
and discussed by us elsewhere [4].

Finally, we note that from symmetry considerations it follows that Egs (13)-(16)
are also valid for light beams circularly polarized in the same sense, provided that they are
counterpropagating.

3.3 Both light beams linearly polarized in different directions

The distributions considered in the previous subsection are isotropic in the XY-plane
due to rotational symmetry about the wave vector of the circularly polarized light beams
and thus only one angle 93 is sufficient to their complete description. Since in light linearly
polarized this symmetry is broken thus, in general, an additional azimuthal angle i
is expected to be needed to describe angular distributions generated by two collinear light
beams linearly polarized with polarization vectors tilted at an angle y (Fig. 1), on which
the distributions should be in general dependent as well. However, the values of the internal
atomic parameters of interest to us, namely, d; and cos (5, — ds) extracted from the experi-
mental data have to be the same for different angles y. This can provide an additional
check of the internal consistency (or discrepancy) of the results obtained experimentally.
Thus, it seems that values of d; and cos (6,—0d5) found in experiments with two light
beams linearly polarized in different directions should be more reliable than values obtained
with other combinations of light polarizations.
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Two collinear light beams, both polarized linearly but in different directions, produce
angular distributions described by the following general formula:

. « 12
P9z, 97) = % % (R%) (arg)’w;0,(S,— S;)?
x [ao()+az(y, ¢2) sin® Ig+ay(y, ¢p) sin* 9g], (18)
with:
ap(y) =1 +(y2'— 1) cos® y4+[1+(z*—1) cos® y]d?
' +2[14+(yz—1) cos® y]d cos (5p—Js), (19)
ay(y, ¢7) = $-3(y*—1) cos® y—3[1+(yz—1) cos” y]d cos (65— Js)
+32 {1-2(y*—1)cos® y—2[1+(yz—1) cos” y]d cos (6,—J5)} cos 2¢5
~3 [y?—1+(yz—1)d cos (6, 0dg)] sin 2y sin 2¢z, (20)
ay(y, 9) = 3 (v*=1) (1+2 cos® y+4cos® y cos 2¢7
+2 sin 2y sin 2@z -+cos 2y cos 4z +sin 2y sin 4¢g), 2n

where, in accordance with Fig. 1, the azimuth ¢y is measured with respect to the polariza-
tion of the ionizing light beam 2. ‘ _

Let us first consider briefly the case when the polarization directions of beams 1 and
2 ‘are identical; mathematically, this is equivalent to y = 0. Then, with 8 denoting the
angle of emission of the photoelectron measured with respect to the common polarization
direction of both light beams, Eq. (18) reduces to:

(2)

s2(6) = (;—n [1+B,P,(cos )+ B Pa(cos 6)], 22)

where:
6@ = 8—:;; 1%1 <Riy>1/2 (02)20,0(S, —S3)* (4y° + 5d%2% +6), (23)
g 25)

T 4y2 +5d°2°+6

Since Eq. (22) is formally analogous to (13), all indications foliowing after Eq. (17) and
concerning the method of determination of the term cos (6, — &) from the experimental



313

data are also valid in reference to formulae (22)-(25). Furthermore, although the above
formulae hold for near-resonant two-photon ionization with two different (as to their
frequencies and intensities) light beams, they are ecasily adaptable to the proces with one
off-resonant light beam at frequency . To this aim it suffices to put v, = w, = ® and,
additionally, the sign of summation over all bound and free P states has to appear on
the right-hand side of the definition equations (6)~(9) for the radial matrix elements .S; —8,.
Further, neglecting in the next step spin-orbit effects in P states (independence of the energy
levels and radial wavefunctions on j), one is easily convinced that with the help of our
Eq. (22) the previous formula of Zernik [13] and Arnous et al. [14] for the hydrogen atom
can be reproduced exactly.

The general Eq. (18) leaves the experimentator considerable freedom as to the choice
of the plane of observation of the photoelectron angular distributions. However, in order
to take up an attitude towards the pioneering experiment of Duncanson et al. [3], we now
adapt Eq. (18) to observation in the X¥-piane in which both polarization vectors e, and
¢, are lying. In this plane the distributions are analytically described by:

5(2)((}9}5) = ¢, +¢, cos 2¢7 5 sin 2%
+ ¢4 cos dpg+cs sin 4gg, (26)

with ¢, = ¢ocl, where n = 1,2, ..., 5, and

Com kN - |
Co = E“ i{—y <§§]> (o) " @1,(S,—S3)", (27)
¢ = 2 (P +1)+1 [1+(y*—1) cos® y]+[1+(2% — 1) cos? y]d

—[14(yz—1) cos® y]d cos (8, —ds), (28)
¢y = 3 {1+(y*—1) cos® y—2[1+(yz—1)-cos® y]d cos (6p—Js)}» (29)
¢y = 2[y*—1-2(yz—yd cos (0p—Jg)] sin 2y, (30)
¢, = 3 (¥2—1) cos 2y, (1)
¢s = 2 (y*—1)sin 2y. (32)

Formally, Eq. (26) is identical with that used by Duncanson et al. in their measurement
of the angular distributions of electrons from resonant two-photon ionization of unpolariz-
ed sodium atoms via either the 3Py (y =z = —1 and d = dyp) or 3P3,(y =z = +2
and d = dy,) level. Of particular interest are their results for resonance with the 3P,
state. For this case, Duncanson et al. have found the coefficients ¢,, ¢;, ¢3, ¢4 and cs
at three different angles y by least-squares fits of Eq. (26) with the experimental curve
6@(@z) normalized to 1 at gz = 0. In the next step, having available (but unfortunately
unreported in their paper) analytical expressions for ¢, ..., ¢5 they determined the param-
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eters dy;, and cos(6p—ds). Their final conclusion is that the best fit is at d3p = +2
and cos (6,—d5) = + 1. For the above best-fit values of the parameters d; ,2 and cos (6, —dg)
they further present in their Table II theoretical values of the coefficients cy, ..., ¢5 found
on the basis of their equations for those coefficients. Obviously, if their equation for
¢i, ..., ¢5, not presented in [3], and ours given by (27)-(32) are identical, it should be
feasible to reproduce their Table IT with the help of our Eqgs (27)-(32), in which y = z
= +2,d=d;;;, = +2 and cos (§,—05) = +1 should be put to this aim. Unfortunately,
this is not possible unless we change the sign at the interference term d cos (5, — ) in our
Eqs (28)—(30). However, if this is done, the formula of Zernik [13] and Arnous et al. [14]
for hydrogen cannot be obtained from our equations modified in such a way. This suggests
that there may be some mistake concerning the sign at the term d cos (5, — d) in the for-
mulae of Duncanson et al. for the coefficients ¢y, ..., ¢5. If our supposition is true, the
parameters ds,, and cos (J,—d5) have to be of opposite signs and the best fit is achievable
either at d3;, = +2 and cos (6,—05) = —1 or at dy, = —2 and cos (6,—d5) = +1,
but not at dy;, = +2 and cos(6p,—3ds) = +1, as reported by Duncanson et al.

34. Analogies to one-quantum photoeffect

Eqs (13) and (22) of the present paper are consistent with the general theorems of
Yang [15] concerning the form of angular distributions of products of nuclear reactions
and disintegrations based only on the invariance propertiecs of the physical processes
under space rotation and under inversion. As seen from (13) and (22) in two-photon
process the angular distributions are in general described by two asymnietry parameters
B, and B,, as distinct from the usual one-quantum photoeffect, where only one asymmetry
parameter is sufficient [16]. In fact, the term B,P,, inherent in Eqs (13) and (22), is specific
to the two-photon nature of the process. However, in particular, at both y = —1 and
+1 this term is ruled out from these equations and the distributions become similar to those
for the one-photon. process with the obvious restriction that for one-quantum photo-
effect both the total cross-sections and asymmetry parameters are described by other
equations than those marked as (14), (15) and (23), (24), respectively. With regard to
Eq. (10), the condition y = —1 is tantamount to a near-resonance with the state nP, /25
whereas in order to assign the corresponding frequency to the condition y = +1, let
us assume for the moment that the j-dependence of radial wave-functions in P discrete
states can be disregarded, as for all doublets in the light alkalis and the first excited doublet
in the heavy alkalis. In that case the approximation (11) for y is in force, whence it follows
that y = +1lisequivalent t0 0; = @, 1, +3®, 3/, —®,,1,,) i.¢. to observe the cancellation
of the term f,P,, specific for the two-photon process, it is recommended to detune the
frequency @, of the exciting beam 1 by about 1/3 of the fine splitting interval from the
nPy,, doublet component towards lower frequencies. In addition, just at w; =. @, 1,
+3H@,,3/,—®, 1;,) the distributions (18) cease to depend on relative orientation of polari-
zation vectors ¢, and e, of collinear linearly polarized light beams 1 and 2, if the light
alkalis are ionized. The last result is complementary to the result of Duncanson et al.
who have previously found that the y-independence and, consequently, the analogy to
one-quantum photoeffect occurs at w; = @, ;.
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