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CONNECTION BETWEEN THE NONLINEAR RESPONSE OF
A SYSTEM: AND THE MAXIMUM OF ENTROPY
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Magnetism Theory Division, Institute of Physics, A. Mickiewicz University, Poznan*
(Received December 7, 1979)

Using the maximum entropy formalism we obtained the formulas both for nonlinear
and linear response of a system.

1. Introduction

The equilibrium distribution functions and statistical operators for all the Gibbsian
ensembles correspond to the maximum of entropy for the assumed different external
condltlons [1, 2]. The external properties of the Gibbsian ensembles were neticed a long
time ago. Indeed in generalizing the Gibbsian ensembles to the case of quantum statistics,
von Neumann started from the extremal properties of entropy [3]. The use of the extremal
properties of entropy is a very convenient method for finding the different distribution
functions and statistical operators. This method is suitable in both equilibrium and non-
equilibrium statistical mechanics [4]. In the present paper, we shall use the extremal
properties of the entropy to construct the statistical operator for the nonlinear response’
of a system.

2. Maximum 'of entropy

We shall consider the response of a quantum statistical ensemble of a system, with
the Hamiltonian #(0) independent of time ¢, to the switching on time-dependent external
perturbation V(7). The total Hamiltonian of the system, including the external perturba-
tion, is

S = HO)+V), (1)
where V(t) is the operator of interaction of the system with the external classical field.
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The statistical operator ¢(¢) satisfies the von Neumann equation

ih ag—(tt) = [#, e(®]. )
We assume that at t = —oo the external perturbation is absent i.e.,
V(t=—-0)=0 3)
and
A Ot = —00) =0, )
KN (t=—00)=0, )
where
CHO)(@E = —0) = Tr [o(t = —o0) #(0)], ©
(N> (= —o) =Tr[e(t = ~w©)N;]. D
NJ- is the operator of a particle number for j type particles. Consequently, at t = —co

the system is in contact with a thermostat and a particle reservoir, this means that they
are characterized by specifying the average energy and average number of particles.

The negative mean of the logarithm of the statistical operator is called the Gibbs
entropy

S = —In g(®)y = —Tr [o(t) In o(1)]. O @®

We shall show that the nonlinear response of the system corresponds to the maximum
of the entropy (8), i.e.,

58 =0, : ©)
825 < 0 . (10)

for a given (4) and (5) and when the normalization is conserved
Tr [o(0)] = 1. ' (I

We think that expressions (9) and (10) can be regarded as specific “boundary conditions”
of statistical mechanics.

We find the extremum of the functional (8) under the supplementary conditions
(4), (5) and (11). Following the usual method, we seck the absolute extremum of the
_functional

Lle®] = ~Tr [o(®) In o()]—B Tr [o(t = — ) #(0)]

+(1+B2) Tr [e()]+8 ). p; Tr [o(t = —a0)N ], (12)
J

-where f, u; and 14 BQ are Lagrange multipliers determined from the conditibns @),
. {5) and (11).



If the Hamiltonian (1) depends explicitly on time, the von Neumann equation (2)
can be formally integrated with the help of the evolution operator U(t, —0), a unitary
operator satisfying the equation

ou(t, —
i %) = (#(0)+V()U(t, — ), (13)
where
U1, —0)U(t, —0) = 1 14
and the initial condition
SHOWHY( o0, —o0) = 1. (15)

The statistical operator at time ¢ has the form-
e(t) = U(t, —0)o(t = —0)U'(z, — o). (16)

Substituting (A14) and (16) into functional (12) and using the cyclic invariance of the
trace, we obtain

Lle(0] = —Tr [o() In o(®]+(1+B2) Tr [e(t)]
— B Tr [e()U(2, — 0)#(0)U(2, — 0)]

+8 3, 1; Tr [e(OU(t, — )N, U(t, — c0)]. (17)
J 2 .
From the requirement that the first variation of this functional vanishes
oL[e(1)] = 0 (18)
we find
e(®) = exp {—LU(t, — 0) (H(0)=3 s;N,;~ DUz, — 0]}, (19)
i i

which coincides with the statistical operator in the case of nonlinear response of th
system [4, 5]. i

We niow prove that (19) corresponds to the maximum entropy (8). Let ¢/(¢) be a nor-
malized statistical operator corresponding to the same average emergy as (6)

Tr [@'(t = —0)#(0)] = Tt [o(t = —0)#(0)] (20)
and to the same average particles’ numbers as (7)
Tr [@'(t = —0)N;]'= Tr [o(t = —0)N,] @1
but arbitrary in other respects. Putting (19) into the inequality

—Trfe'In @] < —Tr[o Ing] (22)



which follows from the obvious inequality

Inx>1-— i, x>0,
X
we obtain
=Tr [ (D] < ~Tr [o'(H) In o(n)]
= —BQ+B Tt [¢'(HU(t, — 0)H#(0)U(t, —0)]

—B Y u; Tr [o'()U(t, ~ 00)N,;U(t, —0)]

I

—B2+pTr[@(t = ~0)# ()] =B p; Tr[¢'(t = —0)N,]

]

—BQ+p Tr [o(t = —0)#/(0)]—B Y, p; Tr [o(t = —0)N,]

= —BQ+p Tt [o(HU(t, —0)#(O)UT(¢, —0)]
~B Y, 1; Tr [e(OU(t, —0)N;U(t, —0)] = —T, [o() In o(1)], (23)
J
where we use the conditions (11), (14), (20) and (21) for ¢ and ¢'.

Thus, the statistical operator (19) corresponds to the maximum entropy (8) for a given
average energy and average particle number at the time 1 = —o0. We assumed the contact
with a thermostat and a particle reservoir as the initial condition at ¢t = —oo, and the
studied the evolution of the system as if it were isolated from all external influences apart

from the classical force field V(7).
The mean value of any dynamic variable 4 is equal to

<4X(@) = Tr [o(1)4]. 9

Substituting (19) into this expression (24) and using the cyclic invariance of the trace
as well as the relation

U(t, = 0)f(DUY(t, —0) = f(U(t, —0)AU'(t, —0)), - (25)
thre f(4) — arbitrary function of the operator 4, we obtain
{AY () = Tr [U(t, —0)0oU'(t, —0)4]
= Tr [oU'(t, — 0)AU(t, —0)], (26)
where

g0 = exp [—F(A#(0) =Y, u,N,~ D] @7)

is the statistical operator of the grand canonical distribution.



At the time # = —oo using the relation (25) and substituting the obvious condition
o(t = — ) = U(—00, —o0)e(t = —0)UH(— 00, — ) 8)
into expression (19), we have

o(t = —o0) = go- ; (29)

3. Evolution operator

The evolution in time of the mean value {4)(z) of any dynamic variable 4 is deter-
mined by the equation (1 3). Let us assume that the first term of the Hamiltonian (1), #°(0),
is the zero-order Hamiltonian, and the second, V(z), is the perturbation Hamiltonian,
which’ we can regard as “small”. It is convenient to multiply Eq. (13) by exp @i (0)t/h)
on the left and transform it to :

0 N
ih — [ U ()] = V()™ iU, (30)
where

f/(t) - ei.}f(o)t/ﬁV(t)e —i(0)/% (31)

is the perturbation energy operator in the Heisenberg picture. Integrating Eq. (30) over
t from —oo to ¢, taking the initial condition (15) into account, we obtain the solution
(30) in the form of an ordered P-exponential

t

. 1 7 )
U(t, — ) = ¢ #OEp exp {'—ﬁ J V(t’)dt’} . 32)
i
where P is the time-ordering operators [6].
In the first approximation, we obtain
2 i
. 1 -
U(t, — o) = e"-’ﬂ""“f{u = f V(t')dt’}. (33)
; .
Substituting (33) in (26) we get
KAy (1) = <A O)+ [ AW IV()pr, €2
where
Z(t) = eiW(O)t/ﬁAe —i,}f’(O)t/if (35)

1
<A 1B(1)) = 0t —1) - <[AD), B()1> (0) (36)



is the retarded two-time Green function and

CD(0) = Tr [ gol. 37

“Formula (34) describes the linear retarded response of the average values of an opera-
tor 4 to the switching on of a perturbation ¥(r) for a quantum-statistical ensemble and is
analogous, to the known Kubo formulas [7].

!

4. Conclusion

The most important conclusion of this paper is that the statistical operator for non-
linear response of a system corresponds to the maximum of the entropy for a given aver-
age energy and average particle number at the time ¢ = —co.
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