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The Dyson equation for the singlef-triplet ferromagnet is derived using irreducible
double-time temperature Green functions. In the lowest order approximation the results
are in agreement with those of the spectral density method, which improves the RPA results.

1. Introduction

In this paper, we concentrate on the singlet-triplet system. Examples of such systems
are the rare-earth compounds, which have an A4, singlet ground state and a first excited
T, triplet staté (e.g. TmN [1], TbSb [2], and Pr;Tl [3]). The Green function method with
random phase -approximation (RPA) has been applied to these systems by Hsieh and
Blume [4] and by Hsieh [5]. The application of the spectral density method (SDM) [ 6]
to such systems [7, 8] permitted the consideration of two-site correlations. ‘

Here, we propose a derivation of the Dyson equation for the ferromagnetic singlet-
-triplet system and discuss the resulting equations in the lowest order approximation. We
show that SMD is the best method in this order. We use the formalism of irreducible
double-time temperature Green functions, previously applied by Plakida to the Heisenberg
model [9] and to magnets with spin-phonon coupling {10, 11}, and by Micnas and Kowa-
lewski [12] to the Ising model in a transverse field.

2. Dy&on equation
The effective spin Hamiltonian for the singlet-triplet system takes the form [4]

H =AY 8 T— Y J,(aS;+bT) - (aS;+bT), )
i ij

where S and T are spin-1/2 operators, 4 is the energy gap between the singlet and triplet
state, J;; is the effective exchange interaction between ions i and j, and @, b are constants
of the model. E.g., we have @ = (1+2./14)/2 and b = (1—2,/14)/2 for Tb**, or Tm>*,
in a octahedral crystalline field [4].
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We define the temperature double-time retarded Green functions [13, 14] in terms
of the operators

« SZ .
B, - (T) ;= 5T, @
—-q
as follows:

G(t, 1) = —i0(t—1) {[By(0), B} ()] = <<éq<t)lé;(r'>>>, 3)

1 .
S; = \—/_ﬁ Z S?elqu,

i

1 z : .
Toc = — Tviaceulri, o = +, -z, 4
q ‘\/N z 4

i

where

The Fourier time transform is defined by

0

Gt 1) = | ¢ G (w)do. (5)

The aim of this paper is to derive an exact expression for the matrix Green function Cv}q(a))
analogous to the Dyson equation. We use the formalism of irreducible Green functions.
We consider only a ferromagnetic phase where {(S*> # 0 and <{T* # 0.

The equation of motion for éq(w) is of the form

0Gy(0) = — ity (o), ©)
where |
S _ ((()SZ) 2T2>> (7
and
Hy(w) = «[B,, #]1B} Yo (8)

The commutator in the higher order Green function of Eq. (8) decomposes into two
parts, as follows: ' 5

[B,, #] = A(q)B,+[B,, #]™ ©)
Eq. {6) now takes the form
9 . 1. ..
[0l —A(@)]Gy(w) = — P a+Hy"(w), 10
where I is the unit matrix and

Hi"(w) = «[B,, #1™(B} Y, (11)

’
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is an irreducible Green function. The unknown matrix A(g) is determined from the vanishing
irr

of non-uniform terms in the equation of motion for H o (w). This condition is given by
[[By #T, By 1) =0, (12)

meaning that
“Aq) <[Bop B{ 1> = <[[Bpr #7, B - (13)

This leads to the equations

1 ' 2ab G
4@ = = 5o {A[<S‘T+>+2<SZTZ>]f. e Zf(k) (ST

k

2q* 2a* .
=S5 ) THSTS+ Z THa—k) <STSEY

k k
44 44> dab
AN s i+ Z Ha—0) <SS~ Z 50 <sszk>},
k 14 k

A1,(g) = {—A[(S—T+>+2<SZTZ>]

KT

2ab - o 4ab i
+ N J(q—K) ST >+ —- J(q—k) (SiTZ ¢ s
N
% P

~ (T
Ap1(q) = A4,(q) <S—z> > ”

1 2ab
A22(q) = — TS {A[<S_T+>+2<SZTZ>]— % Z J(k) ST

2b221k - szz P
TN (KT >+ N J(q—k)KTLT 5.
3 3

4b> 4b* : 4ab
~ ) JOLTTI £ E Ha=) CTET2D = 7 E 70y <sszk>}, (14)
k k

k

where the one-site averages are assumed to be independent of the localization of the site
The Green functions of zeroth order are defined by neglecting ﬁfl"(a)) in Eq. (10)

[wl—A(9)]Gy(w) = —

?—1|>—-A

3. (15)
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The elementary excitation spectrum, given by

det [wl—A(q)] = 0 (16)

has two branches which are of the forms:

0@ = + {4 (@+ A2 VA1 (@)~ A D 441D As(@},  (17a)

05(q) =2 {A11(0) + A2~V [ A4, 1(0) = 4220 =441, Ars(@)}.  (17b)

In order to determine the irreducible Green function on the right side of Eq. (10),
we take the derivative of the Green function H L) (see Eq. (8)) with respect to the time ¢’
On taking the Fourier time transform, extracting the irreducible part as in Eq. (9), and
using the equation of motion for éq(co) (Eq. (10)) and the properties of the matrix A(g),
we obtain the equation of motion for the irreducible Green function f[fl"(co) in the form:

N o5 1 . . N
—{wl-A(Q)}H," () = — > LBy #T™ By D +H" (), (18)
where
Hy™™(0) = K[B,, #T7| [B], #T", (19)
With regard to the condition (12), the equation (18) becomes
{0l - A@}H (0) = — Hy""(@). (20)
On writing the auxiliary equation:
Gy(®) = GAw)+ GA)P ()G (), (21)
we obtain from Egs (10), (15) and (18)
Pyw) = —m’a” 'H () (22)

In the derivation of Eq. (22) we used the properties of the matrices A4 and g as well as the
fact that Eq. (20) can be wriftten in the form

Hi™(w) {0l—-A*(9)} = — HI"(w). (23)
The mass operator ﬁq(w), defined as:
G0) = G(©)+ G ()G, (w) 29
is related to ﬁq(w) by the equation
Pyo) = IT(0)+I1(0)G ()P (o). (25)

It is obvious from Eq. (25) that the mass operator 17 ) is determined by the proper part
of P (o) i.e. by the part not connected by a single line Gy(w). Thus, the mass operator
is given by

I (0) = PP(0) = —a*{a" tHi™ ™ (@)e™ 1}, (26)
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By using the spectral representation for the Green functions, we obtain:

o 0
’

I w) =% J —d_w (€=T—1) J dte™ ™"
( DI CHY™ (CaY ™ (DF |
Z\ 2 . vz z
| PaF{C™) {DalD} (Dgp}™ |
L (8% KT%) (T%)? J
where
Coe = A(Sy Tjir—SiT 41
+2J(K) (a®S3_, Sy +abSi_ Ty —a’SiSy, ,— abSiTis,) (28)
and

Dy = A(SiTy3,— 7 T
+2J(k) (O°T;_ T +abS; Ty ,— b>T, /T — abS;T,% ,)- (29)
Eqs (24)429) and Eq. (15) complete the derivation of the Dyson equation.

3. Analysis of the zeroth-order approximation
The equation of motion for the zeroth order Green function (15) has the solution:
(8% [w=A45,(9)]
mlo—w(g)] [o—wy(9)] '
<T_2>A12(q)
o —wi(q)] [o—wx(@)]
Gg(w)m = Gg(@)iz,
(T?> [a’—An(QH
tlo—w(q)] [o—wx9)]

where 4,,(q), 41,(g), 4,,(g) are given by Eq. (14) and w,(q), w,(q) by Eq. (17). On apply-
ing the spectral theorem, we obtain from Eqs (30) the following equations for the correla-
tion functions:

!

Gg(w)u = <<S:;1]S;>>w =

Gg(w)IZ = <<S:q[Tq+>>w =

]

G022 = TIT, Yy = (30)

®1(q)—4,,(q) coth Bw(q)

20,(q) — A1 1(q) — A3(9) 2

@,(q)~A3,(q) : ﬁfﬁ@ —1}

(SIS, > = (8% {

coth

(31a)
2w,(q)— A;1(q)— A22(q)
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5 f A12(9) ( Boy(9) ﬁwz(Q)}
SZ =<8 e ~
S = o O T e > e
T T+ - j w(q)— Azz(Q) . B9
¢ ! q> T>12w1(‘1) An(él) Azz(Q)COth 2
(q)—~A422(q) Bw.(q)
20,(@)— A @A " 2 '_1} ’ e

where B = 1/kpT (kg is the Boltzmann constart). The one-site averages {S%>, <T*> and
{S-T+) are cases to evaluate with the aid of the relations

(S =3~ %Z (82,85, (322)
T = - L Z KTZT (32b)
2 N qg+q B
q
— 1 - i
ST =+ Z (ST (32c)
q

In order to obtain the one-site average (S°T°) we use the Green function H @) (see Eq. (6)).
The equation of motion (6) for [G(w)];; takes the form

1
oS JIST Yo = — = (S*0+<[SZ, #T18; Do (33)

Approximating G,(@);; by G(@)ys, we obtain:
<S‘z> {w[_w-Azz(‘Jl] _ w[_w:Azz(Q)
o) - (] | o—w(9) o—o(q)

Using the spectral theorem and evaluation the commutator in the average ([S_q, HIS +>,
we obtain the following expression

1
K[SZp #T1S; D0 = } + et (34)

1 -+ 1 2a2 z
STy = 3 {TH>~7 {8 T >+ i {W Z J(@) <S8

q

2ab zZnz 2/Qz z
T Z J(q) <S3TZ,> —a7<S"5J(0)~ab{T*>J(0)

L 69 Z o,(@) 0@ = An@] o)
w,(q9)~w(q) 2
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+ L J(@) (S Sy >+ — Z J(@) ST, T,

<S8% w,(q) [02(q) — Azz(‘])] ﬂwz(q) <Sz>
“ N o @-ona) A“(q)} e

Eqgs (14), (17), (31), (32), (35) are as yet not self-consistent because of <SZ 7>, <SZ T;>

and {TZ T;>. We achieve self-consistency by performing the very simple approxml_;tl(‘;n

(82,80 = (8L LSy,
(ST = (SZHLTH,
(T2 TES = (T2, T2, (36)

Using the above approximation we obtain the same results as when applying SDM to
our problem [8].

4. Discussion

We have derived the Dyson equation of the double-time temperature Green functions
for the sing‘let—triplét system in the ferromagnetic region. The poles of the Green functions
in the lowest order approximation give the elementary excitation spectrum of our system.
We have shown that the best zeroth-order approximation is equivalent to the spectral
density method [8]. To make the procedure self-consistent, however, it is necessary to
apply the higher-order Green function [S=,, # 1NN »- The simplest way is to express this
higher-order Grezn function in terms of the zeroth-order Green function Gj(w). The
above procedure reproduces exactly the results of SDM. This shows that the evaluation
of {S*T*y has to be performed in the next order of the approximation. Similarly, the evalua-
tion of {SZ ,S%» for the Heisenberg model applying SDM in the lowest order of the approxi-
mation [6] has, in fact, to be carried out in the next-higher order. It is not possible to
solve such problems self-consistently in the lowest order. Of course, the singlet-triplet
system is much more complicated than the Heisenberg model and our procedure allows
to calculate only all the one-site averages and transversal two-site correlations. We have
decoupled the two-site correlations <SZ,Sg>, (SZ,Tg> and (TZ T;>. After this decoupling,
our set of equations is self-consistent. ,

The author wishes to thank-Professor L. Kowalewski and Dr. R. Micnas for their
helpful discussions and remarks throughout this investigation.
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